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Abstract: In this study, the scope of CFRP cables in cable-stayed bridges is studied by 

establishing a numerical model of a 1400-m span of the same. The mechanical properties 

and characteristics of CFRP stay cables and of a cable-stayed bridge with CFRP cables are 

here subjected to comprehensive analysis. The anomalies in the damping properties of free 

vibration, nonlinear parametric vibration and wind fluctuating vibration between steel 

cables and CFRP cables are determined. The structural stiffness, wind resistance and traffic 

vibration of the cable-stayed bridge with CFRP cables are also analyzed. It was found that 

the static performances of a cable-stayed bridge with CFRP cables and steel cables are 

basically the same. The natural frequencies of CFRP cables do not coincide with the major 

natural frequencies of the cable-stayed bridge, so the likelihood of CFRP cable-bridge 

coupling vibration is minuscule. For CFRP cables, the response amplitudes of both 

parametric vibration and wind fluctuating vibration are smaller than those of steel cables. It 

can be concluded from the research that the use of CFRP cables does not change the 

dynamic characteristics of the vehicle-bridge coupling vibration. Therefore, they can be 

used in long-span cable-stayed bridges with an excellent mechanical performance. 

Keywords: CFRP stay cables; long span; cable-stayed bridge; static characteristics; 

dynamic characteristics 
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1. Introduction 

Cable-supported bridges have undergone rapid development over the last century since high-strength 

steel cables were first made available. Cable-stayed bridges can reach spans of over 1000 m, which makes 

them practical alternatives to suspension bridges. The cables, which transmit most of the force, are key 

to the structural stability and safety of cable-stayed bridges. However, cables are very vulnerable to 

corrosion and fatigue damage, which affect their service lifespan, necessitating their replacement. In 

China alone, the cables of more than twenty bridges have been replaced over the past twenty years for 

safety reasons [1]. Cable replacement not only requires a huge financial investment, but also disrupts 

transportation and causes problems in the maintenance and management of the bridge. 

Carbon fiber-reinforced plastic (CFRP) has been widely used in civil engineering, because of its 

light weight, great strength, considerable flexibility and resistance to corrosion and fatigue. In spite of 

the disadvantages, like the lack of ductility, high cost, contractor unfamiliarity, susceptibility to impact 

damage and difficulty in forming connections, CFRP cables are superior to steel cables in some critical 

mechanical aspects, such as creep and relaxation. The possibility of using CFRP in long-span bridges 

has received considerable attention for this reason. Meier et al. [2] evaluated the applicability of CFRP 

materials in long-span cable-supported bridges. Later, other scholars made more comprehensive studies 

on the possibility of applying CFRP in long-span bridges [3–14]. The mechanical properties of 

long-span cable-supported bridges built with CFRP cables have been gradually explained. Better ways 

of manufacturing CFRP cables and anchoring systems have been developed, and these have already 

seen use in some real-world bridges [15–19]. The increase in knowledge of CFRP materials has 

decreased the manufacturing costs, and the use of CFRP cables in long-span bridges will upsurge in the 

near future. 

So far, most studies of CFRP cables have been limited in scientific premise. Some problems are still 

at the probing stage. The impact of CFRP cables on the mechanical properties of long-span 

cable-stayed bridges has not yet been subjected to systematic research. In this research, a series of 

studies have been carried out on CFRP cables in bridges of different sizes. Herein, a CFRP 

cable-stayed bridge is compared to a steel cable-stayed bridge with respect to material, element and 

structural characteristics. These results provide evidence supporting the use of CFRP cables in 

long-span cable-stayed bridges. 

