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Abstract: The rapid development of numerical modeling techniques has led to more 

accurate results in modeling metal solidification processes. In this study, the cellular 

automaton-finite difference (CA-FD) method was used to simulate the directional 

solidification (DS) process of single crystal (SX) superalloy blade samples. Experiments 

were carried out to validate the simulation results. Meanwhile, an intelligent model based on 

fuzzy control theory was built to optimize the complicate DS process. Several key 

parameters, such as mushy zone width and temperature difference at the cast-mold interface, 

were recognized as the input variables. The input variables were functioned with the 

multivariable fuzzy rule to get the output adjustment of withdrawal rate (v) (a key 

technological parameter). The multivariable fuzzy rule was built, based on the structure 

feature of casting, such as the relationship between section area, and the delay time of the 

temperature change response by changing v, and the professional experience of the 

operator as well. Then, the fuzzy controlling model coupled with CA-FD method could be 

used to optimize v in real-time during the manufacturing process. The optimized process 

was proven to be more flexible and adaptive for a steady and stray-grain free DS process. 

Keywords: numerical simulation; directional solidification; single crystal superalloy;  

fuzzy controlling strategy 
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1. Introduction 

With the rapid development of computer and information technology, computer aided manufacturing 

technologies (computer-aided design (CAD), computer aided engineering (CAE), computer-aided 

manufacturing (CAM), etc.) are widely used in industrial production [1–10]. The numerical simulation 

method used in the directional solidification (DS) process of superalloys is receiving more attention in 

aviation and energy industries [11–18].  

An important application of the numerical simulation is to predict casting defects, such as shrinkage 

cavity, hot cracking, and single crystal integrity during the directional solidification of the turbine  

blades [19–24]. The integrity of single crystal is a major index for the production of single crystal (SX) 

blades. Stray grain is a usual defect, which is a focal point of simulation studies [23–28].  

The DS process, with many controlling parameters, is a complicated process. There are interactive 

effects among these parameters, which leads to a very narrow process window for the manufacturing of 

SX blades. Withdrawal rate is one of the important parameters influencing the DS process. A great deal 

of research has been done to study the relationship between withdrawal rate, microstructure, and 

properties [25,29–33]. A constant withdrawal rate is often used in industries because it is easy and 

convenient to control, however, it has less flexibility and leads to a low yield rate of SX blades. The 

experiment-based variable withdrawal rate for DS process develops quickly and is adopted more and 

more [34,35]. However, the main problem is that it needs many trials, increases cost, and enlarges  

time circles.  

The numerical simulation used in DS process provides an effective way to lower the experimental 

circle and cost. In addition, some simple variable withdrawal rate processes were already proposed by 

simulation technology for an efficient and defect-free DS process [29,34,35]. However, these studies are 

still limited to modeling the experiment with a few times of rate changing. The process improvement 

lacked guidelines, which still meant a method of trial and error, and did not make full use of numerical 

simulation techniques. There are some studies [36,37] on the optimizing of DS processes, based on 

modeling and simulation, however, new models and algorithms need to be developed to deal with the 

system’s variables, to instantly adjust the solidification parameters, and, finally, to improve the  

DS process. 

The directional solidification is a complicate nonlinear system and hard to describe using a precise 

mathematical model. Fuzzy controlling method, based on fuzzy set theory [38], can deal with the fuzzy 

relation of semantic variables easily, according to certain fuzzy rules. It is an expert in nonlinear, close 

coupling, and uncertain systems [39–43]. In this work, the fuzzy controlling model was built to optimize 

the directional solidification process. The interface temperature gradient and average mushy zone width 

were studied in detail. Through optimizing the withdrawal rate instantly during the calculation of the 

directional solidification process, the fuzzy controlling model aims to get a higher temperature gradient 

and improve the stability of the directional solidification process. 
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2. Physical and Mathematical Models 

2.1. Directional Solidification Process 

There are different pieces of equipment used in DS processes, and the Bridgeman furnace is one of 

the most widely used. This furnace can be simplified and divided into five parts for modeling and 

simulation: heating zone, Baffler, Cooling zone, Chill, and Withdrawal unit, as shown in Figure 1. If the 

Cooling zone is equipped with water-cooled copper rings, the Bridgeman furnace is used for the high 

rapid solidification (HRS) technology, which is a main DS method to produce superalloy blade castings. 

Figure 1. Schematics of a Bridgman furnace. 

 

In the HRS DS process, a group of mold shells are fixed on the chill. The liquid metal is poured into 

the mold and kept for minutes to make the temperature high enough. Then, the withdrawal unit starts, at 

certain speeds, of which the value is constant or variable. The baffler isolates the heating zone and 

cooling zone, then a unidirectional temperature gradient forms. When the liquid metal is drawn to pass 

the baffler, or entirely into the cooling zone, the mushy zone begins to freeze. 

