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Abstract: Well aligned ZnO nanorods have been prepared by a low temperature aqueous 

chemical growth method, using a biocomposite seed layer of ZnO nanoparticles prepared 

in starch and cellulose bio polymers. The effect of different concentrations of biocomposite 

seed layer on the alignment of ZnO nanorods has been investigated. ZnO nanorods grown 

on a gold-coated glass substrate have been characterized by X-ray diffraction (XRD) and 

field emission scanning electron microscopy (FESEM) techniques. These techniques have 

shown that the ZnO nanorods are well aligned and perpendicular to the substrate, and 

grown with a high density and uniformity on the substrate. Moreover, ZnO nanorods can 

be grown with an orientation along the c-axis of the substrate and exhibit a wurtzite crystal 

structure with a dominant (002) peak in an XRD spectrum and possessed a high crystal 

quality. A photoluminescence (PL) spectroscopy study of the ZnO nanorods has revealed a 

conventional near band edge ultraviolet emission, along with emission in the visible part of 
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the electromagnetic spectrum due to defect emission. This study provides an alternative 

method for the fabrication of well aligned ZnO nanorods. This method can be helpful in 

improving the performance of devices where alignment plays a significant role. 

Keywords: biocomposite seed layer; ZnO nanorods; hydrothermal growth method;  

starch; cellulose 

 

1. Introduction 

During the last two decades, a great deal of research has been performed on the synthesis of 

different nanostructures, which helps in the understanding of the mesophysics phenomena of growing 

nonmaterial. Several nanostructures of different metal oxide semiconductors with potential 

applications have been explored. Among these, ZnO is considered to be a promising material for the 

nanoscale based device applications due to its wurtzite crystal structure, wide direct band gap of  

3.37 eV and high exciton binding energy of 60 meV. ZnO nanostructures can be used in the 

development of light emitting diodes (LEDs) [1], piezoelectric transducers [2,3], gas sensors [4,5], 

dye-sensitized solar cells [6], and in medical applications [7]. As research on the fabrication and 

applications of ZnO is maturing, the pronounced effect of the morphology of ZnO nanostructures has 

been debated. It is crucial to have a controlled morphology of the nanostructures for the desired 

application, due to its backbone role in the performance of the device. Several methods have been 

reported for the synthesis of various ZnO nanostructures, both with physical and chemical approaches. 

Yet, more work is required in the synthesis of well align ZnO nanostructures. The oriented ZnO 

morphology is highly demanded for the construction of devices. Among the diverse morphologies of 

ZnO, nanorods have gained particular attention in the research community. As a result, several 

approaches exist for their fabrication. To grow one dimensional ZnO nanostructures, such as nanorods, 

many expensive growth techniques are available, including pulsed laser deposition (PLD) [8], thermal 

evaporation [9], vapor transport deposition (VTD) [10], molecular beam epitaxy (MBE) [11], different 

chemical vapor deposition (CVD) techniques [12–14], and magnetron sputtering (MS) [15]. These 

methods require extremely severe growth conditions, including high temperature and pressure, and 

dangerous chemicals. Besides these, low cost and simple growth techniques, such as electrodeposition [16] 

and hydrothermal growth methods [17], can be used for the fabrication of one dimensional ZnO 

nanostructures. The seed-free growth of highly ordered ZnO nanorods is very difficult on many 

substrates, because of lattice mismatch. A seed layer is therefore essential in order to achieve well 

aligned nanorods on the substrate. Recently, several seed coating techniques have been used for the 

growth of well-ordered ZnO nanorods, such as atomic layer deposition (ALD), pulsed laser deposition 

(PLD) [18], electron beam evaporation (EBE) [19], the successive ionic layer adsorption and reaction 

(SILAR) method [20], spray pyrolysis [21], and RF sputtering techniques [22,23]. The growth of ZnO 

nanorods, homogeneously perpendicular to the substrate, is a challenging task using a simple and low 

temperature aqueous chemical growth method. Moreover, template assisted methods have also been 

used for their potential capability in the development of ordered materials in a controlled way [24,25]. 
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The template assisted materials include micelles [26], membranes [27], biopolymers [28,29], as well as 

animal and plant tissues [30,31]. 

