
 

 

Materials 2014, 7, 1084-1096; doi:10.3390/ma7021084 

 

materials 
ISSN 1996-1944 

www.mdpi.com/journal/materials 

Article 

Silicate Removal in Aluminum Hydroxide  

Co-Precipitation Process 

Chiharu Tokoro 
1,
*, Shinya Suzuki 

2
, Daisuke Haraguchi 

2
 and Sayaka Izawa 

2
 

1
 Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku,  

Tokyo 169-8555, Japan 
2
 Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Okubo,  

Shinjuku-ku, Tokyo 169-8555, Japan; E-Mails: shinya.suzuki55@gmail.com (S.S.); 

d.haraguchi@aoni.waseda.jp (D.H.); izasaya@ruri.waseda.jp (S.I.) 

* Author to whom correspondence should be addressed; E-Mail: tokoro@waseda.jp;  

Tel./Fax: +81-3-5286-3320. 

Received: 3 December 2013; in revised form: 2 January 2014 / Accepted: 5 February 2014 / 

Published: 11 February 2014 

 

Abstract: The removal mechanisms of silicate using an aluminum hydroxide  

co-precipitation process was investigated and compared with an adsorption process, in 

order to establish an effective and validated method for silicate removal from wastewater. 

Adsorption isotherms, XRD and FT-IR analyses showed that silicate uptake occurred by 

adsorption to boehmite for initial Si/Al molar ratios smaller than two, but by precipitation 

of poorly crystalline kaolinite for the ratios larger than two, in both co-precipitation and 

adsorption processes. Silicate was removed by two steps: (i) an initial rapid uptake in a few 

seconds; and (ii) a slow uptake over several hours in both processes. The uptake rate in the 

first step was higher in the co-precipitation process than in adsorption process, presumably 

due to increased silicate adsorption to boehmite and rapid precipitation of kaolinite. These 

results suggest that silicate removal using aluminum salts could be effectively achieved if 

the pH adjustment and aluminum concentration are strictly controlled. 

Keywords: co-precipitation; adsorption; aluminum hydroxide; boehmite; kaolinite; 

sorption density 
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1. Introduction 

Silica is the second most abundant element, comprising 27.7% of the earth’s crust. Its content in 

natural water is generally between 20 and 60 mg·dm
−3

, but can be as high as 100 mg·dm
−3

 in specific 

natural waters [1]. Although the solution chemistry of silica has been extensively studied, its 

polymerization or colloidalization in water requires further investigation to understand the mechanism 

of silica removal from water. 

Silica scale, an intermediate product of mono-silicic acid that polymerizes to colloidal silica, clogs 

water pipes and decreases thermal efficiencies of boilers. Silicate in solution should therefore be 

removed to a final concentration of less than 10 mg·dm
−3

. In particular, a decrease in processing 

efficiency of reverse osmosis (RO) membranes by silica scale is problematic. 

RO membrane technology is increasingly being used in chemical engineering separation. For 

example, after the Great East Japan Earthquake, it was proposed that RO purification could be 

employed for water extraction from incinerators which hold large quantities of water. This extracted 

water could be used for both drinking and general use in case of emergency. Silica fouling has been the 

major unresolved problem in the RO purification process [2,3]. It occurs when dissolved silica exceeds 

the solubility limit and precipitates on its own or with other compounds. Therefore, prior to using RO 

membranes for water containing large concentrations of silicate ions, it is necessary to remove the 

dissolved silica [4,5]. 

The most common method for removing silicate ions from water is a lime softening process by the 

addition of slaked lime (calcium hydroxide) [6]. Sodium hydroxide has also been used as an agent for 

silicate ion removal by precipitation [4]. Other silicate ion removal methods include adsorption or  

co-precipitation treatments using aluminum or iron salts [5]. Although silicate wastewater treatment 

using these methods is widely applied, removal mechanisms are unknown.  

We investigate the removal mechanisms of silicate co-precipitation with aluminum hydroxide in 

aqueous systems, in order to establish an effective method of silicate removal from wastewater. 

