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Abstract: This article presents the results of an experimental investigation designed to 

deposit chitosan/hexagonal boron nitride (h-BN) and chitosan/h-BN/titania (TiO2) composites 

on SS316L substrates using electrophoretic deposition (EPD) for potential antibacterial 

applications. The influence of EPD parameters (voltage and deposition time) and relative 

concentrations of chitosan, h-BN and TiO2 in suspension on deposition yield was studied. 

The composition and structure of deposited coatings were investigated by FTIR, XRD and 

SEM. It was observed that h-BN and TiO2 particles were dispersed in the chitosan matrix 

through simultaneous deposition. The adhesion between the electrophoretic coatings and 

the stainless steel substrates was tested by using tape test technique, and the results showed 

that the adhesion strength corresponded to 3B and 4B classes. Corrosion resistance was 

evaluated by electrochemical polarization curves, indicating enhanced corrosion resistance 

of the chitosan/h-BN/TiO2 and chitosan/h-BN coatings compared to the bare stainless steel 
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substrate. In order to investigate the in-vitro inorganic bioactivity, coatings were immersed 

in simulated body fluid (SBF) for 28 days. FTIR and XRD results showed no formation of 

hydroxyapatite on the surface of chitosan/h-BN/TiO2 and chitosan/h-BN coatings, which 

are therefore non bioactive but potentially useful as antibacterial coatings. 

Keywords: electrophoretic deposition; nanocomposites; chitosan; TiO2 

 

1. Introduction 

Combinations of polymers and ceramic components can be applied to form organic-inorganic soft 

composite coatings [1–3]. These composite coatings with tailored stiffness can find applications in 

several industrial sectors as well as in medicine. For example, soft composite coatings provide better 

connection between rigid metallic implants and vascularized bone tissue [1,3,4]. One convenient 

method to produce such coatings is electrophoretic deposition (EPD) [1,2]. In the EPD process, the 

charge particles or molecules in aqueous or organic suspensions are moved to and deposited onto an 

oppositely charged electrode under the action of an applied electric field [5–7]. For attaining a uniform 

particle packing structure of electrophoretic deposits suitable stabilization of the suspensions is 

required, which depends on the amount of surfactant used, suspension concentration, pH, and 

conductivity [8]. EPD is advantageous because it offers the possibility of coating substrates of 

complex shape, accurate control of coating thickness, and simple equipment is required [5,9]. 

Chitosan is an interesting polymer that has been widely used to produce a variety of coatings in 

combination with EPD [1,10,11]. Chitosan is a cationic polysaccharide that has been used for 

biocompatible coatings and drug delivery [12,13]. Due to its biodegradability, biocompatibility,  

non-toxicity and antibacterial properties, chitosan has attracted much attention for a wide variety of 

biomedical applications [13,14] and for food packaging [15]. Also, chitosan has been used as a 

stabilizing agent in AgNCs-chitosan hybrid nanocomposites [16]. The feasibility of cationic EPD of 

chitosan has been shown in previous studies [13,17]. 

Hexagonal boron nitride (h-BN) has very similar structure to graphite [18,19]. h-BN presents a 

layered structure with many unique engineering properties and it has been also investigated as a dental 

cement and in cosmetics [20,21]. Studies on BN and non-biodegradable polymer composites, such as 

polyaniline, polystyrene, and copolymer of vinylidene chloride and acrylonitride, have justified boron 

nitride’s role for improving the mechanical and optical properties of the final composites [22–24].  

h-BN has been also used in combination with hydroxyapatite exhibiting a strong bond in the HA 

matrix and leading to grain size refinement [20]. In addition, boron nitride in the form of nanotubes 

(BNNTs) has been investigated to induce apatite formation in simulated body fluid (SBF) environment 

for periods of 7, 14 and 28 days [25]. It has been also shown that BNNTs are non-cytotoxic to osteoblasts 

and macrophages, which are relevant cell types for orthopedic applications [26]. Chen et al. [27] 

reported that BNNTs do not inhibit cell proliferation even after 4 days, and BNNTs were found to be 

non-cytotoxic to human embryonic kidney cells (HEK-293). h-BN has an advantage for the protection 

of biospecies against overheating and damage because of its low absorptivity of light, which makes  

h-BN nanomaterials potentially attractive candidates for biological applications [28,29].  
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A candidate material for developing protective coatings on metallic substrates is titanium dioxide [5,8]. 