2. Mechanical Properties of CFRP Cables 

2.1. Material Properties of CFRP Cables 

At present, there is no uniform production standard for CFRP cables, so the material parameters of 

CFRP cables produced by different manufacturers differ considerably. Table 1 shows the material 

properties of four types of CFRP cables, marked as A, B, C and D. In the table, γ, E, σu, εu, Re and  

ρ represent the unit weight, Young’s modulus, tensile strength, ultimate strain, relaxation ratio for 1000 h 

and linear expansion coefficient, respectively. It was here observed that the material characteristics  

of CFRP cables produced by different manufacturers are typically similar. The Young’s modulus is 

about 140 GPa, which is about 70% of steel cables. The tensile strength is 2.02–2.55 GPa, which  

is 1.3–1.6 times that of high-strength steel cables. The linear expansion coefficient is 0.6 × 10
−6

/°C, and 
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the temperature deformation is only 1/20 that of steel cables. The unit weight is 1/5 that of steel cables, 

and the relaxation rate is lower than that of steel cables. In addition, the ultimate strain of CFRP cable is 

so small that the stress-strain curve remains mostly linear before fissure, which indicates that CFRP 

cables are brittle. 

Table 1. Material properties of CFRP and steel cables. 

Cable types γ (kN/mm
3
) σu (MPa) E (GPa) σu /E Re (%) εu (%) al (×10

−6
/°C) 

A 16 2,140 137 0.016 0.3 1.6 0.6 

B 16 2,550 147 0.017 0.3 1.6 0.68 

C 16 2,022 137 0.015 0.3 2 0.6 

D 16 2,421 159 0.015 0.3 1.7 0.6 

steel 77 1,570 196 0.008 <2.5 >4 12 

2.2. Damping Properties of CFRP Cables 

Cable damping is mainly associated with energy dissipation caused by material strain and air friction. 

There is so little air damping that it can usually be ignored during calculation. This paper focuses on the 

material damping characteristics of CFRP cables. According to the strain energy proportional damping 

theory of a single-degree-of-freedom vibration system, the damping ratio ξ can be calculated using the 

following expression: 

1 Δ
ξ

4π

W

W
   (1) 

Here, ΔW is the energy absorbed due to the strain deformation during the vibration cycle, and W is the 

modal potential energy. Assuming ΔW is proportional to the strain energy ΔW∝V, replacing the 

proportionality sign with a constant [20–22]: 

Δ 2πηW V  (2) 

Here, η is the energy loss factor, and V is the strain energy. Substitution of the equation above into 

Equation (1) produces the following: 
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Because there is a large initial tension T0 in the cable, therefore the modal potential energy W of 

Formula (3) includes two parts, initial tension potential energy W0 and strain energy V, hence: 

0W W V   (4) 

Because the flexible cable only bears axial tension, as indicated by the relationship of strain and 

tension shown in Figure 1, the initial potential energy due to tension, W0 and strain energy V can be 

calculated as follows: 
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Figure 1. Potential energy and strain energy in initial tension. 

 

Here, εki and Sk are the strain and length of element k generated by the i-th vibration mode. Tk0 is the 

initial tension in element k, and n is the total number of cable elements. Substitution of Equations (4) 

and (5) into (1) results in the following expression: 
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In order to compare the damping characteristics of steel and CFRP cables, a cable vibration test was 

carried out in Tokyo Metropolitan University [22]. The test steel and CFRP cables were made at Rope 

Corporation Tokyo, Japan, wherein the steel cable, PCSϕ12.7 (ϕ refers to diameter of the cable), was 

composed of seven 5.16-mm diameter steel wires, PCSϕ5.16, and the CFRP cable, CFCCϕ12.5, was 

composed of seven 5.0 mm-diameter CFRP wires, CFCCϕ5.0 (Figure 2). Table 2 lists the material 

parameters of cables and wires. E, w, D, A and σu represent Young’s modulus, the unit weight, the 

diameter, the cross-sectional area and the tensile strength of cables and wires, respectively. 

Figure 2. Cross-section of cable CFCCϕ12.5. 

 

Table 2. Material properties of cables and wires. 