In this work, freshly prepared ZnO nanoparticles were homogenized with two renowned 

biopolymers; starch and cellulose. The biopolymer solutions were used as a seed layer for the synthesis 

of highly ordered ZnO nanorods on the gold coated glass substrates. Both starch and cellulose are 

among the most abundant naturally occurring biopolymers, and starch has the ability to form a variety 

of complexes with other molecules [32]. Starch is a polymer formed by repeating units of amylose and 

amylopectin through 1, 4 glycoside linkages between D-glucose units. Starch is not easily soluble in 

water at room temperature, but by heating the water, it forms a gelatin liquid. In this gelatin liquid, 

ZnO nanoparticles provide a large number of nucleation sites for the growth of well aligned ZnO 

nanorods. Similarly, cellulose is also a member of the starch family, and being hydrophilic in nature, it 

provides a useful platform for distributing ZnO nanoparticles on the substrate and thereby acting as an 

efficient seed material together with ZnO nanoparticles for the fabrication of well aligned ZnO 

nanorods. In addition to this, the effect of different concentrations of ZnO nanoparticles diffused in 

starch and cellulose biopolymers on the alignment of ZnO nanorods have been investigated.  

2. Results and Discussion 

ZnO nanoparticles were characterized X-ray diffraction (XRD) technique and the diffraction pattern 

is shown in Figure 1a. The measured diffraction peaks include 100, 002, 101, 102, 110, 103, 200, 112, 

and 201, which are according to the reported work [33]. The ZnO nanoparticles exhibited the 

nanocrystalline phase and no other impurity such as Zn(OH)2 was observed. Figure 1b shows the AFM 

image of the biocomposite seed layer of the ZnO nanoparticles and it can be seen that the nanoparticles 

are uniform, dense and well adhered to the gold-coated glass substrate which behaved better nucleation 

centers for the growth of well aligned ZnO nanorods.  

Figure 1. (a) The XRD pattern of ZnO nanoparticles; (b) The AFM image of the 

biocomposite seed layer of ZnO nanoparticles. 

  

(a) (b) 
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Figure 2 shows the XRD spectra of as synthesized ZnO nanorods without the seed layer of ZnO 

nanoparticles and it can be observed that the appeared peaks are less intense especially (002) peak 

which proved that without seed layer the orientation of nanorods is subject of matter. However, with 

the seed layer consisting of ZnO nanoparticles in starch biocomposite as shown in Figure 3a–e, the 

measured diffraction peaks are almost similar, but the orientation is a bit improved. For cellulose 

biocomposite based seed layer, on gold-coated substrates, the observed 2θ peaks at 31.7°, 34.4°, 36.3°, 

47.5°, 56.6°, 62.8°, 67.9°, and 72.5° are shown in Figure 4a–c. All the obtained XRD diffraction 

patterns are according to JCPDS card number 80-0075. The peaks in the XRD spectrum could be 

assigned to the (100), (002), (101), (102), (110), (103), (112), and (004) crystal planes of ZnO 

nanorods with wurtzite crystal structures. The nanorods grown on a starch seed layer, and in particular 

those grown on a cellulose seed layer, are well-ordered due to very intense peak of (002) crystal plane 

which shows that the growth pattern is along the c-axis direction as shown in Figure 4c.  

A distinctive FESEM image of ZnO nanorods grown with the seed layer of ZnO nanoparticles 

(without starch and cellulose) is shown in Figure 5 and it can be seen that to some extent the nanorods 

are aligned and exhibited uniform diameter which could be due to the improper nucleation on the 

substrate provided by ZnO nanoparticles and possible the aggregation of nanoparticles. Typical 

FESEM images of the ZnO nanorods growth on seed layers of ZnO nanoparticles biocomposite with 

starch and cellulose on the gold-coated glass substrates are shown in Figures 6 and 7 respectively. 