Being a biocompatible ceramic, titania is used for coatings of metal implants to achieve anti-bacterial 

effect or corrosion resistance, as well as high biocompatibility [30–32]. The EPD technique has been 

used extensively to produce TiO2 layers [33,34]. Achieving a suitable TiO2 dispersion is a key requisite 

for obtaining good-quality films by EPD since the adequate dispersion of nano-sized TiO2 particles in 

organic or aqueous solvents will determine the final deposit microstructure [5,9]. Different solvents 

such as acetylaceton and acetone have been used to carry out EPD of TiO2 nanoparticles [1,35,36], but 

also water and water-ethanol mixtures have been used in a more limited scale [37,38]. 

Herein, we propose the fabrication, for the first time, of chitosan/h-BN/TiO2 coating by EPD, as 

well as a chitosan/h-BN coating for comparable purposes. h-BN was selected to improve the 

mechanical properties and to improve the integration with TiO2 nanoparticles in the coatings. The aim 

of this research is also to increase the knowledge of chitosan based coatings obtained by 

electrophoretic deposition which are potentially attractive as antibacterial coatings. Chitosan/h-BN and 

chitosan/h-BN/TiO2 coatings were characterized by XRD, FTIR and SEM. The capability of the 

coatings to form HA on the surface was studied by in-vitro bioactivity tests in simulated body fluid to 

assess the potential suitability of the coatings as bone contacting materials. 

2. Results and Discussion 

Chitosan is insoluble in water and organic solvents. However, protonated chitosan can be dissolved 

in water-ethanol mixtures at low pH. Under this condition, the amine groups of chitosan are 

protonated, according to reaction (1) [39]: 

Chit-NH2 + H3O
+ → Chit-NH3

+ + H2O (1)

The EPD of chitosan has been described previously [13]. An electric field provides electrophoretic 

motion of the positively charged chitosan macromolecules which move towards the cathode. The 

reactions that occur on the cathode electrode (Equations (2) and (3)) generate basic conditions at the 

electrode surface [6,39]: 

2H2O + 2e− → H2 + 2OH− (2)

O2 + 2H2O + 4e− → 4OH− (3)

As a consequence of the pH increase at the cathode surface due to electrochemical decomposition 

of water, chitosan loses its charge and forms an insoluble deposit [39]: 

Chit-NH3
+ + OH− → Chit-NH2 + H2O (4)

In this work, composite films were prepared from suspensions of h-BN and of both TiO2 and h-BN 

in chitosan solution. 

The presence of chitosan in the system can provide the necessary positive charge to perform EPD 

and it contributes to the suspension stabilization for EPD of h-BN and TiO2. The chitosan can be 

incorporated in chitosan-h-BN and chitosan-h-BN-TiO2 mixtures by two different mechanisms: 

● Chitosan adsorbed on the TiO2 nanoparticles and/or on h-BN micro particles. 
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● Non-adsorbed chitosan present in the bulk of the suspension and incorporated in the deposit by 

direct EPD. 

The zeta potential values of C-hBN1, C-hBN2 and C-Ti-hBN suspensions used for EPD 

experiments were found to be 35 ± 10, 37 ± 11 and 41 ± 9 mV, respectively. As it can be observed, all 

suspensions present positive values of zeta potential at the working pH of 3.5, which also predicts a 

cathodic deposition of the particles. Therefore, the cathodic deposition of chitosan, TiO2 and h-BN can 

be combined to form composite films. 

After a trial-and-error sequence of experiments, the optimum voltages (10 and 30 V) and deposition 

time (from 1 to 10 min) were chosen. Figure 1 shows a continuous increase in the deposition weight 

with increasing deposition time for C-hBN2 (Figure 1A) and C-Ti-hBN (Figure 1B) suspensions. 

Three different samples were prepared for each deposition time and the final results were averaged 

(error bars in Figure 1 refer to the standard deviation). The deposition yield measurements were found 

to be repeatable with an error below 8% and 7% for C-hBN2 and C-Ti-hBN, respectively. It is 

observed that the slope of the curves decreased with increasing deposition time due to the formation of 

an electrically insulating film which decreases the voltage drop in the bulk of the suspensions. 