Synthetic wastewater containing silicate and aluminum ions was prepared at approximately pH 12, and 

the pH was then rapidly decreased to pH 9. Because co-precipitation reactions are influenced by 

solution conditions such as pH and ionic strength, these factors were precisely controlled. Previously, 

we confirmed that comparison between co-precipitation and simple adsorption was useful for 

elucidating the removal mechanism for As(V) co-precipitation with ferrihydrite/aluminum hydroxide 

and F(-I) co-precipitation with aluminum hydroxide [7–11]. Therefore, in this study simple adsorption 

experiments in which silicate ions were adsorbed to aluminum hydroxide were conducted and 

compared with co-precipitation experiments. Sorption isotherms were generated and analyzed to 

identify the mechanism of silicate uptake. The residue was evaluated using X-ray diffraction (XRD) 

and Fourier transform infrared spectroscopy (FT-IR) to investigate the mineralogical form of 

precipitates and sorption form of silicate in precipitates. Through detailed mechanism elucidation of 

silicate removal by aluminum salts, we proposed how pH and aluminum ion concentrations should be 

controlled in order to establish an effective silicate removal method. 
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2. Materials and Methods 

2.1. Standards and Reagents 

All chemicals and solutions used in this study were of analytical grade and were purchased from 

Kanto Chemicals Inc., Tokyo, Japan. The silicate and aluminum solutions were prepared from 

Na2SiO3·9H2O and Al(NO3)3·9H2O, respectively. For all experiments, the pH and ionic strength were 

adjusted by the addition of 0.05 M HNO3, KOH and KNO3. Specifically, the pH was fixed at 9 and the 

ionic strength was fixed at 0.05. All experiments were conducted at 25 °C at least in triplicate and the 

error was confirmed to be within 1%. 

2.2. Co-Precipitation Experiment 

Co-precipitation experiments involved the formation of aluminum hydroxide in the presence of 

silicate ions. Al(NO3)3·9H2O and silicate solutions were initially combined at above pH 12 in 0.5 dm
3
 

of ion-exchanged and deionized (DI) water to maintain both silicate and aluminum as ions. The pH and 

ionic strength were then adjusted to 9 and 0.05, respectively. The initial silicate concentration was 

fixed at 0.71 mmol·dm
−3

 (20 mg·dm
−3

) or 1.78 mmol·dm
−3

 (50 mg·dm
−3

) and the aluminum 

concentration was varied to adjust the initial Si/Al molar ratio from 0.125 to 10. 

The suspension was then agitated using a magnetic stirrer while controlling the pH (accomplished 

by adding a few drops of KOH) for 1 h. With the exception of the time variation experiments, the 

reaction time was fixed at 1 h. The suspension was then filtered through a 0.1 µm membrane filter. The 

filtrates were analyzed by Inductively Coupled Plasma Atomic Emission Spectroscopy: ICP-AES 

(Seiko Instruments Inc., SPS-7800, Chiba, Japan) to measure the residual concentration of Si and Al. 

2.3. Adsorption Experiment 

The adsorption experiments were conducted using the same conditions as the co-precipitation 

experiments. The aluminum hydroxide suspensions and silicate solutions were prepared separately in 

0.5 dm
3
 of deionized and distilled water to obtain twice the target concentration of silicate and 

aluminum. The pH and ionic strength were adjusted to target levels in both solutions, which were then 

combined and agitated for 1 h. The pH was adjusted to 9 by the addition of a KOH. After agitation, the 

suspension was filtered through a 0.1-μm membrane filter, and the filtrate analyzed by ICP-AES to 

measure the concentration of Si and Al, as well as co-precipitation. 

2.4. X-Ray Diffraction (XRD) Analysis 

The filter residues of co-precipitation and simple adsorption were analyzed by XRD (RIGAKU, Inc. 

RINT Ultima III, Tokyo, Japan). For XRD analysis, the initial Al concentration was adjusted to  

40 mg·dm
−3

 and the initial Si concentration was varied according to the Si/Al molar ratio. The filter 

residues from the co-precipitation and adsorption experiments were freeze-dried at −45 °C and 10 Pa 

for at least 24 h to avoid crystallization or mineralogical transformation. 

Powder XRD patterns were obtained using a copper target (Cu Kα), a crystal graphite 

monochromator and a scintillation detector. The X-ray source was operated at 40 kV and 30 mA by 
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step-scanning from 2° to 80° 2θ at increments of 0.02° 2θ. A crystal sample holder was used and the 

diffractograms were not corrected by background diffraction. Powder diffraction files (PDF) from the 

International Centre for Diffraction Data (ICDD) were used as references using Jade 6.0 software for 

observation of aluminum hydroxide. 

Aluminum hydroxide and aluminum silicate were also analyzed as reference materials. Aluminum 

hydroxide was prepared from a 40 mg·dm
−3

 aluminum solution at pH 9. Aluminum silicate was 

purchased from Kanto Chemicals Inc. 

