
Supplementary Information 

The force due to Lennard-Jones potential between the bead-bead and the bead-wall particle is 

computed by 
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where   and   are the length and energy scales of the potential, respectively, and 1/6

cut 2r   is the 

cut-off distance which ensures that only repulsive interaction takes place when two beads are closer 

than cutr . Further, ,i jr  denotes distance between the bead i  and the bead j , and ,r̂i j  
indicates the 

unit vector of the displacement vector ,ri j  of the particle i  referred to the particle j , i.e., 

,  r r ri j i j . 

The bond stretching force due to the connectivity between the bead i  and each of its adjacent 

beads, 1i   and 1i  , is given by  
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where bondK  is the bond-stretching force constant and 0  
is the segment length. In our simulations, 

we have chosen 
2

bond B 01000 /K k T  . Here Bk
 
represents the Boltzmann constant and T  is the 

temperature of the fluid.  

The force due to bending interaction between the particle i  and the two neighboring particles, 1i   

and 1i  , is calculated by 
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where bendK  is the bending rigidity constant which restores the angle   to an equilibrium angle 

a  ; here ‘ ’ indicates the cross product. bendK
 
is related to the persistence length, P , of dsDNA 

and its value is bend B 0/K Pk T  . 

The random force due to the thermal fluctuations in the fluid environment is taken as a Gaussian 

random variable with the mean and variance given by 
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where  ij  and ( - ') t t  are the Kronecker and Dirac delta functions, respectively.  Here we replace 

bare  with   when HI are neglected.  
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Table S1. Important simulation parameters. 

Parameter Value Reference quantity Dimensionless value 

Equilibrium length of the 

segment, 0  0 10 nm  0  *

0 1  

Lattice grid size, x  10 nmx   0  * 1x   

Density of water, o  
31000 kg/mo   

o  
* 1o   

Viscosity of water,   3 210  N-s/m  ref *






 * 7  

Temperature 300 KT   – – 

Energy, Bk T  
21

B 4.14 10  Jk T  
 Bk T

 
* *

B 1k T  
 

LB time step, t  106.9 10  st     

3

ref 0
ref

Bk T

 

  
* 0.02t   (LD time 

step, 
*d 0.01t  ) 

Friction coefficient,   

[From Equation (13) of 

Reference [21]] 

114.61 10  N-s/m    ref ref 0     

* 32   

(
*

bare 40  ) 

Effective charge on each 

bead, iq  
181.42 10  Ciq    

,ref 1iq e , where e  is 

the proton charge
 

* 9iq   

Applied voltage,   120 mV   ref B /k T e   * 4.7   
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