Increasing the voltage from 10 to 30 V (curves a and b in Figure 1A,B, respectively) resulted in a 

higher deposition yield which is in agreement with the prediction of Hamaker’s equation [40]: 

M = µEtSCs (5)

where M is the mass deposition, µ is the particle electrophoretic mobility, E is the electric field, t is the 

deposition time, S is the surface area of the electrode, and Cs is the concentration of colloidal particles 

in suspension. Keeping µ, t, S, Cs constant in each case, then the Hamaker equation can be written as: 

M = KE (6)

where K is constant, then showing the proportional relation between yield deposition and applied 

electric field for a fixed deposition time. 

Figure 1. Deposit weight normalized to covered area vs. deposition time for the deposits 

prepared from (A) C-hBN2 and (B) C-Ti-hBN at (a) 10 V (b) 30 V. Three different 

samples were prepared for each deposition time and the final results were averaged. Error 

bars refer to the standard deviation. 
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2.1. Composition and Microstructure of Coatings 

For the further characterization of the coatings, those coatings obtained at 10 V for a deposition 

time of 5 min were selected given that at this relatively short deposition time, a suitable deposition 

yield had been obtained (see Figure 1A,B). 

FTIR analyses for coated samples were carried out to investigate the interaction between the 

chitosan matrix, h-BN and TiO2 particles. Three coatings of each system were used for the 

measurements and a chitosan reference was also analyzed. FTIR spectra of C-hBN1, C-hBN2 and  

C-Ti-hBN2 are shown in Figure 2.  

Figure 2. FTIR spectra of C-hBN1, C-hBN2 and C-Ti-hBN coated samples prepared by 

EPD using 10 V and 5 min. Chitosan powder was used as a reference.  

 

In C-hBN1 (chitosan-1 g/L h-BN), C-hBN2 (chitosan-2 g/L h-BN) and C-Ti-hBN (chitosan-2 g/L  

h-BN-2 g/L TiO2) spectra, the characteristic C-O and C-H stretching vibrations of the chitosan molecules 

appear at 1082 cm−1 [18] and 2925 cm−1 [1], respectively. The peaks at 1645 cm−1 and 3430 cm−1 are 

assigned to the N-H bending of the amines groups and the O-H stretching vibration of the chitosan 

molecule [1,41–45], respectively. The C-O-C symmetric stretching vibration can be seen at 1145 cm−1 [18] 

and the symmetric deformation of CH3 group appears at 1375 cm−1 [1]. The BN stretching vibration 

appears at 810 cm−1 [18]. All these peaks indicate that both, chitosan and h-BN are incorporated in the 

coating. In addition, there is a broad band that spreads below 800 cm−1 which, according to the 

literature [1,46–48], indicates the presence of titania in the coating.  

The XRD patterns of C-hBN1, C-hBN2 and C-Ti-hBN coatings are shown in Figure 3. As it can be 

observed, the peaks corresponding to h-BN appear in all coatings while for C-Ti-hBN, the titania 

peaks are present. All peaks were indexed using JCPDS files 01-085-1068 for boron nitride also  

00-002-0406, 01-078-2486 for anatase TiO2 and 00-021-1276 for rutile TiO2. The identification of 

both h-BN and titania in the XRD spectra corroborates the presence of both materials in the coatings as 

was first indicated by FTIR test. 
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Figure 3. XRD pattern of sample C-hBN1, C-hBN2, C-Ti-hBN prepared by EPD using  

10 V and 5 min. 

 

Figure 4 shows SEM images of C-hBN1 (Figure 4b,e), C-hBN2 (Figure 4c,f) and C-Ti-hBN 

(Figure 4d,g) coatings obtained using 10 V and 5 min as EPD conditions. An image of the SS substrate 

(Figure 4a) is also shown for comparison purpose. Images taken at low magnification (Figure 4e–g) 

show that the films are continuous and crack-free, while the images taken at high magnification  

(Figure 4b–d) indicate that the films are relatively dense, although some porosity can be observed. No 

significant qualitative differences are seen in the microstructure of the coatings when the h-BN 

concentration is increased from 1 g/L (sample C-hBN1) to 2 g/L (sample C-hBN2) as revealed when 

comparing Figure 4b,c, respectively. Regarding the porosity, it can be seen that the sample obtained 

with titania (C-Ti-hBN) seem to be less porous than the other ones. This could be due to the smaller 

particle size of the titania which enables it to fill gaps that have been created between the h-BN 

particles and, therefore, decreasing the porosity. 

