
Materials 2014, 7, 3919-3945; doi:10.3390/ma7053919 

 

materials 
ISSN 1996-1944 

www.mdpi.com/journal/materials 

Review 

Carbon Nanofibers and Their Composites: A Review of 

Synthesizing, Properties and Applications 

LichaoFeng 
1,2,3,4

, NingXie 
2,
* and Jing Zhong 

2
 

1 
School of Mechanical Engineering, Huaihai Institute of Technology, Lianyungang 22205, Jiangsu, 

China; E-Mail: fenglichao33@163.com 
2 

Harbin Institute of Technology, Harbin 150001, Heilongjiang, China;  

E-Mail: zhongjing.hit@gmail.com 
3 

Jiangsu Marine Resources Development Research Institute, Lianyungang 22205, Jiangsu, China;  
4 

Research and Development Department, Lianyungang Zhongfu Lianzhong Composites  

Group Co., Ltd., Lianyungang 22206, Jiangsu, China 

* Author to whom correspondence should be addressed; E-Mail: xiening@hit.edu.cn;  

Tel.: +86-451-8628-2191; Fax: +86-451-8628-2116. 

Received: 28 March 2014; in revised form: 7 May 2014 / Accepted: 7 May 2014/  

Published: 15 May 2014 

 

Abstract: Carbon nanofiber (CNF), as one of the most important members of carbon fibers, 

has been investigated in both fundamental scientific research and practical applications. 

CNF composites are able to be applied as promising materials in many fields, such as 

electrical devices, electrode materials for batteries and supercapacitors and as sensors. In 

these applications, the electrical conductivity is always the first priority need to be 

considered. In fact, the electrical property of CNF composites largely counts on the 

dispersion and percolation status of CNFs in matrix materials. In this review, the electrical 

transport phenomenon of CNF composites is systematically summarized based on 

percolation theory. The effects of the aspect ratio, percolation backbone structure and fractal 

characteristics of CNFs and the non-universality of the percolation critical exponents on the 

electrical properties are systematically reviewed. Apart from the electrical property, the 

thermal conductivity and mechanical properties of CNF composites are briefly reviewed, 

as well. In addition, the preparation methods of CNFs, including catalytic chemical vapor 

deposition growth and electrospinning, and the preparation methods of CNF composites, 

including the melt mixing and solution process, are briefly introduced. Finally, their 

applications as sensors and electrode materials are described in this review article.  
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1. Introduction 

Since the first carbon fiber (CF), which was prepared by carbonizing cotton and bamboo, was used 

as the filament of a light bulb in 1879 by Thomas Edison, it has been developed tremendously in both 

fundamental scientific research and practical applications [1–5]. As one of the most important members of 

CFs, carbon nanofibers (CNFs) have been applied as promising materials in many fields, such as 

energy conversion and storage, reinforcement of composites and self-sensing devices [5–10].  

There are some differences between conventional carbon fibers (CCFs) and CNF. The first one, also 

the most obvious one, is their size. The conventional CF has diameters of several micrometers, while 

CNFs have diameters of 50–200 nm. Figure 1 gives a schematic illustration of the difference between 

CNF and conventional CF. Except the diameter; the structures of the CNFs are evidently different 

from traditional carbon fibers. The typical CCFs were prepared from high-strength polyacrylonitrile 

(PAN) or meso-phase pitch (MP), varying the preparing conditions, including the oxidation 

atmosphere, the raw materials chosen and the heat treatment temperatures. The different preparing 

conditions will result in different properties of the prepared conventional CF. However, unlike the 

CCF, the CNF can be mainly prepared by two approaches: catalytically vapor deposition growth  

and electrospinning.  

Figure 1. Schematic illustration of the difference between CNF and CCF. 

 

2. Synthesizing of CNFs 

This section will discuss the preparation methods of the CNF. Currently, the CNF can be prepared 

mainly by two methods. One is catalytic thermal chemical vapor deposition growth, and the other one 

is electrospinning followed by heat treatment.  
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2.1. CNF Prepared by Catalytic Thermal Chemical Vapor Deposition Growth 

Two types of CNF can be prepared by catalytic thermal chemical vapor deposition, namely, the 

cup-stacked CNF and the platelet CNF. The cup-stacked CNF, also called conical CNF, was first 

found by Ge and Sattler in 1994 [11]. Figure 2a–c gives the schematic demonstration of the formation 

of the cup-stacked CNF, and Figure 2d gives the schematic illustration of the platelet CNF structures.  

Figure 2. Schematic demonstration of (a–c) formation of cup-stacked CNF structure; and 

(d) platelet CNF structure. 

 

For the preparation of CNF by the catalytic vapor deposition growth approach, several types of 

metal or alloys, which are able to dissolve carbon to form metal carbide, have been used as the 

catalyst, including iron, cobalt and nickel; chromium, and vanadium. Additionally, the molybdenum, 

methane, carbon monoxide, synthesis gas (H2/CO), ethyne or ethene are used to provide the carbon 

sources in the temperature range from 700 to 1200 K [12]. Generally, the structures of the CNF are 

governed by the shapes of the catalytic nanosized metal particles. The growth mechanism has been 

proven as the deposition of the hydrocarbons dissolved in the metal particle and precipitated on the 

metal surface as graphitic carbon [13]. Figures 3 and 4 demonstrate the schematic illustration of the 

typical growth mechanism of the cup-stacked and platelet CNFs [14,15]. Figure 5 demonstrates the 

high resolution transmission electron microscope (HRTEM) image of the cup-stacked CNF and the 

platelet CNF [14,15]. 

Figure 3. Schematic illustration of the typical chemical vapor deposition growth mechanism 

of the cup-stacked CNFs [14]. 
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Figure 3. Cont. 