Figure 2. The XRD pattern of ZnO nanorods without seed solution. 

 

Figure 6a–g shows the ZnO nanorods grown with seed layer of ZnO nanoparticles and starch 

biopolymer, Figure 6a is an image of ZnO nanorods grown in a starch biopolymer without ZnO 

nanoparticles. It can be seen that the ZnO nanorods are not well ordered and the yield of nanorods on 

the substrate is very much less. However, with the addition of 0.5 mg/mL of ZnO nanoparticles in the 

starch solution, the grown nanorods are well aligned along the c-axis direction of the substrate as 

shown in Figure 6b. Further increasing the concentration of ZnO nanoparticles to 1.0, 1.5, and  

2.0 mg/mL in the seed solution which resulted well-ordered ZnO nanorods, as shown in Figure 6c–e. 

This behavior can be explained by the gelatin like property of starch and the uniform distribution of 
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ZnO nanoparticles on the surface of the starch biopolymer, which provides the possible nucleation for 

the growth of ZnO nanorods. However, by further increasing the concentration of ZnO nanoparticles to 

2.5 mg/mL in the starch solution, the nanoparticles might start to aggregate on the surface of the starch 

biopolymer. The aggregation of ZnO nanoparticles in starch results in a loss of uniformity of the 

distribution of the ZnO nanorods, as well as a random alignment of the nanorods, as shown in Figure 6f. 

Figure 3. The XRD pattern of ZnO nanorods growth with seed solutions containing  

3.5 mg/mL of starch concentration and different concentrations of ZnO nanoparticles:  

(a) 0.5; (b) 1.0; (c) 1.5; (d) 2.0; and (e) 2.5 mg/mL. 
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Figure 4. The XRD pattern of ZnO nanorods growth with seed solutions containing  

3.5 mg/mL of cellulose concentration with different concentrations of ZnO nanoparticle: 

(a) 1.0; (b) 3.5; and (c) 7.5 mg/mL. 

 

Figure 5. The FESEM image of ZnO nanorods grown with only ZnO nanoparticles  

seed solution. 
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Figure 6. The FESEM images of ZnO nanorods with seed solutions containing 3.5 mg/mL 

of starch concentration and (a) 0; (b) 0.5; (c) 1.0; (d) 1.5; (e) 2.0; (f) 2.5 mg/mL of ZnO 

nanoparticles concentration; and (g) cross section image of ZnO nanorods growth  

with f condition. 

 

Figure 7a–e shows top view FESEM images of ZnO nanorods fabricated with a cellulose 

biopolymer seed layer. It can be seen from Figure 7a that omitting the ZnO nanoparticles in the seed 

layer results in nanorods that grow with larger rod to rod separations and a random alignment. When 

1.0 mg/mL of ZnO nanoparticles were introduced in the cellulose solution, the nanorods started to 

grow in random directions, as shown in Figure 7b. However, for seed layer containing 3.5 and  

7.5 mg/mL of ZnO nanoparticles in cellulose solution, the ZnO nanorods are grown highly ordered and 
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dense on the substrate, as shown in Figure 7c,d. Cellulose, being a member of the starch family, shows 

similar effects on the alignment of the ZnO nanorods as starch does. The FESEM study demonstrates 

that ZnO nanorods synthesized by a seed layer of ZnO nanoparticles with biopolymers exhibit a 

hexagonal crystal structure and are oriented along the c-axis of the substrate, which is consistent with the 

XRD results. The diameters of the nanorods, grown by a combination of organic and inorganic materials 

in the seed layer, are in the range of 100 nm to 200 nm. In other words, the deposition of biocomposite 

seed layer of ZnO nanoparticles not only assists to control the yield of nanorods, diameter, and their 

uniform distribution, but also enhances the overall alignment orientation of ZnO nanorods. The EDX 

technique was used for the study of composition of ZnO nanorods and the obtained results indicate that 

the prepared sample is only composed of Zn and O atoms as shown in Figure 8. 