2.5. Fourier Transform Infrared Spectroscopy (FT-IR) Analysis 

The freeze dried residues analyzed by XRD analysis were also used for FT-IR (JASCO, Inc.  

FT-IR4200, Tokyo, Japan) analysis. Infrared absorption spectra were recorded on an IR spectrometer 

using the pressed KBr pellet technique. Approximately 0.6 mg sample and 200 mg KBr were mixed in 

an agate mortar, and pressed in a 10 mmφ pellet die under a vacuum. The equipment was operated under 

prescribed conditions with a scanning speed and resolution of 2 mm·s
−1

 and 4·cm
−1

, respectively [12]. 

Aluminum hydroxide and aluminum silicate were also analyzed as reference materials, which were 

prepared as for XRD analysis. 

3. Results and Discussion 

3.1. Removal Characteristics 

Silicate removal characteristics to aluminum dosage are shown in Figure 1. In these experiments, 

the pH was 9 and the initial concentration of silicate was 0.71 or 1.78 mmol·dm
−3

 (20 or 50 mg·dm
−3

 

Si), approximately the same silicate concentration as the wastewater from the incinerator. 

Figure 1. Silicate removal by co-precipitation and adsorption. Solid or dashed lines are 

calculated values considering the chemical equilibrium of kaolinite formation. The initial 

silicate concentration was either 0.71 or 1.78 mmol·dm
−3

. 
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The co-precipitation and adsorption experimental results shown in Figure 1 indicated that more 

silicate was removed using co-precipitation. Solid or dashed lines in Figure 1 show the calculated 

residual silicate concentration from the thermodynamic solubility constant, K, of kaolinite 

[Al2Si2O5(OH)4]: 

Al2Si2O5(OH)4 + 6H
+
 ↔ H2O + 2H4SiO4 + 2Al

3+
 log K = 7.435 (1) 

in this calculation, boehmite precipitation was also included because precipitates were characterized as 

a combination of boehmite and poorly crystalline kaolinite: 

AlOOH + 3H
+
 ↔ Al

3+
 + 2H2O log K = 8.578 (2) 

the theoretical residual silicate concentration corresponded to the co-precipitation experiments. This 

observation suggests that the mechanism of silicate uptake in the co-precipitation process was because 

of kaolinite formation. However, in some plots of 0.71–1.8 mmol·dm
−3

 aluminum dosage, 

corresponding to an initial Si/Al molar ratio of 1–2, the theoretical residual silicate was less than the 

experimental co-precipitation. Under these conditions, kaolinite formation would not have achieved 

equilibrium within the 1 h reaction time. 

3.2. Sorption Isotherm 

Figure 2 shows the sorption isotherm obtained from co-precipitation and adsorption experiments  

at pH 9 after 1 h. In these experiments, the initial silicate concentration was fixed at 0.71 or  

1.78 mmol·dm
−3

 (20 or 50 mg·dm
−3

 Si) while the Al(III) concentrations ranged from  

0.07–14.24 mmol·dm
−3

 (2–384 mg·dm
−3

 Al) to obtain an initial Si/Al molar ratio of 0.125, 0.25, 0.5, 1, 

2, 5 or 10. Figure 2 shows the initial Si/Al molar ratio only for plots in which the initial Si/Al molar 

ratio was above 1. In these experiments, sorption density was greater at low aluminum dosages. 

Figure 2. Sorption isotherm obtained from co-precipitation and adsorption experiments at 

pH 9. The initial silicate concentration was either 0.71 or 1.78 mmol·dm
−3

. 
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Figure 2 indicates that the silicate sorption density for co-precipitation was greater than the 

adsorption process. In all experiments, sorption isotherms indicated Brunauer-Emmett-Teller (BET) 

type isotherms, indicating that silicate removal mechanisms in both co-precipitation and adsorption 

processes involved more than a simple adsorption [7–11]. Silicate sorption density increased 

substantially when the initial Si/Al molar ratio was >2 in the all experiments, indicating that the 

mechanism of silicate uptake was three dimensional. This three dimensional uptake may involve 

adsorption of polymerized silicate in addition to kaolinite precipitation because sorption density 

exceeded 1 mmol-Si/mmol-Al. We have confirmed previously that multiple complexes such as AlF3
0
 

and AlF4
−
 adsorb to aluminum hydroxide, and showed that fluorine sorption density exceeded  

1 mmol-F/mmol-Al when the initial F/Al molar ratio was >3 in both co-precipitation and adsorption 

processes [11]. 