Figure 4. SEM images of (a) non-coated SS substrate and of (b,e) composite films 

prepared from C-hBN1 suspension; (c,f) C-hBN2 suspension and (d,g) C-Ti-hBN 

suspension at EPD conditions: 10 V and 5 min.  
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Figure 4. Cont. 

 

SEM images of the cross sections of C-hBN1, C-hBN2 and C-Ti-hBN samples (Figure 5a–c, 

respectively) show that films were fairly uniform although for sample C-hBN2 (Figure 5b) the 

thickness seems to be distorted, possibly due to the machining process for SEM observations. In 

Figure 5a,b, the coatings (denoted by C) are seen to cover the substrate (denoted by S) to a large 

extent. The thickness achieved was around 2 µm for sample C-hBN1 and varied from 0 to 4 µm when 

the concentration of h-BN in chitosan changed to 2 g/L (sample C-hBN2). However, a maximum 

thickness of ~12 µm was achieved for C-Ti-hBN which correlates with the higher yield measured for 

this sample, when titania is also incorporated in the coating (as shown in Figure 5c).  

Figure 5. SEM images showing the cross-sections of composite films prepared from 

suspension (a) C-hBN1; (b) C-hBN2; (c) C-Ti-hBN at 10 V and 5 min. The substrate is 

indicated by “S” and the coatings by “C” in the images. 
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In Figure 6, when the voltage is increased up to 30 V for C-hBN2 sample (keeping the time 

constant at 5 min), a higher amount of material on the substrate is observed and thicker coatings of 

around ~15 µm are obtained as expected from Equation (6). 

It can also be observed that microcracks are formed on the coated surface. This is due to the 

formation of a relatively thick layer, which undergoes rearrangement upon contraction during drying, 

where the shrinkage of the deposit coating could be substantially different from the substrate and as a 

result, tensile/compressive stresses are developed in the coating and relieved by the formation and 

propagation of cracks. If the layers were thinner, the formation of cracks would be less accused since 

the ratio h-BN/chitosan would be lower, and also considering that the metallic substrate would have 

adhered better to the thinner h- BN layer embedded in chitosan. 

Figure 6. SEM image of the cross-section of sample C-hBN2 prepared at 30 V and 5 min. 

 

2.2. Corrosion Behavior  

Corrosion resistance of metal substrates used in biological environments is an important issue that 

gives an indication of the biocompatibility of the materials, as corrosion products must be minimized. 

Polarization curves for C-Ti-hBN, C-hBN2 and bare stainless steel substrate (SS) are shown in  

Figure 7. The results show a lower corrosion current for all coated systems compared with the 

uncoated metallic substrate, being proof of the corrosion protective properties of these coatings. It can 

be also observed that the presence of TiO2 leads to further reduction of the corrosion current density, 

indicating a better corrosion protection by this coating type. This effect may be attributed to the small 

particle size of the titania powder that could be covering possible open spaces or pores of the coating 

where the DMEM can penetrate being in direct contact with the substrate. That is, the titania 

nanoparticles could be filling the gaps between h-BN particles and, therefore, create a more continuous 

coating that provides better corrosion protection, as was explained above when discussing the 

coating’s microstructure. The electrochemical results obtained for C-Ti-hBN are in agreement with 

similar organic-inorganic composite coatings via EPD, previously obtained and tested under the same 

experimental conditions [1,49].  
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Figure 7. Polarization curves in DMEM for bare SS 316L and SS coated with a film 

prepared from C-Ti-hBN suspension and C-hBN2 suspension at 37 °C. 

 

2.3. Adhesion of Coatings to Substrate 

The adhesion strength between the coatings and the SS 316L substrates was assessed qualitatively 

by the adhesive tape test. Results of the adhesion strength for all composite coatings according to the 

ASTM D3359-B standard showed that the adhesion strength corresponded to class 3B for C-hBN1 and 

C-hBN2, and class 4B for C-Ti-hBN (Figure 8). The adhesion for C-Ti-hBN is better than in C-hBN1 

and C-hBN2 because the dispersion of titania nano particles in the matrix gives more surface area  

that allows chitosan to penetrate between micro (h-BN) and nano-particles (TiO2), which results in 

improved attachment between the coating layer and substrate. 