Cable and Wire Type E (GPa) w (g/m) D (mm) A (mm
2
) σu (MPa) 

CFCCϕ12.5 159 145 12.50 76.0 2,421 

PCSϕ12.7 197 774 12.70 98.7 1,854 

CFCCϕ5.0 152 29.9 5.00 15.2 2,980 

PCSϕ5.16 204 163.8 5.16 20.9 1,999 

Figure 3a,b provides details of the cable damping test equipment. The test cable was 20 m-long 

with an initial tension of 30 kN. The resulting initial stresses in CFRP cables and steel cables were 395 

and 304 MPa, respectively, which were equal to half of the service stresses. Here, the design safety 
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factor of the test cable was 2.5. Continuous excitation force was applied at the midpoint of the cable to 

render the vibrations stable. Once the excitation force ceased, the cable entered free decay vibration, 

which was measured by a non-contact laser displacement meter at a sampling rate of 500 Hz. Figure 

3b shows the relationship between the cable damping and vibration amplitude. It can be found that, for 

steel and CFRP cables, damping increases with vibration amplitude, but the trend was more obvious 

for steel cables than CFRP cables. This indicted that the influence of vibration amplitude on cable 

damping is not as pronounced for CFRP cable as it is for the steel cable. In addition, the energy loss 

factor of cables shown in Equation (3) can be calculated from Figure 3b. Here, the damping constant 

was 0.05 for both steel and CFRP cables, consistent with the test results reported by Kady et al. [23].  

Figure 3. (a) Cable damping test; (b) cable damping log decrement vs. vibration amplitude. 

 

In order to determine the energy loss factors of wires comprising the cables, the bending 

deformation experiment of steel and CFRP wires under free vibration was conducted (Figure 4a). A 

heavy block was hung on by a string on the fixed test wire at a distance of l from the fixed end. An 

initial imposed displacement was used to place the wire in decay free vibration. The strain readings 

were recorded by the dynamic strain gauges fixed on the wire, at a sampling of 500 Hz. During the 

test, the distance l and the mass of the heavy block were varied multiple times to obtain additional 

experimental data. 

Figure 4. (a) Bending deformation experiments of steel and CFRP wires; (b) distribution of 

energy loss coefficient for steel wires; (c) distribution of energy loss coefficient for CFRP 

wires. 

 

Figure 4b shows the distribution results of energy loss factors for steel and CFRP wires. As shown, 

the average energy loss factors for steel and CFRP wires are about 0.018 and 0.008, respectively, 

which is much smaller than the damping constant of steel and CFRP cables, 0.05. This indicates that 
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the damping of the material strain ratio is only a part of the total cable damping, and other damping is 

relative to the friction among the wires of the cable. 

3. Structural Description of the Cable-Stayed Bridge 

In this paper, the mechanical characteristics of a cable-stayed bridge with CFRP cables are discussed, 

and the feasibility of using CFRP cables on long-span cable-stayed bridges is evaluated.  

The finite element method (FEM) is used to establish a numerical model of the 1400-m span of a 

cable-stayed bridge. Although the bridge model is not an actual structure, the geometric parameters 

were chosen by a conceptual design procedure according to some basic parameters of the existing 

long-span cable-stayed bridges [22]. Figure 5 shows the layout of the bridge model (in meters). This 

bridge’s mid-span is 1400 m, which is about two times its side-span. Thirty-four cables are installed at a 

horizontal spacing of 20 m on each side of towers to hold the main beam, which is a uniform multi-cell 

flat steel box girder. The width of the box girder is 30 m, and the height is 4.5 m, which indicates a 

relatively larger height-to-span ratio as compared to many other cable-stayed bridges. The equivalent 

thicknesses of the orthotropic top and bottom plates of the girder are 20 mm (derived as  

12 mm of steel plate and an 8-mm equivalent thickness of the stiffener). The equivalent thickness of the 

web is 15 mm. The height of the pylon is 280 m, which is 0.2-times the mid-span, and the tower 

cross-section is a single cell box composed of walls with an equivalent thickness of 40 mm. Table 3 lists 

the cross-sectional parameters of the girder and the tower. Along the side-span, there are three middle 

auxiliary piers at a horizontal spacing of 100 m to support the girder. Constraint springs were set 

between the girder and the pylon along the bridge longitudinal axis. Cables of C1, C2 and C3, shown in 

Figure 5, represent long, medium and short cables of Type C, mentioned in Table 1. The cables here 

have a relatively low tensile strength of 2022 MPa and an elastic modulus of 137 kN/mm
2
. In the 

numerical model, the tower and box girder are 1111 spatial beam elements with 6 DOF, and the cables 

are 272 isoparametric elements with 3 DOF. The bridge is fixed at the bottom of the tower and supported 

by piers. The bridge can move along the longitudinal axis. The geometric nonlinear method and material 

nonlinear method are used to solve the problem. 