 

Figure 4. Schematic illustration of the typical chemical vapor deposition growth mechanism 

of the platelet CNFs [15]. 

 

Figure 5. High resolution transmission electron microscope (HRTEM) image of  

(a) cup-stacked CNF and (b) platelet CNF [14,15]. 

 

2.2. CNF Prepared by Electrospinning 

Electrospinning is another widely used method for the preparation of the CNFs. Inagaki [16] 

recently reviewed CNF prepared by electrospinning process systematically. In this review, the CNFs 

prepared via electrospinning and carbonization was summarized according to their structure and 

properties. Most recently, Zhang [17] summarized the preparation and applications of CNFs prepared 

by electrospinning.  



Materials 2014, 7 3923 

 

 

To fabricate the CNFs by the electrospinning method, the polymer nanofibers are required to be 

prepared as the precursors of the CNFs. The properties of the final CNFs are decided by the types of 

polymer solution and the processing parameters. PAN and pitches are the most frequently used 

polymers. In addition, poly(vinyl alcohol) (PVA), polyimides (PIs), polybenzimidazole (PBI), 

poly(vinylidene fluoride) (PVDF), phenolic resin and lignin were also used [16]. Once the polymer 

nanofibers have been successfully prepared, a heat treatment will be applied to carbonize the polymer 

nanofibers to form CNFs. The morphology, purity, crystallinity, diameters and porosity are governed 

by the parameters of the heat treatment process, such as atmosphere and temperature. Figure 6 shows 

the schematic demonstration of the electrospinning device for CNF preparation.  

Figure 6. Schematic demonstration of the electrospinning setup for CNF fabrication [16]. 

 

After the polymer nanofibers have been successfully fabricated, the carbonization process will be 

followed by heating the polymer nanofiber up to 1000 °C in a specific environment. Generally, volume and 

weight change will occur during the carbonization process, which results in the decrease of the 

diameter of the CNFs.  

In most cases, the CNFs prepared by the electrospinning method are prone to form web or mat 

structures. This structure is a good form to be used as electrode materials for batteries or 

supercapacitors. Due to the overall performances of the batteries largely counting on the transport 

performances of the ions in the electrolyte, therefore, controlling the pore structure is the most import 

factor to enhance the performances of batteries. 

3. Preparation of CNF Composites  

The overall performances of the CNF/polymer composites are largely governed by the dispersion of 

the CNF in the polymer matrix. Therefore, the dispersion technique plays a key role in the synthesizing 

of CNF composites.  
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The dispersion of CNF in polymer matrix can be realized mainly by two approaches: the melt 

mixing process and the sonication process in low viscosity solutions. 

The most widely used method is melt mixing, due to its low cost, simplicity and availability. 

Generally, extrusion or roll mill [18,19], Haake torque rheometer [20] and mini-max molder [21,22] all 

belong to the melt mixing method. In this method, to obtain a good dispersion condition for CNF in 

polymer matrix, a high shear mixing condition is usually required. Although the high shear mixing will 

lead to a relatively good dispersion of the CNF, the aspect ratio, which is another key parameter 

governing the overall performances of the CNF/polymer composites, will be decreased during the 

mixing process. It was found that the decrease of the aspect ratio will result in the degradation of some 

properties [23,24]. Therefore, the investigation of the relatively low shear mixing approach without 

sacrificing the dispersion is still a challenge for the preparation of CNF/polymer composites by the 

melt mixing approach.  

The chemical surface treatment of CNFs is a promising method to help their dispersion in the 

polymer matrix. In this process, the compatibility between the grafting functional groups and the 

polymer matrix is the key factor that decides the CNF dispersion and the overall performances of the 

composites. In most cases, the treatment process is oxidizing the CNF surface by soaking in 

sulfuric/nitric acid at various temperatures followed by acylation. After this process, the functional 

group will be grafted onto the surface of the CNF by the reaction between the oxidized CNF and the 

functional groups.  

Li [25] and co-workers prepared and characterized the surface-treated CNF by using diamines or 

triamines as linker molecules. The amine group acts as a bridge connecting the CNF and the –NH2 to 

form the CNF–C(O)–NH– structure. Kelarakis and co-workers [26] prepared the 

CNF/ethylene/propylene (EP) random copolymer composite with a similar process. The as-received 

CNFs were surface oxidized by sulfuric/nitric acid and then reduced by sodium borohydride in 

absolute ethanol to form the CNF–OH structure. After that, the hydroxylated CNF was dispersed in 

dichlorobenzene and a polypropylene-graft-maleic anhydride polymer to form the CNF–O– structure.  

Apart from the melt mixing processing for the CNF/thermoplastic polymers, the dispersion of the 

CNF in thermosetting polymers to prepare the CNF/thermosetting polymers (mostly epoxy resins) 

composites mainly counts on the solution approach with the help of sonication. In this process, the 

CNFs will be dispersed in the liquid epoxy form by sonication before being mixed with the hardener. 

Usually, acetone or other solutions are needed to help the effect of sonication. In addition, to avoid the 

increasing temperature during the sonication process, external cooling devices are necessary in  

most cases.  

Pervin and co-workers [27] fabricated nanocomposites composed of SC-15 epoxy and CNF. The 

mixing process was carried out through a high-intensity ultra-sonication of the CNF and SC-15 epoxy. 