Figure 7. The FESEM images of ZnO nanorods with seed solutions containing 3.5 mg/mL 

of cellulose concentration with difference amount: (a) 0; (b) 1.0; (c) 3.5; (d) 7.5 mg/mL of 

ZnO nanoparticles concentration; and (e) cross section image of ZnO nanorods growth 

with d condition. 

 

Photoluminescence (PL) is the efficient tool to study the optical, electronic and structural 

characteristics of different materials. PL study was carried out for the investigation of defect states and 

crystal quality of fabricated ZnO nanorods using biocomposite seed layer of ZnO nanoparticles.  
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A room temperature PL spectroscopy study has been carried out in order to get insight into the 

optical properties of the ZnO nanorods grown on the biocomposite seed layer containing ZnO 

nanoparticles. The PL emission of a sample containing ZnO nanorods grown on a seed layer consisting 

of 2.0 mg/mL of ZnO nanoparticles in 3.5 mg/mL of starch is shown by the spectrum in Figure 9a. 

Figure 9b shows the PL emission from a sample containing ZnO nanorods grown on a seed layer 

consisting of 7.5 mg/mL of ZnO nanoparticles in 3.5 mg/mL of cellulose. In both PL spectra, three 

different emission peaks are observed.  

Figure 8. The EDX of ZnO nanorods. 

 

Figure 9. The room temperature PL spectra of ZnO nanorods grown with difference seed 

layer solution consisting of (a) 2.0 mg/mL of ZnO nanoparticles in 3.5 mg/mL of starch 

concentration; (b) 7.5 mg/mL of ZnO nanoparticles in 3.5 mg/mL of cellulose concentration. 
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The UV emission is the dominating contribution in both spectra, and has a maximum at 382 nm and 

385 nm (3.24 eV and 3.22 eV), for the ZnO sample grown on a starch seed layer and a cellulose seed 

layer, respectively. These spectral peaks originate from near band edge (NBE) emission, such as 

recombination of free excitons. In addition to the slight red shift of the NBE emission from the ZnO 

sample utilizing a cellulose seed layer, the PL intensity is also a bit higher than when starch was used 

as a seed layer which might be due to possible more defect states in the sample grown with the seed 

solution of cellulose. The two other peaks found in the PL spectra are very broad and appear at 530 nm 

and 670 nm (2.3 eV and 1.8 eV). They are attributed to defects in the material. 

Green PL emission from ZnO is quite common, and has been observed from ZnO nanorods 

prepared by low temperature aqueous chemical growth [34,35], vapor-liquid-solid growth [36],  

CVD [37,38] and the electrochemical growth techniques [39,40]. The green emission is attributed to 

the recombination of electrons at oxygen vacancies with holes in the valence band [40]. The 

orange/red emission from ZnO is less well understood. However, oxygen interstitials in the ZnO 

crystal are possible contributors to this emission [41–44]. The PL results of the ZnO nanorods sample 

grown on a starch and cellulose seed layer, respectively, both show defects related emission that is 

much weaker than the NBE emission, indicating a low concentration of defects, such as oxygen 

vacancies. Moreover, PL study has described good crystal quality with less defects states in ZnO 

nanorods using the biocomposite seed layer of ZnO nanoparticles. 

3. Experimental Section  

3.1. Preparation of ZnO Nanoparticles Seed Solution in Starch and Cellulose Biopolymers 

The seed solution of ZnO nanoparticles without using biopolymers was prepared in 1% acetic acid 

solution with concentration of 3.5 mg/mL in order to study the role of starch and cellulose on the 

alignment and orientation of ZnO nanorods. The seed solution of ZnO nanoparticles in starch and 

cellulose was prepared in a 1% acetic acid solution in an ultrasonic bath for 15 min. The average size 

of the ZnO particles used as the seed was about 12.2 nm. Different quantities of ZnO nanoparticles, 

including 0.5, 1.0, 1.5, 2.0, and 2.5 mg/mL were dissolved in the mixture of 10 mL of 1% acetic acid 

and 3.5 mg/mL of starch. Likewise, seed solution containing 3.5 mg/mL of cellulose and 0, 1.0, 3.5 

and 7.5 mg/mL of ZnO nanoparticles was prepared in 10 mL of 1% acetic acid solution. Different 

concentrations of ZnO nanoparticles were used for monitoring of the effect of nanoparticles on the 

alignment of nanorods. The seed solutions of starch and cellulose were individually prepared  

and separately used as seed layer for the fabrication of well aligned ZnO nanorods on the gold-coated 

glass substrate. 