The unit weight of the structure is calculated as follows: 

D D 0γW k A W   (7) 

Here, kD is the load factor, chosen by conceptual design considering the self-weight of the stiffener 

plate of the box girder. [22]. For girders kD = 1.4, and for pylons, kD = 1.2. γ is the unit weight of steel. 

A is the cross-sectional area of box girder. W0 is the secondary load, which mainly consists of 

pavement load, etc., taken as, W0 = 70 kN/m. The secondary load of the pylon is relatively so small, 

that it can be ignored. 

Table 3. Cross-sectional properties. 

Cross-Section A (m
2
) Ix (m

4
) Iy (m

4
) Torsion Constant (m

4
) 

Girder 1.607 5.503 120.43 10.352 * 

Tower 1.760 30.667 40.320 39.273 * 

* Without considering the stiffening rib. 
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Figure 5. (a) 3D model of the bridge; (b) layout of half of the bridge; (c) typical 

cross-section of the box girder; (d) layout of the pylon and cross-section of the tower. 

 

 

 

 

The cross-sectional area of the cable is calculated using the maximum cable tension T0 and the 

allowable stress σ. The formula is as follows: 
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Here, α is the factor of proportionality. It indicates how much cable tension is produced by the live 

load in response to the maximum tension produced by the dead load in the long-span cable-stayed 

bridge. Because the factor of proportionality for long-span cable-stayed bridges is usually not more 

than 0.2, it is here assumed that α = 0.2. σ is the allowable cable stress, and σ
b
 is the standard value of 

tensile strength; μ is the safety factor for the cable, which is generally 2.5 for steel cables. It is here assumed 

that μ = 3.0 for CFRP cables, because CFRP is a strong, but brittle, material. 

Table 4 shows the cable self-weight for steel cable-stayed bridges and CFRP cable-stayed bridges 

of the same span. Results show that the self-weight of the CFRP cable is only about 1/7 that of steel 

cable, which is less than the unit weight ratio of CFRP to steel, which is about 1/5. This means that 

fewer CFRP than steel cables would be needed for a cable-stayed bridge. This is because CFRP cables 

sag less, giving them greater working efficiency. This may substantiate the cost disadvantage of  

CFRP cables. 

Table 4. Weight of steel and CFRP cables on a whole bridge. 

Material Weight (kN) Weight Ratio of Steel to CFRP 

Steel 115,133 
6.8 

CFRP 17,056.7 

4. Dynamic Characteristics of CFRP Stay Cables 

4.1. Natural Vibration Characteristics 

Figure 6 gives the first two order natural frequencies of cables on one side of the half bridge shown 

in Figure 5. Because there is little difference between the in-plane and out-of-plane vibration, these 

results only demonstrate the in-plane vibration results. In the figure, the vertical axis f is the natural 

frequency, and the cable numbers on the horizontal axis represent the position of the cable anchor on the 

girder expressed in terms of the number of markers from the start of the side-span to the midpoint of 

the bridge. The results show that, due to the large self-weight, the natural frequencies of steel cables 

are about 0.5-times those of CFRP cables. 

The material properties and natural frequencies of stay cables of three different lengths (marked C1, 

C2 and C3 in Figure 5) are compared in Tables 5 and 6. S represents the steel cable, C the CFRP cable, 

EA the axial stiffness and w the unit weight. The Irvine parameter λ, a dimensionless parameter 

reflecting the dynamic characteristics, is defined as follows [24]: 

e

λ
wL LEA

H HL
  (9) 

Here, H represents the horizontal component of cable tension and Le represents cable length. 

Expression (9) indicates that the Irvine parameter is related to the geometric and material properties of 

the cable, the smaller the sag and the tensile stiffness of the cable, the smaller the Irvine parameter. 