Once the sonication was completed, the hardener was added in the mixture, followed by high-speed 

mechanical stirring, and then cured at room temperature. The preparation of the CNF/epoxy 

nanocomposite by Choi et al. [28] showed that ozone surface treatment of the CNF is helpful for its 

dispersion in the epoxy matrix. In this study, CNF with and without ozone surface treatment was to 

investigating the dispersion conditions. The CNFs were dispersed in acetone by sonication and stirring 

process at room temperature. The epoxy resin was added into the CNF-acetone solution without 
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stopping sonication and stirring. After this process, the acetone was removed by heating the mixture at 

100 °C for 24 h, followed by the addition of the hardener, and then cured at room temperature.  

4. Properties of CNF Composites 

4.1. Electrical Conductivity 

One of the most important properties of CNF composites is their electrical conductivity. When the 

CNF composites are applied as electrical devices, sensors, electromagnetic shielding or electrodes for 

batteries or supercapacitors, the electrical conductivity is always the first priority need to be considered.  

In CNF composites, when the electrical conductivity measured as a function of the filling content of 

CNF, a typical “S” shape curve appears, due to the critical percolation phenomenon [29]. It follows a 

power law behavior expressed as[30]: 

              
       ;  

                      
(1) 

where σreal is the real electrical conductivity of the CNF composites; σc is the electrical conductivity of 

the CNF; f is the filling content of the CNF; fc is the percolation threshold, which is defined as  

the critical value of the CNF filling content forming continuous network; and t and s are the electrical 

conductivity critical exponents above and below the percolation threshold, respectively. In this equation, 

σreal was experimentally measured, and the values of σc and fc are constants. According to the numerical 

and experimental results, it was claimed that, in the bond and site percolation lattices, the values of  

the conductivity critical exponents were universal, such that t ≈ 1.3–1.4, s ≈ 0.5 (in two dimensions) 

and t ≈ 1.6–2.0, s ≈ 0.6 (in three dimensions), based on the renormalization group theory [29,30], and 

in practical applications, they were usually considered belonging to the same universality system, as 

well. Some experimental and numerical results, however, have indicated that the practical application 

problems and the simulated lattice percolation problems do not belong to same universality systems. 

Although the percolation phenomenon has been studied for decades, the non-universality of the critical 

conductivity exponents observed experimentally has remained difficult to explain. 

The Kogut and Straley (KS) model is a milestone for quantitatively analysis of the critical 

conductivity exponents regarding the non-universality in a percolation system [31]. It first claimed that 

the universality of the conductivity exponents would be broken if the low-conductance bonds in 

percolation networks were characterized by an anomalous conductivity distribution. This model was 

derived from the mean field theory by assigning each neighboring pair in a regular lattice. It was 

claimed that, in a lattice percolation system, if a bond with finite conductivity, g, with probability μ 

and zero conductivity with probability 1 − μ, the bond conductivity distribution function can be 

written as: 

                     (2) 

where δ(g) is the Dirac delta function and h(g) is the distribution function of the finite bond 

conductivity. If h(g) has a power law divergence for small g of the form: 

   
   

         (3) 
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where    , then the universality of the conductivity critical exponents will be lost with sufficiently 

large values of exponent α. 

Based on the KS model, a well-known model, namely the “tunneling model”, was introduced by 

Balberg [32], corresponding to granular materials and carbon/polymer composites. Figure 7 shows the 

schematic demonstration of the tunneling model, which is the main conductivity mechanism of the 

carbon/polymer composites. As demonstrated in this figure, the black spheres represent the carbon 

materials, and the grey circles around the black spheres represent the polymers. In this model, the 

electrical conductivity of the carbon/polymer composites is governed by the width of the tunnel, which 

means the thickness of the polymer layer on the surface of the carbon materials.  

Figure 7. Schematic demonstration of the tunneling model in carbon/polymer composite [33]. 

 

In CNF composites, the tunneling effect is the main mechanism of electrical conduction; therefore, the 

electrical conductivity of the CNF/polymer composites are affected by the thickness of the polymer 

layer on the CNF surfaces, which is decided by the surface treatment methods and the polymer types. 

Although the tunneling model has been widely used in describing the non-universality of the 

percolation system; the conductive fillers were assumed as spherical particles; thus, it is insufficient to 

describe the percolation system with non-spherical fillers, such as CNF-filled polymer composites.  

In recent years, a comprehensive understanding of the mechanism of conduction in CNF/polymer 

composites was developed rapidly thanks to the development of random media physics [33–37].  

The electrical conductivity was systematically investigated via theoretical models and the 

microstructure dependence of the carbon polymer composites. Lux [38], Kirkpatrik [39], Clerc [40] 

and Nan [29] reviewed the physics of percolation theory and the physics of inhomogeneous materials. 

Another important model to describe the percolation phenomenon in a conductor-insulator 

composite is the general effective media (GEM) model, which was described by McLachlan [41] in 

detail. In the GEM model, the composite was considered as a symmetric medium, in which the 

conductor with an ellipsoidal or spherical shape was embedded in the insulator matrix. Under this 

condition, the relationship of the conductivities between the composite, the insulator matrix and the 

conductive fillers can be written as: 

        

    
  

    
   

 
            

    
  

    
   

   
(4) 

where p is the conductor’s filling content; pc is the percolation threshold; and σh, σl, and σm are the 

electrical conductivities of the conductor, insulator and the composite, respectively.  
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It has been widely accepted that, if the effective conductivities are given by the average conductance 

values, from the perspective of the geological structures, the conductivities can be divided into two 

types: the series and the parallel. In CNF composites, one extreme case is that all CNFs in the 

composite connected in parallel form, where the equivalent effective conductivity can be written as: 

         
 

 
  

     
  

 
 

  

 (5) 

In this assumption, if all CNFs are geometrically identical, the σeff will be proportional to the  

second sum. 