Figure 8. Typical optical images of coatings before and after adhesive tests for  

(a,d) C-Ti-hBN; (b,e) C-hBN2; (c,f) C-hBN1 suspensions obtained using 10 V and 5 min. 
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2.4. Bioactivity Study 

The formation of HA in SBF is usually considered the marker of the bioactive character of 

materials used as bone replacement and as orthopedic coatings [50–52]. The hydroxyapatite  

forming ability of the coatings was investigated by FTIR and XRD after 28 days of immersion in SBF 

(Figures 9 and 10), respectively. 

In FTIR spectra, in order to confirm that HA was formed, a double peak at 560–600 cm−1 and a 

broad peak at 1000–1100 cm−1 should be present in the spectrum [53]. For C-Ti-hBN and C-hBN 

samples, those characteristic peaks are not obviously present; therefore, there is no evidence of 

formation of HA and it can be stated that the coatings are not bioactive. The same conclusion can be 

drawn from the XRD results (Figure 10), i.e., it is not possible to confirm the formation of HA on the 

coatings after immersion in SBF for 28 days. 

Figure 9. FTIR spectroscopy patterns of coatings after 28 days’ immersion in simulated 

body fluid (SBF) for C-hBN2 and C-Ti-hBN. 

 

Figure 10. XRD patterns of C-hBN2 and C-Ti-hBN coatings after 28 days’ immersion in SBF.  
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3. Experimental Section  

Chitosan powder with deacetylation degree of about 85% was purchased from Sigma Aldrich 

(Taufkirchen bei München, Germany) and two different sources of acetic acid with the same analytical 

properties were purchased from Sigma Aldrich (Taufkirchen bei München, Germany) and VWR 

Chemicals. The hexagonal BN powder (h-BN) was of average particle size 2.1 µm. Titanium dioxide 

(TiO2) grade P25, which is a very fine powder with mean particle size of 21 nm, was obtained from 

Evonik industries. Ethanol was purchased from Merck KGaA (Darmstadt, Germany). 

Chitosan/h-BN and chitosan/h-BN/TiO2 composite films were prepared from suspensions containing 

variable h-BN loadings and a fixed chitosan concentration of 0.5 g/L. Chitosan solution was prepared 

by dissolving chitosan powder in 1 vol% aqueous acetic acid solution. Three different suspensions 

were prepared, the first two with different h-BN contents (1 and 2 g/L) (labeled C-hBN1 and C-hBN2, 

respectively) and the third one with 2 g/L h-BN and 2 g/L TiO2 (labeled C-Ti-hBN). Suspensions were 

prepared by adding the h-BN and TiO2 to a 0.5 g/L chitosan solution. A mixture of water and ethanol 

with 17 vol% of distilled water was used. 

After preparation of the above suspensions (C-hBN1, C-hBN2, C-Ti-hBN) they were stirred 

magnetically for 24 h and then passed through the ultrasound bath (Sonorex 120 W/80 kHz from 

Bandelin electronics-Germany) for 15 min. pH-indicator strips (non-bleading) from Merk KG, 

Darmstadt, Germany, were used to measure the pH of the suspensions. AISI 316L stainless steel 

electrodes (30 mm × 15 mm × 0.2 mm) were utilized as deposition substrates and counter electrodes in 

the EPD cell. The electrodes were ultrasonically washed in ethanol for 10 min. EPD was performed 

under constant voltage conditions. Two different voltages (10 and 30 V) and different periods of 

deposition time (1, 2, 3, 5, 7, 8 and 10 min) were studied. The distance between the electrodes was 

kept constant at 15 mm. A constant electric voltage was applied by a Telemeter electronic GmbH TTi 

Ex 752 M 75 V/150 V 300 W power supply and the current through the suspension during EPD was 

recorded by a 1906 Computing Multimeter from Thurlby-Thandar instruments LTD (Huntingdon, 

England). EPD of C-hBN1, C-hBN2 and C-Ti-hBN was carried out without stirring. Deposit weights 

were obtained by weighing the substrates before and after the deposition process followed by drying at 

room temperature for 24 h. 

In order to ensure the reproducibility and homogeneity of the coatings, the stability of the C-hBN1, 

C-hBN2 and C-Ti-hBN suspensions was studied in terms of zeta potential, measured by laser Doppler 

velocimetry (LDV) technique, using a Zetasizer nano ZS equipment (Malvern Instruments, Malvern, 

UK). The LDV method measures the electrophoretic mobility of the particles and, after applying 

Henry’s equation, transforms that value into zeta potential. Suspensions were diluted down to 0.1 g/L 

as a requirement to obtain reliable measurements. 