2.2. The Scheme of Optimizing DS Processes by Simulation Technology 

Simulation technology was used to simulate DS processes for years. In this study, the fuzzy 

controlling model was built to optimize the withdrawal rate by simulation technology, as shown in 

Figures 2 and 3.  

Firstly, the casting model was input and the withdrawal rate was pre-adjusted, based on the shape of 

the input model. Then, the DS process was simulated by the CA-FD method. The temperature field and 

microstructure growth were calculated step by step. Some key parameters, such as temperature gradient 

and mushy zone width, were analyzed by the fuzzy controlling model. The withdrawal rate was adjusted 

instantly. Then the optimized withdrawal rate was changed in the new simulation. During the simulating 

process, if there were stray grains appeared on the casting, the withdrawal rate would be post-adjusted 

and the simulating process would feed back to calculate again with a new withdrawal rate. Finally, when 

there is no defects predicted in the calculation, a withdrawal rate curve will be given out, which would be 

more effective and stable for the real DS process. 
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Figure2. The framework of DS processes, optimized by simulation. 

 

Figure 3. The flow chart of withdrawal rate optimizing by simulation. 
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2.3. The Fuzzy Control Model for Optimizing DS Processes  

A fuzzy control model was built to analyze the real time data derived from the simulation process, 

and some key variables were tracked to adjust the withdrawal rate. 

2.3.1. The Fuzzy Controller 

The mushy zone of DS process was studied by adopting a single output and three inputs model, as 

shown in Figure 4. 

The three input variables are follows: ITE (the casting-mold interface temperature error) is the 

temperature difference between most inner cell’s temperature in shell and the most outer cell’s 

temperature in cast; ITEC is the change of ITE; WM is the average width of mushy zone. The output 

variable is SC (withdrawal speed change). 

Figure 4. The fuzzy controlling system. 

 

2.3.2. The Domain of Discourse of Fuzzy Variables and Membership Functions  

ITE was quantization into 13 grades, which are {−6, −5, −4, −3, −2, −1, +0, +1, +2, +3, +4, +5, +6}. 
The fuzzy subsets are {PB, PM, PS, O, NS, NM, NB}. ,  and  are the accurate values of ITE, 

ITEC, and WM, respectively, and the corresponding quantification factors are , , and .  

The membership function of ITE is shown as Equation (1). The other fuzzy variables, such as ITEC, 

WM, and SC, are similarly treated with ITE. In the equation, a, b, and c are the parameters of the 

membership function. 
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2.3.3. Fuzzy Rules for Withdrawal Rate Adjustment  

Fuzzy rules could be described as follows: if WM is WMi and ITE is ITEj, and ITEC is ITECk, SC  

is SCijk. 

The fuzzy relation can be written as Equations (2) and (3): 
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where , , , and  are the semantic input variables of WM, ITE, ITEC, and  

WRC, respectively. 
During the simulation calculation of DS process, , , and  were received, as well as the 

semantic input variables, such as , , and . The semantic output variable of fuzzy 

controller is calculated based on Equation (4): 
δ

, ,

, ,

, ,
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      (WM ITE ITEC ) (WM ITE ITEC ) SC

      sup[(WM ITE ITEC ) (WM ITE ITEC )] SC
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 can be calculated based on the defuzzification of δSC , shown as Equation (5): 

δ δ
( ) ( 1) ( 1)sgn(SC ) Int(SC 0.5)+et t tv v v k v         (5)

 is the scale factor. sgn(x) is sign function. Int(x) is rounding function. 

3. The Optimizing Process by Simulation 

3.1. The Basic Simulation Condition 

The SX sample blade designed has the main features of a real SX blade: the whole length is over  

200 mm; the platform has an abrupt change of section; the body of the blade rotates at a certain angle 

respective to the tenon. The experimental material was Ni-based superalloy DD6 [44,45]. There were 

four schemes for simulation: group SG1 with the rate of 7.0 mm/min, group SG2 with the rate of  

4.5 mm/min, group SG3 with the rate of 1.0 mm/min and group SG4 with the rate optimized by fuzzy 

controlling model. Two groups were selected for experimental study: Group EG1 with the rate of  

7.0 mm/min and Group EG2 with the rate of 4.5 mm/min. The parameters used in these simulating 

groups are shown as Table 1. 

Table 1. The parameters used in the calculation (Superalloy DD6 [44,45]). 