3.2. Synthesis of ZnO Nanorods on Gold-Coated Glass Substrates 

Prior to growth of ZnO nanorods, glass substrates were coated with 100 nm thickness of gold. The 

gold coating process began by cleaning the glass substrates with isopropanol in an ultrasonic bath for 

20 min. These were then washed with the deionized water and dried in air. Then, the cleaned glass 

substrates were affixed in the deposition chamber of the evaporator, Satis (725). After achieving 

vacuum inside the chamber, an adhesive layer of titanium, with a thickness of 20 nm, was deposited on 
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the glass substrate, followed by the deposition of 100 nm thickness of gold. After gold layer 

deposition, the substrates were cleaned with the deionized water and dried in a nitrogen gas flow. The 

substrates were then spin coated with the composite seed solution of ZnO nanoparticles and starch two 

to three times at 3000 r.p.m. for 30 s. Similarly, the gold layer coated substrates were also spin coated 

with the composite seed solution of ZnO nanoparticles and cellulose. After the seed layer deposition, 

the substrates were annealed at 120 °C for 20 min. An equimolar solution of 75 mM of zinc nitrate 

hexahydrate and hexamethylenetetramine (HMT) was prepared in the deionized water and the 

annealed substrates were fixed in a Teflon sample holder. These were then vertically dipped in the 

precursor solution and covered with aluminum foil. The growth solution was kept in a preheated oven 

for four to seven hours at 96 °C. After the completion of growth period, the ZnO nanostructures on 

gold-coated substrates were washed with the deionized water in order to remove the solid ZnO powder 

from the surface of the nanostructures, and then dried in air at room temperature.  

The crystal structure of ZnO nanoparticles and nanorods was studied by scans (0.1/s) Phillips PW 

1729 powder diffractometer using the CuKα radiation (λ = 1.5418 Å). An atomic force microscope 

(AFM, Dimension 3100) was used for the morphological study of biocomposite seed layer of ZnO 

nanoparticles. The field emission scanning electron microscopy (FESEM) that was performed using 

LEO 1550 Gemini, field emission gun was operated at 20 kV for the morphological study of ZnO 

nanorods and energy-dispersive X-ray (EDX). In the photoluminescence technique a third harmonics 

(λe = 266 nm) from a Coherent Ti: sapphire laser was used and the detection was performed with 

Hamamatsu CCD camera. For the dispersion of PL signal a single monochromator of 1 m focal length 

(model Brucker Optics Chromex 25) is combined with a diffraction grating of 150 lines/mm. 

4. Conclusions  

In this work, well aligned ZnO nanorods were synthesized by hydrothermal growth technique on 

the gold-coated glass substrates using the biocomposite seed layer of ZnO nanoparticles in starch and 

cellulose, respectively. The biocomposite seed layer of ZnO nanoparticles has influence on the 

alignment and diameter of ZnO nanorods. The morphological study of the biocomposite seed layer of 

ZnO nanoparticles was studied by AFM and the nanoparticles are distributed uniform and well adhered 

to the surface of gold-coated glass substrate. The ZnO nanorods were characterized by XRD technique, 

FESEM imaging, and PL spectroscopy and the obtained results show that the nanorods are uniformly 

distributed with a high density, having well-ordered alignment along the c-axis of the substrate, and 

exhibited good crystal quality. The present approach for the fabrication of ZnO nanorods can be used 

for the development of improved performance optoelectronic devices such as white LEDs where the 

rod alignment has a significant effect on the performance of the device. 
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