Another extreme case is that all CNFs are connected in series form, where the equivalent effective 

conductivity should be written as: 

        
 

 (6) 

Of course, in a real CNF composite, the resistance of the whole system is not able to be reflected 

only by parallel or series form; therefore, the real connection form or conduction channel has to be 

analyzed. In addition, there is a geometrical restriction in this case, that the CNFs must all be 

congruent, which means all the CNFs have to be of the same size and shape; otherwise, the 

geometrical factors have to be included in the analysis [31].  

In a CNF composite, the continuous network of the CNF can be categorized into two types: the 

backbone and dangling ends [42,43],which show different properties. The percolation backbone is to 

demonstrate the real path that carries the current transport. In previous studies, it was found that the 

effective path or minimum length of the conduction was governed by the backbone based on widely 

simulated results in different lattice percolation systems [43]. Although these results are able to reflect 

the backbone characteristics to some extent [44], they were still hardly able to analyze the  

real conductor-insulator composite, due to the backbone structure being very hard to be directly 

observed experimentally. 

In a CNF/polymer composite, near the percolation threshold, not all CNFs belong to the continuous 

percolation backbone, because some of them still belong to the isolated clusters or form dangling ends. 

Therefore, the contribution to the composite properties of the percolation backbone density, which is 

defined as the proportion of the continuous percolation network in the whole percolation infinite 

clusters, is not the same as the isolated cluster. 

We presented a new model to describe a possible non-universal behavior in a conductor-insulator 

composite system [45]. In this model, the backbone and dangling end masses, MB and MD, were 

presented as the key parameters to describe the backbone structure. The backbone or dangling end 

density is defined as the portion of the total backbone or dangling ends that belong to the percolation 

infinite clusters, respectively. In a percolation system, the conductance between two randomly selected 

nodes (g) can be expressed as: 

          
  

  
  (7) 

where g0 is a constant; MD and MB are dangling ends and backbone masses belonging to two randomly 

selected nodes; and κ is called the “structural factor” that represents the geometry and topology 
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structure of the conductor. According to this assumption, the value of κ was defined as the function of 

the aspect ratio of the fillers and expressed as: 

  
 

          
 
 
 
    

 

 
(8) 

where f is the filling content of the conductive fillers; i is the index of the filler types; a/b represents  

the aspect ratio of the filler; and λ is 1, 0 and −1 correspond to a > b, a = b and a < b, respectively.  

In this equation, the tunneling conductance parts should be considered as a part of the backbone.  

Our recent study demonstrates that the conductive distribution function of the percolation network, 

H (MD/MB), and the dangling ends and the backbone masses could be expressed with the  

exponential form [45]: 

  
  

  
  

    

  
     

   

  
  (9) 

where η is the average value of 
  

  
, written as: 

     

  
  (10) 

Therefore, the critical exponent, t, can be obtained as: 

          

  
         

 

          
 
 
 
    

 

    

  
    (11) 

where tun is the “universal value” of a percolation system based on the effective medium theory [31]. 

In this equation, if there is no backbone in the system, the t value goes to infinity, and the electrical 

conductivity goes to zero. In this extreme case, the system is an insulator. If there are no dangling ends 

in the system, the t value goes to zero, which means that the electrical conductivity goes to σc. In this 

extreme case, the system is a pure conductor. According to this model, the effective electrical 

conductivity of the system increases with the decreasing of the conductivity critical exponent, which is  

a key factor to reflect the backbone density of the fillers.  

Based on this analysis, the backbone variation trend with increasing filling content of the CNF was 

analyzed [46]. Figure 8 gave the schematic illustration of the backbone structure variation mechanisms 

with the increasing content of the fillers with the long aspect ratio above the percolation threshold.  

This figure shows the original infinite cluster of the filler with long aspect ratio in a composite. As 

can be seen in the figure, the loop, ABCDE, belongs to the backbone, MB, and AAʹ, AAʹʹ, BBʹ, CCʹ, 

CCʹʹ, DDʹ, EEʹ and EEʹʹ belong to the dangling ends, MD, in the infinite cluster. As such, the ratio of 

the backbone and the dangling ends is: 

  

  
 

              

                                   (12) 

Figure 8b–f categorized the backbone structure variations with increasing filling content based on 

Figure 8a. As shown in Figure 8b, the added part, xy, was located on the percolation loop and 

connected the previous dangling ends, BBʹ and EEʹ. As a result, the mass ratio between the backbone 

and the dangling ends changed to:  

  

  
 

                 

                                             (13) 
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Figure 8. Schematic illustration of the backbone structure variation mechanisms in the 

CNF infinite cluster with the addition of CNF above the percolation threshold: (a) original 

infinite cluster; (b) the increased CNF locates on the loop and the connected part of the 

previous dangling ends; (c, d) the increased CNF locates on the loop, but does not connect 

any previous dangling ends; (e) the increased CNF belongs to the infinite cluster, but 

neither locates on the loop nor connects any previous dangling ends; (f) the increased CNF 

is isolated and does not belong to the infinite cluster [46]. 

 

In Figure 8 c,d, the added part was located on the loop, but did not connect any previous dangling 

ends; therefore, the backbone density changed to: 

  

  
 

                     

                                             (14) 

under this condition, the variation of the backbone density depended on the length ratio of xxʹʹ +yyʹʹ, 

xʹʹyʹʹ in Figure 8c and xxʹʹʹ + yyʹʹʹ and xʹʹʹyʹʹʹ in Figure 8d. 

In Figure 8e, the added part belongs to the infinite cluster, but was neither located on the loop nor 

connected to any previous dangling ends. In Figure 8f, the newly added xy was isolated and did not 

belong to the infinite cluster. Therefore, the backbone density changed to: 

  

  
 

              

                                     
 (15) 

In this condition, the backbone density decreased with the increase in CF concentration.  