Table 5 shows that, for the same span cables, the Irvine parameters of steel cables are much larger than 

those of CFRP cables. For cables made of the same material, the Irvine parameters for long cables are 

larger than that for short cables. Table 6 shows that, for the same cable span, the natural frequencies of 

CFRP cables are about two-times those of steel cables. 
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Figure 6. Natural frequencies of steel and CFRP cables. 

 

Table 5. Material properties of stay cables. 

Cables L (m) Y (m) EA (kN) W (kN/m) λ 

S-C1 660 275.5 3,045,840 1.3114 0.01750 

S-C2 460 235.5 2,516,640 1.0835 0.01306 

S-C3 260 195.5 1,795,360 0.7730 0.00912 

C-C1 660 275.5 1,557,416 0.1840 0.002863 

C-C2 460 235.5 1,377,507 0.1630 0.002144 

C-C3 260 195.5 1,033,802 0.1220 0.001501 

Table 6. Natural frequencies of stay cables (units: Hz). 

Cables 
Out-of-Plane In-Plane 

1st 2nd 1st 2nd 

S-C1 0.1652 0.3343 0.1998 0.3341 

S-C2 0.2289 0.4635 0.2532 0.4633 

S-C3 0.3645 0.7379 0.3771 0.7378 

C-C1 0.4083 0.8267 0.4098 0.8266 

C-C2 0.5662 1.1443 0.5652 1.1443 

C-C3 0.8986 1.8194 0.8991 1.8194 

In order to analyze the relationship between the cables and the dynamics of the bridge itself with 

respect to natural frequencies, the major frequencies of the bridge were calculated taking the influence 

of local vibrations of the cable into account (Table 7). The results show that the natural frequencies of 

steel cable-stayed bridges are basically the same as those of CFRP cable-stayed bridges.  

Table 7. Major natural frequencies of cable-stayed bridge (units: Hz). 

Cable Type First Lateral Bending Longitudinal Drifting First Vertical Bending 

Steel cables 0.0319 0.0330 0.1440 

CFRP cables 0.0324 0.0340 0.1370 

It can be found from Table 6 and Table 7 that the natural frequencies of steel cables overlap those 

of the first vertical bending frequencies of steel cable-stayed bridge. However, the natural frequencies 
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of CFRP cables differ from the low natural frequencies of the CFRP cable-stayed bridge. That is why 

the steel cable-bridge coupling vibrations occur so easily. Therefore, using CFRP cables can 

significantly reduce the possibility of coupling vibrations in the cable bridge. Some major vibration 

modes of steel cable-stayed bridges and CFRP cable-stayed bridges are shown in Figure 7. It was 

found that the local vibrations of the cables in steel cable-stayed bridges were dominant for the first 

vertical bending vibration. 

Figure 7. (a) Vibration modes of cable-stayed bridges with steel cables; (b) vibration 

modes of cable-stayed bridges with CFRP cables. 
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Figure 7. Cont. 

 

 

(b) 

4.2. Damping Characteristics 

Because the strain energy ratios of different lengths of cables are similar, only cable C2 is analyzed 

in this paper. Figure 8 shows the relationship between the first two vibration modal strain energy ratios 

calculated using Formulas (5) and (6) and the cable lateral in-plane and out-of-plane amplitudes. In the 

figure, S represents the steel cable, C represents the CFRP cable, -1st and -2nd represent the first and 

the second vibration modes and -out and -in represent the in-plane and out-of-plane vibration modes. 

The results show that the modal strain energy ratios of two materials are on the same order of 

magnitude. CFRP cables showed lower strain energy ratios than steel cables. If the vibration amplitude 

is around 1 m, Formula (6) can be used to calculate the structural damping ratios of both steel and 

CFRP cables, which were here around 1%. 

Figure 8. Strain energy ratios of steel and CFRP cables. 