From Langmuir plots using data of the initial Si/Al molar ratio not greater than two, a linear 

relationship was obtained and the saturated sorption density was calculated as 0.85 mmol-Si/mmol-Al 

for the co-precipitation process (solid line in Figure 2) and 0.42 mmol-Si/mmol-Al for the adsorption 

process (dashed line in Figure 2). The saturated sorption density in co-precipitation was 2-fold greater 

than observed in the adsorption experiments. In co-precipitation experiments, more silicate could 

adsorb to aluminum hydroxide because as fresh particles of aluminum hydroxide precipitated, its 

surface maintained a high capacity for silicate sorption. Additionally, more kaolinite could precipitate 

during the co-precipitation process because of the aluminum ions present in the solution and kaolinite 

precipitation did not go through dissolution of aluminum hydroxide, which is necessary for kaolinite 

formation in the adsorption process. 

3.3. XRD Analysis 

Figure 3 shows a comparison of XRD spectra of silicate co-precipitated and adsorbed residues as a 

function of the initial molar ratio of Si/Al. In these experiments, co-precipitation and adsorption were 

performed at initial Si/Al molar ratios of 0.125, 1, 2, 5 and 10 at pH 9, and the initial aluminum 

concentration was 1.48 mmol·dm
−3

 (40 mg·dm
−3

 Al). The silicate concentration was varied to achieve 

the target molar ratio. We quantitatively analyzed the Al and Si in the precipitates and confirmed that 

the Si/Al molar ratio in the precipitates corresponded to the sorption density shown in Figure 2. 

Generally, it is difficult to investigate the mineralogical forms of silicate phases in wastewater 

sludge from XRD patterns because they are poorly crystalline. However, we previously found that 

surface precipitation could be detected from XRD peak shift in As/Fe or As/Al compounds with 

different molar ratios [7]. Therefore, XRD spectra were investigated for silicate co-precipitated and 

adsorbed residues in this study. 

As shown in Figures 3 and 4, XRD spectra in co-precipitation and adsorption experiments  

with the same initial Si/Al molar ratio were similar. This suggests that the mechanism of silicate  

uptake in co-precipitation and adsorption experiments was very similar, whereas their sorption  

efficiencies differed. 

Included in Figures 3 and 4 are the reference XRD spectra of aluminum hydroxide (Si/Al = 0) and 

aluminum silicate. The XRD spectrum of aluminum hydroxide had clear broad peaks around 14° 2θ, 

28° 2θ, 38° 2θ, 49° 2θ and 65° 2θ, which correspond to poorly crystalline boehmite [13]. Conversely, 
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poorly crystalline aluminum silicate had a clear broad peak around 24.9° 2θ, corresponding to a XRD 

spectrum of crystalline kaolinite. 

Figure 3. XRD spectra of silicate co-precipitated residues obtained at pH 9. The initial 

aluminum concentration was 1.48 mmol·dm
−3

. 

 

Figure 4. XRD spectra of silicate adsorbed residues obtained at pH 9. The initial aluminum 

concentration was 1.48 mmol·dm
−3

. 
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The XRD spectra of residues gradually shifted from 28° to 24.9° when the initial Si/Al molar ratio 

increased from 1 to 10. Because the XRD peak at 24.9° originates from poorly crystalline kaolinite, it 

is considered that precipitation of amorphous kaolinite increases initial Si/Al molar ratios increase. In 

addition, the XRD spectrum of residue at Si/Al ratio of 10 was similar to poorly crystalline aluminum 

silicate, indicating a mechanism of silicate uptake involving the precipitation of aluminum silicate. 

It should be noted that the XRD spectrum peak shift from aluminum hydroxide to aluminum silicate 

was at Si/Al ratio of 2, and that this was consistent with a steep increase in sorption density (Figure 2). 

Thus for initial Si/Al molar ratios greater than 2, the removal mechanism of silicate was predominantly 

precipitation of aluminum silicate, such as poorly crystalline kaolinite, which increased silicate 

sorption density. However, for the ratios smaller than 2, the main removal mechanism of silicate was 

adsorption to boehmite. 

3.4. FT-IR Analysis 

Figures 5 and 6 show a comparison of the infrared spectra of silicate co-precipitated and adsorbed 

residues, as a function of the initial molar ratio of Si/Al. The infrared spectra of aluminum hydroxide 

obtained at pH 9 (Si/Al = 0) and aluminum silicate are shown as reference data. The FT-IR spectrum 

peaks are assigned in Table 1 [12–17]. 