Fractals, as another important tool, have been widely applied to quantitatively describe the 

composites of randomly distributed fillers with complex and irregular geometries embedded in a 

matrix [47]. The fractal characterization of the fillers can be divided into regular and irregular types. 

The regular fractal is self-similar in all scale ranges, while the irregular fractal is only self-similar in a 
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certain scale range. The typical irregular fractal is a heterogeneous object, such as the CNF in a 

polymer matrix. In this system, near the percolation threshold, the geometry of the CNF is able to be 

reflected by an irregular fractal. 

Numerical works have demonstrated that the infinite clusters with fractal dimensions of D ≈ 1.9  

and 2.5 [48] are able to be determined, and the optimal path with fractal dimensions of D ≈ 1.22 and 

1.43, corresponding to 2D and 3D lattices, are also able to be detected in the infinite clusters, 

respectively [49]. In a real composite, microscopy images, including transmission electron microscopy 

(TEM), scanning electron microscopy (SEM) and optical microscope (OM), are all able to be used to 

determine the fractal dimension of the fillers directly [50,51].Figures 9 and 10 show the SEM and 

TEM images of carbon/polymer composites, which were used to calculate the fractal dimensions of the 

carbon fillers in the polymer matrix [52,53].  

Figure 9. SEM image and its binarized image for the fractal dimension calculation in the 

carbon/polymer composite [52]. 

 

Figure 10. TEM image for the fractal dimension calculation in the carbon/polymer composite [53]. 
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In addition, the same as the infinite cluster of the fillers, the geometry of the backbone cluster also 

can be reflected by fractals. The investigation of the backbone structure of the CNF is very important 

for understanding the transport properties of the CNF composites. An effective method, called the 

“burning method”, was developed to extract the elastic backbone from the infinite clusters in a 

percolation system [54]. The fractal dimension of the elastic backbone quantitatively describes the 

structure and irregularities of the effective continuous network and paths that are accounting for the 

conduction in a disordered media. 

In CNF/polymer composites, there are several topics that were investigated in a limited manner. To 

the best of our knowledge, the quantitative analysis of the CNF distribution and connection in CNF 

composites based on fractal analysis is still at beginning stages; in addition, little discussion has 

focused on the non-universality of the conductivity critical exponents. A lot of work needs to be 

developed in future studies to investigate the CNF distribution and conductivity critical exponents that 

helps to enhance the electrical properties of the CNF composites.  

4.2. Thermal Conductivity 

Similar to the electrical conductivity, the thermal conductivity is another important property of the 

CNF composite, and the thermal transport phenomenon has been widely studied, as well, especially the 

thermal conductivity as a function of the filling content of the CNFs.  

To increase the thermal conductivities of the phase change materials, CNF and CNT were mixed in 

soy wax and paraffin wax with dosages of 1, 2, 5 and 10 wt% to prepare the phase change 

composites [55]. It was found that the thermal conductivities of the phase change materials increased 

from 0.324 to 0.469 W/mK with the CNF filling content increasing from 0 to 10 wt%. 

Teng [56] tested the thermal conductivities of the CNF/polylactic acid (PLA) and CNT/PLA-PLA 

composites that were prepared with a Haake torque rheometer equipped with an electrically heated 

mixing head and two non-interchangeable rotors. In these composites, the CNFs are randomly 

distributed in the PLA matrix, and it was found that the thermal conductivity of the composite reached 

1.2 W/mK with a CNF filling content of 10 wt%, which is much higher than the neat PLA.  

Other than the randomly distributed CNF composites, CNF paper-like mats were prepared by 

Mahanta and Abramson [57]. Unlike the randomly distributed CNF composites, the thermal 

conductivities of these CNF mats exhibit a high in-plane direction and a low through-plane direction. 

The in-plane thermal conductivity varied from 12 to 157 W/mK with a filling content of 6.7% and 

46.2%, respectively, while the through-plane thermal conductivities were measured as 0.428 and 

0.711 W/mK. 

A lot of models were developed to predict the thermal conductivity of the composite. The Maxwell 

model [58] is one of the most widely applied ones, which claimed the thermal conductivity of a 

composite could be predicted as: 

           

            

           
 (16) 

where ρmix is the thermal conductivity of the composite; θ is the ratio of the thermal conductivity of  

the matrix and the fillers; and ρconst and f are the thermal conductivity and the volume fraction of the 

fillers, respectively. Another famous description is the series/parallel model [59]: 
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                  (17) 

        
    

         
 (18) 

where ρmix is the thermal conductivity of the composite, ρc and ρd are the thermal conductivities of the 

matrix and the filler and fc and fd are the filling content of the matrix and the fillers, respectively. 

Recently, based on experimental analysis, an analytical model was developed to predict the thermal 

conductivity of a carbon nanotube-graphene/epoxy composite. This model built a bridge to connect the 

hybrid structure of the fillers to the thermal conductivity of the composite [60,61]. In this model, the 

thermal conductivities of the both CNT and the graphene were considered as parameters, and the 

thermal conductivity of the final CNT/GR/epoxy hybrid composites can be predicted as: 

     
     

  

  
               

 
 
  

  
   

            
 (19) 

where ρmix, ρc, ρg and ρe represent the thermal conductivities of the composite, carbon nanotubes, 

graphene and epoxy, respectively, and the fc and fg represent the volume fractions of the carbon 

nanotubes and the graphene.  

These models have successfully built a bridge to connect the thermal conductivity and the content 

of the fillers in composites; however, the effects of the geometrical tortuosity, which reflects the real 

transport channels in a CNF composite, on the thermal conductivity still require systematic studies, 

and the prediction of the thermal conductivity of the CNF composites as a function of  

the geometrical structure of the CNF is still one of the most challenging topics in CNF composites.  