 

The external viscous damper is usually arranged at the lower end of the cable in order to prevent 

large vibration. Figure 9 shows the layout of the cable with the external viscous damper. xc is the 

Longitudinal drifting mode

First vertical bend mode

0.0

0.1

0.2

0.3

0 1 2 3 4 5

Lateral deformation (m)

st
ra

in
 e

n
er

g
y

 r
at

io

C-1st-out C-1st-in

C-2nd-out C-2nd-in

S-1st-out S-1st-in

S-2nd-out S-2nd-in



Materials 2014, 7 4865 

 

horizontal distance between the lower end of the cable and the damper. In this paper, xc = 0.02 L. The 

non-proportional damping calculation theory (complex eigenvalue method) was used to calculate the 

damping value. 

Figure 9. Stay cable with viscous damper. 

 

The calculation results show that the damping coefficients C have little impact on the natural 

frequencies of the steel and CFRP cables. Figure 10 shows the relationship between the first in-plane 

modal damping ratios and the damping coefficients. The damping coefficients significantly affected 

the modal damping ratios. As the damping coefficients increase, the modal damping ratios also 

increase significantly, peak and then drop quickly. There is an optimal range within which the 

damping coefficients produce desirable effects. The optimal damping coefficient can be found using 

the following formula [25]. 

2

1ω0.1
c

m L
C

x
   (10) 

Here, m represents the unit mass and ω1 represents the in-plane damped natural circular frequency of 

the first mode of the stay cable. Comparisons showed that the optimal viscous damping coefficients of 

CFRP cables were smaller than that of steel cables. This shows that only smaller dampers can produce 

the similar effects on CFRP cables that have been seen on steel cables. 

Figure 10. Effects of external dampers on modal damping. 
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4.3. Parametric Vibration Characteristics of CFRP Stay Cables 

4.3.1. Calculation Model and Method 

Parametric vibrations are serious hindrances for stay cables, and analyzing this aspect has drawn 

considerable attention [26–34]. Three steel and three CFRP cables were used to compare the 

differences in parametric vibration characteristics (Table 5). The impact of the external viscous damper 

on parametric vibration was also studied. The nonlinear finite element method was used to calculate 

the parametric vibration of the stay cables [35,36]. The structural damping was ignored in the 

calculation process. 

Figure 11 gives the model of stay cable parametric vibration analysis. A harmonic excitation 

vibration in the chord direction is given at the lower end of the cable. The vibration amplitude is 

1/50,000 of the cable span. The excitation frequency is taken as f = f1 and f = 2f1. Here, f1 is the 

in-plane natural frequency of the first mode. 

Figure 11. Parametric vibration analysis model of the stay cable. 

 

4.3.2. Parametric Vibration of Stay Cables Undamped 

Figure 12 gives the time history curves of vibration responses at the midpoint of the stay cable C1 

when the excitation frequencies are f = f1 and f = f2, respectively. As shown, the parametric vibration 

response of the CFRP cable is weaker than that of the steel cable. It also requires more time to excite a 

larger amplitude for the CFRP cable. This indicates that, to some extent, the use of CFRP cables involves 

lesser parametric vibration than that of steel cables. 

Table 8 gives the parametric vibration response amplitudes of stay cables C1, C2 and C3. It shows 

that, regardless of the length of the cable, the response amplitude of CFRP cables is weaker than that of 

steel cables. 

Table 8. Response amplitudes of parametric vibration (units: m). 

Cable 
Steel CFRP 

f1 2 f1 f1 2 f1 

C1 28.460 10.670 7.059 7.410 

C2 11.590 11.150 4.270 4.946 

C3 4.007 3.680 1.961 1.961 
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Figure 12. Parametric vibration response of stay cable C1 (undamped): (a) steel cable 

under excitation frequency f = f1; (b) steel cable under excitation frequency f = 2f1;  

(c) CFRP cable under excitation frequency f = f1; (d) CFRP cable under excitation 

frequency f = 2f1. 

 

 

4.3.3. Parametric Vibration of Damped Stay Cables 

To study the difference in the damping effect on the parametric vibration of CFRP and steel cables, 

the viscous dampers shown in Figure 9 were arranged at the lower end of cable C1. Assuming that  

xc = 10 m, two viscous dampers were arranged symmetrically at either side of the cable, and the angle 

between the two dampers was 60°. The optimal damping coefficient for CFRP cable single damper 

obtained using Equation (10) is 448.86kN·s/m, is much smaller than that of the steel cable,  

127.35 kN·s/m.  