X-ray diffraction measurements of the coatings were performed to determine the composition of  

the coatings. The diffractograms were obtained using a X-ray diffractometer (XRD) (D500 Siemens, 

Siemens, München, Germany) CuKα 1.2 secondary-Monochromator with 0.02 degree as a 2θ step and 

operated at 30 KV. The surface microstructures of the deposited coatings were investigated using a 

LEO-435 VP scanning electron microscope (SEM) (Leo Scanning Electron Microscopes Ltd., 

Cambridge, England). The SEM specimens were coated with an alloy of gold and palladium to 

improve surface conductivity for SEM observations. Fourier transform infrared (FTIR) spectroscopy 
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(Nicolet 6700, Thermo Scientific, Waltham, MA, USA) measurements were performed to record 

spectra of the coated samples in the wave number range of 400–4000 cm−1.  

The adhesion between coatings and substrates was tested by the tape test according to ASTM 

standards [54] using Elcometer 107 cross hatch cutter (Manchester, UK). The tests were carried out by 

using a cutting tool and this was placed on the substrate at 90 degrees to make a series of parallel cuts 

(approximately 20 mm long) by pressing down and pulling the tool towards the operator. A suitable 

length of adhesive tape was selected and centered over the lattice. After a short time (about 90 s), the 

tape was removed at an angle of 180 degrees to the coating surface. At the end, the lattice of cuts was 

compared with ASTM standard. The ASTM standard values for adhesion strength assigns six quality 

classes, namely 5B for 0% removal, 4B for less than 5% removal, 3B for 5%–15% removal, 2B for 

15%–35% removal and 0B for more than 65% removal [54,55]. 

An electrochemical evaluation in cell culture medium was performed to investigate the corrosion 

behavior of C-hBN2 and C-Ti-hBN as well as of the uncoated SS 316L substrates. Polarization curves 

were obtained using a potentiostat/galvanostat (Autolab PGSTAT 30). The samples were immersed  

in 100 mL of Dulbecco’s MEM (Biochrom) at 37 °C and the solution was not stirred during the 

experiment. A conventional three electrode system was used, where a platinum foil served as counter 

electrode and Ag/AgCl (3 mol/L KCl) was used as reference electrode. The analysis was carried out 

using an O-ring cell with an exposed sample area of 0.78 cm2 with a potential sweep rate of 1 mV/s.  

An in-vitro bioactivity assessment, was carried out in simulated body fluid (SBF) prepared 

according to literature [50]. Each coated sample was immersed in 50 mL of (SBF) and kept at 37 °C 

for 28 days. The SBF was changed every three days to keep constant the ionic concentration. After 

immersion in SBF, the substrates were dried at room temperature. FTIR and XRD analyses were 

performed on the samples after immersion to analyze possible hydroxyapatite (HA) formation.  

4. Conclusions 

A novel family of h-BN/chitosan and h-BN/TiO2/chitosan coatings was successfully obtained on 

stainless steel 316L substrates by EPD. The method was based on the electrophoresis of protonated 

polymer (chitosan) molecules in acidic solution, base generation at the cathode surface, charge 

neutralization and deposition of an insoluble polymer film.  

Following the successful EPD of h-BN and h-BN/TiO2, the deposition yield, composition, 

morphology, and film thickness were measured. It was shown that the latter could be controlled by 

varying deposition parameters such as the deposition voltage. Film thicknesses of 0–4 µm were 

observed for C-hBN1 and C-hBN2 at 10 V while the thickness for C-Ti-hBN film could be increased 

from ~12 µm at 10 V to ~15 µm at 30 V when using a deposition time of 5 min. 

Porosity was decreased in C-Ti-hBN film comparing with C-hBN1 and C-hBN2 films, due to the 

smaller particle size of the titania which enables filling the gaps between h-BN particles. 

Analysis of the film showed suitable adhesion strength to the substrate for chitosan/hBN and 

chitosan/hBN/TiO2. Also, enhanced corrosion resistance compared to bare SS substrate before 

deposition was confirmed showing that chitosan/h-BN/TiO2 provides better corrosion protection than 

chitosan/h-BN coatings. The results of this investigation showed that EPD is a versatile method for the 

fabrication of chitosan based composite materials. The results confirm that the composite coating 
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would act as a protective layer to provide corrosion protection and also improved adhesion strength. 

The application of the developed coatings as antibacterial layers is the focus of current studies.  
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