It is well known that the electrical transport properties obey the power law near the percolation 

threshold [45], and the geometrical structure of the fillers shows self-similarity in a scale range and is 

able to be characterized by fractal dimensions [47]. Numerical works demonstrated that the fractal 

dimensions of the infinite clusters are D ≈ 1.9 and 2.5, and the fractal dimension of the shortest path in 

the infinite clusters are D ≈ 1.22 and 1.43, corresponding to 2D and 3D dimensional lattices, 

respectively [62].  

Unlike the electrical conductivity, the thermal conductivity as a function of the filling content is not 

able to be reflected by only applying the power law and the fractal dimension, due to the thermal 

conductivity percolation phenomenon not being evident in the system near the percolation  

threshold [63]. Therefore, effective models have to be developed to quantitatively determine the 

thermal conductivity as a function of the filling content of the fillers. Moreover, the microstructure 

characterization via fractal geometry has to be examined carefully, since the final properties largely 

count on the structure of the matrix and the fillers in the composite.  

Recently, Coleman [64] presented a model that connected the tortuosity, fractal and filling content 

of the fillers. In this work, it was claimed that the tortuosity obeys the power law with a form of  

τ ~ f
−ε

, and the exponent, ε, needs to be accurately predicted by new fractal characteristics. In addition, 

although the difference of the topological dimension and the fractal dimension is able to reflect the 

geometrical tortuosity of the conductor, the thermal conductivity is not available to be quantitatively 

determined only by the fractal dimension as a result of being increased with the increasing filling 
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content of the conductor phase. Therefore, the same fractal dimension might appear in two different 

composites with different filling contents and different geometrical structures. 

4.3. Mechanical Properties 

The mechanical properties of the polymer reinforced by adding carbon nanomaterials have been 

investigated for decades [65]. Generally, the mechanical properties of the polymer will increase with 

increasing CNF content. Bortz [66] reported that the resistance to fracture increased by 66% and 78%, 

with a 0.5 wt% and 1.0 wt% addition of CNFs in CNF/epoxy composites. The CNF-reinforced 

thermal-plastic polyurethane (TPU) composites were prepared by the melt mixing method [67]. In this 

composite, the tensile strength of the nanocomposites increased 49% with the CNF filling content of  

4 wt% compared with the neat TPU. However, the tensile strength of the CNF-reinforced 

nanocomposites reduced dramatically with a higher CNF dosage, because of the increase in voids or 

other defect densities resulting from the CNF bundles, which will lead to stress concentration under 

dynamic loading and finally, results in a premature failure at low strain values. 

Apart from the strengths or modulus, the microhardness of the CNF composites was also found to 

increase with increasing CNF content [68]. The microhardness of the epoxy matrix improved by 53% 

with 0.5 wt%, 62% with 0.75 wt% and 100% with 1.0 wt% addition of CNFs. The high aspect ratio and 

high modulus strength of CNFs contributed to the reinforcement, thus improving the hardness value. 

The reinforcement mechanisms have been systematically studied, as well, and many successful 

results have been extensively reported to demonstrate the relationship between the mechanical 

properties of the composites and the reinforcement fillers. The most widely accepted model is the 

mixture model expressed as: 

               (20) 

where ρmix is the mechanical properties of a composite, such as strength, Young’s modulus or fracture 

toughness, fr and fm, and ρr and ρm are the filling contents and the mechanical properties of  

the reinforcement phase and the matrix, respectively. Especially, if the reinforcement materials are 

fibrous materials, such as CNTs or CNFs, this model should be modified as [69]: 

                      (21) 

where μ1 represents the length efficiency factor and μ2 represents the orientation efficiency factor.  

The Cox model is a typical model to predict the Young’s modulus of CNF-reinforced polymer 

based on the rule of mixtures [70]. It was written as: 

                      (22) 
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(24) 

where Ec is the modulus of the composite; Vf is the filling content of the filler; Em is the Young’s 

modulus of the polymer matrix; ρf is the efficiency factor of the filler; Ef is the Young’s modulus of  
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the filler; n is an orientation constant (n = 1/6 for random orientated fibers in 3D, n = 1/2 for random 

orientated fibers in 2D and n = 1 for aligned fibers); l is the average fiber length; d is the diameter and 

ν is Poisson’s ratio.  

Other models based on the rule of mixtures were further developed in fibrous, reinforced 

composites. The elastic modulus of the composites can be expressed as [71]: 

                              (25) 

     
          

               
               (26) 

where Vr is the filling content of the reinforcement; Ec/m = (Ec − Em)/Em; Er/m = Er/Em; and Ec; Er; and Em 

are the longitudinal elastic moduli of the composites, reinforcement phase and the matrix, respectively. 

However, some experimental results claimed that the mechanical property of composites as a function 

of reinforcement filling content is not linear, especially when the filling content takes large values. 

Consequently, a revised form of the rule of mixtures was developed with an exponential form [71]: 

              

 
            (27) 

where: 

  
   

   
   

     

                  
                    (28) 

The hat sign means that the values need to be determined by experimental results, and εl, ε0 and εw 

are constants.  

Another well-accepted model is the Halpin–Tsai equation [72–74], which gives the prediction of 

the tensile modulus of nanocomposites, expressed as: 

     
 

 
 

       
 
     

        
 

 

 
 

         

        
        

   
 

  

  
     

  

  
 

 
  

  
     

  

  
 

        
 

  

  
     

  

  
 

 
  

  
     

  

  
 
 

(29) 

Where Ec and Em represent the Young’s moduli of the composite and the matrix; l/d and Vm are the 

aspect ratio and the filling content of the nanofibers or nanotubes; and t is the thickness of the  

graphite layer. 