Parameters Unit Value 

Liquidus  °C 1370 
Solidus °C 1310  

Density of alloy  g/cm3 8.78  
Density of shell g/cm3 2.50 

Temperature of cooling water °C 25  

3.2. The Optimized Variable Withdrawal Rate Process  

The optimized withdrawal rate of DS process was obtained in the group SG4. Figure 5 shows the 

curves of withdrawal rates of groups SG1–SG4. From the simulation results, it can be seen that the 

solidification time of SG4 was 75.5 min, which was half that of SG3, but longer than that of SG2. 

The solidification processes of the four groups of DS were calculated. Then, the temperature 

distribution, mushy zones and temperature gradients of different processes could be analyzed by 

solidification times. Figure 6 is the temperature distributions of SG4 during the DS process. These 

WMi ITE j ITECk SCijk

1e 1e 2e

WMi ITE j ITECk

( )tv

ek
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temperature cloud charts show the unidirectional heat diffusion and temperature gradient distribution. 

The isothermal lines basically kept horizontal and some showed a slight slant, or concave or convex. 

Figure 5. Curves of withdrawal rates of SG1–SG4. 

 

Figure 6. Temperature distribution of SG4 at different time (a) 19 min; (b) 27.5 min;  

(c) 36 min. 

  
(a) (b) (c)  

3.3. The Comparison of Constant and Optimized Withdrawal Rates Processes 

Figure 7 is the microstructures of SG1–SG4 by simulation. SG1 with a constant rate of 7 mm/min 

appeared some stray grains in the platform, contrast to other groups. These stray grains disqualified the 

casting, which had different orientations from the single grain grown from the blade body. In Figure 7, 

although there were no stray grains at the other blades, SG2 had a very narrow process window and 

would tend to form stray grains at small fluctuations of other process parameters, and SG3 was of too 
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low efficiency and had too many defects to be applied in the industry production, which will be further 

explained below. Thus, SG4 could have a higher productivity and no stray grains. 

Figure 7. Simulated Microstructures of the four groups (a) SG1; (b) SG2; (c) SG3; (d) SG4. 

  
(a) (b) (c) (d) 

Stray grain is one of most severe defects of SX blade. Figure 8 is the comparison of microstructure  

of EG1 and SG1. Both results of EG1 and SG1 showed that the stray grains mostly started and formed  

in the platform, where were far from the root of the tenon and at a deep overcooling, as shown in  

Figure 8a,c. From Figure 8b, the locations and boundaries of stray grains predicted by simulation were 

similarly with that by experiment. And it’s proved that the simulating models for heat transfer and 

microstructure evolution were accurate to predict the DS process of SX blade well. 

Figure 8. The comparison of microstructure of SG1with EG1 (a) The simualtion of 

microstructure of SX blade (partly); (b) The comparison between simulation and experiment 

(upward view, i.e., the bottom surface of the platform); (c)The experimental result of EG1. 

 
(a) (b) (c) 

There are many reasons which caused stray grains, such as impurity of the melt, ceramic sunken 

surface, the surface of metal needles for fastening position, as well as the formation of deep 

undercooling zone. The deep undercooling will be the main factor leading to the stray grains in the real 

SX turbine blades. 
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In this study, SG1 and EG1 show obvious stray grains at the platform, as shown in Figure 9a,b. The 

undercooling zone was the main area that a stray grain nucleated and grew, which was caused by the 

non-uniform temperature distribution. As for SG1 and EG1, the stray grains formed at platforms. In 

Figure 9c, the special zones were marked in the simulated results, where the cells did not solidify but of 

which temperatures were lower than liquidus. These cells were named isolated undercooling zones 

(IUZs). IUZ provided the low temperature melt for stray grain nucleation and growth. IUZ was formed 

on certain condition of DS process, for example, a faster withdrawal rate. 

Figure 9. The comparison beween the simulation and experiment to show stray grains 

formations (upward view, i.e., the bottom surface of the platform) (a) simulation result 

(SG1); (b) experiment result (EG1); (c) isolated undercooling zones (IUZ) of SG1. 

 
(a) (b) (c) 

According to the definition above, IUZ has some features: (a) Stray grains of SX blades are mainly 

formed in IUZs; (b) The location and range of an IUZ are influenced and divided based on the 

temperature distribution; (c) IUZ often appears at some tips of the casting where heat dissipation is 

faster; (d) The analysis of IUZ is a convenient way to predict areas of the stray grain formation. 

Figure 10 shows the IUZs formed during the calculations of SG1–SG4. The IUZs of SG1 were larger 

in range and more in number, as shown in Figure 10a. IUZs of SG3 and SG4 were smaller than others, 

which was the main reason for no stray grains formed in these groups. In addition, IUZs of SG2 were 

inclined to formed stray grains, but at the critical status. 

Figure 10. The IUZ distributions of the four simulation groups (a) SG1; (b) SG2; (c) SG3; 

(d) SG4. The upper figures are side views in 3D, and the lower figures are the vertical views 

of the platform. 