Figure 5. FT-IR spectra of silicate co-precipitated residues at pH 9 at an initial aluminum 

concentration of 1.48 mmol·dm
−3

. 
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small peak around 1500 cm
−1

, which was observed at an initial Si/Al molar ratio not greater than 1, 

originated from CO2 adsorption [18,19]. We confirmed that the particle size of residues decreased with 

a decrease in the initial Si/Al molar ratio, which suggests that more CO2 would adsorb to residues 

during Si removal and/or filtration when the initial Si/Al molar ratio was low. 

Figure 6. FT-IR spectra of silicate adsorbed residues at pH 9 at an initial aluminum 

concentration of 1.48 mmol·dm
−3

. 

 

Table 1. Peak assignments in the residue FT-IR spectra. 

Band location (cm
−1

) Band assignments Band interaction 

3650 –OH bend 

3600 –OH stretch 

1650 H2O stretch 

1350 NO3
−, Al–OH stretch and bond 

1105 Si–O stretch 

1080 AlOOH stretch 

1025 Si–O stretch 

700 Al–O–Si stretch 

600 AlO6 stretch and bond 

432 Si–O stretch 

Aluminum hydroxide (Si/Al = 0) had stretching vibration of AlOOH at 1080 cm
−1

 and a bending 

vibration and stretching vibration of AlO6 at 600 cm
−1

 [14], which corresponded with boehmite. 

Therefore, residues obtained at pH 9 without silicate in this study are most likely boehmite. 

Typical absorption bands for kaolinite, e.g., OH vibration bands at around 3650 cm
−1

, the Si–O–Si 

absorption bands at 1025 cm
−1

, the Al–O–Si absorption bands at around 700 cm
−1

 and the Si–O 

absorption bands at 432 cm
−1

 were observed for residues at all initial Si/Al molar ratios. The intensities 

of these absorption bands gradually increased as the initial Si/Al molar ratio increased, and gradually 
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resembled FT-IR patterns of aluminum silicate. These results suggest that aluminum silicate was 

poorly crystalline kaolinite and that the mechanism of silicate uptake gradually shifted to precipitation 

of poorly crystalline kaolinite as the initial Si/Al molar ratio was increased. 

3.5. Reaction Rate 

Our results suggest that the mechanism of silicate uptake using aluminum hydroxide was influenced by 

the initial Si/Al molar ratio. Furthermore, the mechanism of silicate uptake in co-precipitation was almost 

identical to adsorption, whereas removal efficiency and sorption density was higher in co-precipitation. To 

determine why removal efficiency was so different between co-precipitation and adsorption, time 

variations of silicate and aluminum concentrations during silicate removal were compared. 

Figures 7 and 8 show residual silicate and aluminum concentrations, respectively, over a 24-h 

period, at pH 9. The initial silicate concentration was 1.78 mmol·dm
−3

 (50 mg·dm
−3

 Si) and the initial 

aluminum concentration was 0.71 or 1.78 mmol·dm
−3

 to achieve a 1 or 2 initial Si/Al molar ratio. 

Figure 7. Residual silicate concentration in co-precipitation and adsorption experiments at 

pH 9 over 24 h. The initial silicate concentration was 1.78 mmol·dm
−3

. 
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higher than in the adsorption process (Figure 8). At a thermodynamic equilibrium, aluminum 

concentration equilibration with boehmite was lower than that equilibrated with kaolinite. Therefore, 

in the adsorption experiments, dissolution of aluminum in boehmite should be rapid to precipitate 

kaolinite. Conversely, the second slow step would consist of transformation of boehmite to kaolinite. 

In this step, because boehmite was already precipitated for co-precipitation and adsorption, dissolution 

of aluminum ions from boehmite and precipitation of kaolinite engaged a longer reaction time of 

several hours in both processes. 

Figure 8. Residual aluminum concentration in co-precipitation and adsorption experiments 

at pH 9 over 24 h: initial silicate concentration was 1.78 mmol·dm
−3

. 
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adsorption process, presumably due to increased silicate adsorption to boemite and rapid precipitation 

of kaolinite. 

The silicate removal mechanism by aluminum hydroxide suggests that continuous addition of 

aluminum ions, not aluminum hydroxide particles, should result in highly efficient removal of silicate 

from wastewater. 
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