Apart from the models mentioned above, the “composite sphere method” (CSM) was also 

developed to predict the modulus of composites, which can be written as [75]: 
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 (31) 

where Kcom and Gcom are the bulk and shear moduli of composites; Vm and Vr are the filling content of  

the matrix and the reinforcement phase; Km, Gm and Kr, Gr are the bulk moduli and shear moduli of  

the matrix and the reinforcement phase, respectively. 
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Although the mechanical properties of CNF reinforced composites were extensively studied,  

and numerous methods were applied to characterize the relationship between the fillers and the final 

properties, the disagreement between some experimental results and theoretical models, which resulted 

from the complexity of the reinforcement phase, is always a problem that needs to be solved, 

especially that of how to quantitatively predict the mechanical properties of the composites with 

different geometrical structures of reinforcements, which is still one of the most challenging topics in 

composite science and technology. Further studies need to be focused on the influence of the 

geometrical structure of the CNF on the mechanical properties of the composites.  

One thing to be noted here is that the overall properties of CNF-modified composites are largely 

decided by the CNFs-matrix interfaces. Cu/CNF composites with high thermal conductivity were 

prepared via three different powder metallurgy approaches [76]. It was found that the interfaces are 

very clear and strong, and a high density of dislocations of the Cu matrix can be observed at the 

interface area, which is an important factor that decides the thermal properties of the composites. 

Lu [77] prepared CNF/epoxy-based shape memory polymer composites, and the electrical and thermal 

properties of the composites were tested. It was also claimed that the CNF/polymer interfaces play the 

key role in the final properties of the composites. Sandler [19] studied the mechanical properties of 

vapor growth CNF-reinforced poly-ether-ether-ketone (PEEK) composites. The interfaces between the 

CNFs and the PEEK were observed by SEM and TEM. It was found that the interface remained intact 

during the preparing process, which guarantees the strengthening effect of the CNFs.  

In spite of many experimental studies having demonstrated that the interface between the CNFs and 

the matrix is considerably important to the overall performances, limited theoretical models have been 

developed to quantitatively explain the effect of the interfaces on the properties, such as the bonding 

types, bonding strengths and dislocation densities. The bonding between the CNF and the matrix is 

different from the CCF and CNT due to the different external surface structures of CNFs, CCFs and 

CNTs (shown in Figure 1). This should be considered as an important factor before developing a 

theoretical model to explain the relationship between the performances and the CNF/matrix interfaces.  

5. Applications 

5.1. Sensors 

Generally, the self-sensing function of the CNF composites is realized by testing the variation of 

electrical properties that has resulted from the change of the external conditions, including stress/strain 

and the gas environment. The electrical conductivity of the CNF composites is able to be reversibly 

changed by several orders of magnitude with the reversible change of the external conditions.  

Zhu [78] prepared CNF/elastomer (VM2) composites with a percolation threshold of 1 wt% as 

strain sensors for reflecting large mechanical deformation. The electrical conductivity of the composite 

is able to reversibly change 10
2
–10

3
 orders of magnitude upon stretching to 120% strain and recovery to  

40% strain.  

CNF/poly(acrylate) was prepared by Li [79] as gas sensors. In this study, the vapor can be detected 

via a five orders of magnitude change of the electrical conductivity. Other than vapor sensors, the 

CNF/(polypyrrole) PPy coaxial nanocable toxic gas sensor was fabricated to perceive irritant gas, such as 
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NH3 and HCl, via the one-step vapor deposition polymerization method [80]. The structure of the 

sensor is composed of an ultrathin and uniform PPy layer on the surface of CNF, shown in Figure 11. 

By the change of the oxidation level of the PPy layer resulting in the reaction between the PPy and the 

NH3 or HCl, the electrical conductivity of the composite decreased because of the decrement in the 

charge carrier density.  

Figure 11. SEM and TEM images of the PPy-coated CNF as a toxic gas sensor [80]. 

 

Apart from the strain/stress or gas sensing, the temperature, humidity, magnetic field and light are 

all important factors that are required to be sensed in many applications. The CNF and their 

composites for sensing these factors still need to be investigated deeply in future studies.  

5.2. Batteries 

Currently, the CNF composites as electrode materials for batteries and supercapacitors have been 

widely studied worldwide. The main requirement for high performance batteries and supercapacitors is 

high porous electrode materials, which are able to contain enough electrolytes and satisfy the fast and 

long-term ion transport. 

Ji [81] prepared a porous CNF by the carbonization of electrospun PAN/SiO2 composite nanofibers 

followed by resolving the SiO2 nanoparticles with hydrofluoric acid (HF). This porous CNF has 

magnified surface areas and defects. The specific porous structure guarantees that this CNF is able to 

be used as an anode material for lithium ion batteries directly, without adding any polymer binder or 

non-active carbon black. Figure 12 shows the schematic illustration of the porous CNFs. 

A facile way to synthesize N-dope porous CNF webs as anode materials for lithium ion batteries via 

using polypyrrole as a precursor was reported by Qie [82]. The high-level N-doping and the 

nanostructure of the CNF webs guaranteed a reversible capacity of 943 mAh/g with a current density  

of 2 A/g, even after 600 cycles. Figure 13 gives the SEM microstructure of the (1) PPy nanofiber webs 

and (2) CNF webs. 