 
(a) (b) (c) (d) 
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There are lots of factors influenced on the formation of IUZ, and withdrawal rate is an important one. 

The quick change of the cross-section area at the platform allowed more heat dissipation from the part 

below the platform, such as cooling zone or the water-cooled copper plate. Then at some edge or 

corner of the platform, the melt has a lower temperature than liquidus, but not turned to be solid, and 

the IUZs were formed. 

Based on the analysis above, a smaller IUZ is expected by adjusting the withdrawal rate. A lower 

withdrawal rate is benefit for keeping the IUZs at the heating zone of the furnace as long as possible. 

Then, the heat radiation would warm up these IUZs and compress their regions. Then, stray grain has 

no time and space to nucleate and grow. It provides a method for the fuzzy controlling model to 

optimize withdrawal rate dynamically, as shown in Figure 10d. 

4. Advantages of the Fuzzy Optimizing Model 

4.1. To Get Higher Temperature Gradient 

Temperature gradient of mushy zone is a major parameter of the DS process, which influences the 

grain growth and quality of final castings. In the study, temperature gradients in mushy zones during 

solidification process were sampled (interval: 0.5 min), as shown in Figure 11. In all four groups, 

temperature gradients at bottom of starter block and at center of platform were higher than 6 K/mm, 

which resulted from the fast heat transfer of water-cooled chill plate and the sudden change of section 

area at the platform, respectively. Meanwhile, temperature gradients during the whole solidification 

process of SG3 and SG4 were higher than that of SG1 and SG2, which showed the advantages of these 

two processes. 

Figure 11. Temperature gradients of mushy zones during DS process (a) SG1; (b) SG2;  

(c) SG3; (d) SG4. 

  
(a) (b) (c) (d)  

In conclusion, SG4 had a short solidification time than SG3, as shown in Figure 5, but its temperature 

gradients were higher than others. That is to say, at a proper time span, the DS process with an optimized 

withdrawal rate is benefit for improving microstructure and properties, and increasing productivity and 

yield rate of SX blades.  
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4.2. To Enlarge the Process Window 

DS process has many controlling parameters, which are complicate and coupled closely. Thus, the 

process is narrow for DS casting, which means a minor fluctuation may be amplified and lead to the 

formation of stray grains or other defects.  

In the work, the frequencies of ΔT (the physical value of ITE) and mushy zone width were studied 

during the whole solidification process, and the sampling interval is 30 s. Figure 12 shows the 

frequencies of ΔTs during the solidification process of the four groups. When the ΔT is zero, it means 

the transverse temperature gradient is eliminated, which is ideal for a DS process. In Figure 12d, most 

of ΔTs were assembling around zero, which means the optimized process could keep a good 

unidirectional heat flux. Particularly noteworthy is that most frequencies of ΔTs in Figure 12c were not 

good as those in Figure 12d. However, in Figure 12a,b, most frequencies of ΔTs correspond to around 

5 °C or more. The SG4 had a relative longer time when ΔTs equaled to 0, which means a better DS 

condition than others. 

Figure 13 shows the frequency distributions of WM of the four simulation groups. The frequency 

distributions of SG1 and SG2 were basically uniform and approximately distributed at the range of 

7.5–20 mm. Most frequencies of WMs of SG4 concentrated around 10 mm and the frequency rate was 

above 0.25, better than that of SG3, as shown in Figure 13c. This concentration made sure the 

stabilities of WM and temperature gradient of mushy zone, which was benefit for a more stable DS 

process and allowed other solidification parameters to adjust in a lager range. 

Figure 12. The frequency distributions of ΔT during the solidification time (a) SG1;  

(b) SG2; (c) SG3; (d) SG4. 

 
(a) (b) 

 
(c) (d) 
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Figure 13. The frequency distributions of mushy zone width of the four simulation groups 

(a) SG1; (b) SG2; (c) SG3; (d) SG4. 

 
(a) (b) 

 
(c) (d) 

5. Conclusions 

The mathematical and physical models were built for the DS process. The SX blade was studied by 

numerical simulation and experimental methods. Stray grain formations were successfully predicted by 

simulation, and the IUZ was proposed to analyze the mechanism of stray grain formation at the platform.  

A fuzzy controlling model for optimizing the DS withdrawal rate was built, and the withdrawal rate 

for SX blade casting was optimized. The optimized process could successfully get sound SX  

blade castings.  

The advantages of optimized process were analyzed, based on the comparisons of temperature 

gradients, ITG, and WM. The proposed optimized technology in the paper that couples the intelligent 

controlling technology and the simulation technology is a useful way to optimize the DS process 

withdrawal rate and the model is useful to get a higher temperature gradient and enlarge the DS  

process window. 
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