A 3D CNF/graphene nanosheets hybrid material was prepared via the chemical vapor 

decomposition approach by Fan [83]. This is a special structure with the 1D CNF grown on the 2D 

graphene nanosheets that contains sufficient cavities, open tips and exposed edges of the graphene 

sheet. Figure 14 gives the schematic illustration of the structure with the 1D CNF grown on the 2D 
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graphene nanosheets. Due to this 1D–2D hybrid structure, the lithium ions could be stored in these 

spaces more efficiently, which guaranteed the high reversible capacity (667 mAh/g), high-rate 

performance and cycling stability. In addition, the direction of the CNF axis is vertical to the graphene 

nanosheets, which is able to control the diffusive orientation of the lithium ions.  

Figure 12. Schematic demonstration of the porous CNF prepared by the carbonization of 

electrospun PAN/SiO2 composite nanofibers followed by resolving the SiO2 nanoparticles 

with HF [81]. 

 

Figure 13. The SEM microstructure of the (a) PPy nanofiber webs and (b) CNF webs [82]. 

 

Figure 14. Schematic illustration of the structure with 1D CNF grown on 2D graphene 

nanosheets [83]. 
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Lee [84] found that the hollow CNFs used as freestanding electrodes in a flexible lithium ion 

battery are able to improve their mechanical properties by repeated electrochemical reactions with 

lithium ions. It was claimed that the inserted Li ions will form irreversible FCC crystals in the hollow 

CNF cavities and act as the reinforcement second phase of the carbonaceous matrix. Figure 15 shows 

the SEM image of the fractured hollow CNF.  

Figure 15. SEM images of (a) the fractured hollow CNF; and (b) the fractured surface of  

the hollow CNF [84]. 

 

Another hollow CNF structure was developed by Zheng [85]. In this study, the hollow CNF arrays 

were prepared through thermal carbonization of polystyrene by using anodic aluminum oxide as 

templates. Figure 16 gives the schematic illustration and SEM images of the hollow CNF/sulfur 

composite structure. A reversible capacity of about 730 mAh/g was achieved after 150 cycles. This 

structure successfully overcomes the shortcoming of the random diffusion of polysulfides in the 

organic electrolyte without sacrificing the fast transport of the lithium ions.  

Figure 16. Schematic demonstration and SEM images of the hollow CNF/sulfur  

composite structure. (a) The high aspect ratio of the hollow CNF for the effective trapping 

of polysulfides; (b) the fabrication process of the CNF/sulfur cathode structure; (c) the 

contrast of the anodic aluminum oxide (AAO) template before and after carbon coating and 

sulfur infusion; (d) SEM image of the AAO template after carbon coating; and (e) hollow 

CNF encapsulated sulfur after etching away the AAO template [85]. 

 



Materials 2014, 7 3939 

 

 

Figure 16. Cont. 

 

 

6. Conclusions and Future Perspectives 

Generally, two preparation approaches, namely catalytic chemical vapor deposition growth and 

electrospinning, are the mainly effective pathways to fabricate CNFs. In the catalytic chemical vapor 

deposition growth method, some metals and alloys, including Fe, Co, Ni, Cr and V, which can dissolve 

carbon to form metal carbides, were able to be chosen as the catalysts, and the molybdenum, methane, 

carbon monoxide, synthesis gas (H2/CO), ethyne or ethane are able to be used as carbon sources. 

Generally, the structures of the CNF are decided by the shapes of the catalytic nano-sized metal 

particles. In the electrospinning process, the polymer types and the carbonization process play the most 

important roles in the quality of the prepared CNFs.  

The overall properties of the CNF composites are largely governed by the dispersion condition of 

the CNFs in the matrix materials. To prepare the CNF composites with a good CNF dispersion, the 

melt mixing and solution process are the most widely used approaches. The melt mixing method, 

which was realized by high shear mixing, can effectively disperse the CNF in polymer matrix, while it 

is not able to guarantee the original aspect ratio and shapes of the CNFs. The solution process method, 

which is widely applied to disperse the CNF in a thermoset polymer matrix, is realized by sonication of 

CNFs in various solutions, followed by a curing process. In both of these methods, the chemical surface 

treatments of the CNFs are effective ways to realize their good dispersion in the matrix materials.  

The electrical property of the CNF composites largely counts on the dispersion and percolation 

condition of the CNFs in the matrix. The percolation theory and fractal method are the decisive tools to 

evaluate the percolation threshold, the percolation backbone structure and the percolation critical 

exponents, which are the key factors to enhance the electrical properties of the CNF composites. Near 

the percolation threshold, most of the CNFs are not able to form a continuous network, and the 
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dangling end parts are in the majority. The main electrical transport mechanism is the tunneling effect. 

Therefore, the surface treatment methods, the dispersion approaches and the polymer types are 

extremely important for the enhancement of the electrical properties. How to quantitatively determine 

the backbone structure of the CNFs in the matrix materials is still a challenging topic. The fractal 

analysis is an effective way of quantitatively characterizing the structure of the CNFs, and related 

models are waiting to be developed in future works to combine the overall performances and the 

microstructures of the CNF composites. In addition, the relationship between the thermal properties, 

the mechanical properties and the microstructures of the CNFs also need to be investigated more 

deeply, due to few studies demonstrating the effects of the CNF structures on the overall performance 

of the CNF composites.  

As for applications, the CNFs and their composites are able to be used in many fields, including 

sensors, electrode materials and electromagnetic shielding. The sensitivity of the CNFs and their 

composites mainly count on their electrical performances. Therefore, how to accurately and 

quantitatively reflect the real situation by the electrical performances is the most important issue. Other 

than the vapor and strain/stress sensing, the humidity and temperature sensing capability of the CNFs 

and their composites are also waiting for development in future studies. As electrode materials, special 

structural designs and realization to guarantee high specific areas without satisfying mechanical  

performances is the key factor to enhancing the performances of the current materials.  
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