Figure 13 gives the time history curves of vibration responses at the midpoint of stay cable C1 

damped when the excitation frequencies were f = f1 and f = 2f1, respectively. Figures 12 and 13 show 

that, although the damper is effective for the cable vibration, it cannot lower the response amplitude 

after the parametric vibration comes into picture. 

Figure 13. Parametric vibration response of stay cable C1 (damped): (a) steel cable under 

excitation frequency f = f1; (b) steel cable under excitation frequency f = 2f1; (c) CFRP 

cable under excitation frequency f = f1; (d) CFRP cable under excitation frequency f = 2f1. 
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4.4. Fluctuating Vibration Characteristics of CFRP Stay Cables under Wind Load 

4.4.1. Calculation 

The analysis of wind loads to which the cables are subjected is very complex. The fluctuating wind 

load can cause them to vibrate. The turbulence power spectral density function of fluctuating wind is  

as follows [37]: 
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Here,  fSu  represents the turbulence power spectral density function; Lx represents the scale of 

turbulence; Iu represents turbulence intensity, which is related to wind speed, and the ground roughness 

coefficient Iu = 0.1 in this paper. Z is the distance of the girder from the surface of the water surface. 

Here, Z = 50 m. 

The random velocity of fluctuating wind is as follows [38]: 
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Here, ϕk is the randomly-generated phase angle, and other parameters are calculated as follows: 
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Here, fu and fl are the upper and lower bounds of cable frequencies and n is an integer. The power spectral 

density of fluctuating wind sample with an average speed of 30 m/s was generated using Equation (11). 

For the cable laden by lateral wind load shown in Figure 14, the relative wind attack angle θ can be 

determined as follows: 
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 (15) 

Here, Uy and Uz are vertical and horizontal components of fluctuating wind speed, which are calculated 

as follows: 
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 (16) 

Here, β is the wind attack angle shown in Figure 14; y  and z  are the vertical and horizontal 

vibration components, respectively. U  is the sum of average wind speed and fluctuating wind speed. 



Materials 2014, 7 4869 

 

Figure 14. Cross-section of cable under lateral wind load. 

 

The relative wind speed experienced by the cable Ur is as follows: 
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The drag force D and lift force L acting on the cable along the relative wind direction are as follows: 
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Here, CD and CL are the drag and lift coefficients of the cable. CD = 0.7 and CL = 0 for the round 

cross-section of the cable. φ is the outside diameter of the cable. ρ is the air density. The vertical and 

horizontal wind loads can be compounded by drag and lift force: 
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 (19) 

4.4.2. Wind Fluctuating Vibration of Stay Cables  

Figure 15 gives the fluctuating vibration responses of stay cables C1, C2 and C3 under lateral wind 

load. As shown, the wind fluctuating vibration responses of CFRP cables are smaller than those of steel 

cables. The vertical vibration amplitudes of CFRP cables are about half those of steel cables of the 

same length. This also indicates that bridges built with CFRP cables are less subjected to wind 

fluctuating vibrations. 

Figure 15. Wind fluctuating vibration responses of stay cables: (a) steel cable C1;  

(b) CFRP cable C1; (c) steel cable C2; (d) CFRP cable C2; (e) steel cable C3; (f) CFRP 

cable C3. 
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Figure 15. Cont. 

 

 

5. Static and Dynamic Characteristics of Cable-Stayed Bridge with CFRP Cables 

5.1. Static Characteristics and Stability of Bridge under Live Load 

To study the influence of CFRP cables on the mechanical properties of the bridge, the nonlinear 

finite element method is used to analyze the static characteristics of the girder. The designed distribution 

load is 43 kN/m, and the designed concentrate load is 1000kN [39]. The nonlinear equation is  

as follows: 

  FuuK   (20) 

Here, u is the displacement vector; K(u) is the stiffness matrix considering the initial internal force and 

geometrical nonlinearity; and F is the live load vector. To determine the most unfavorable loading 

position of the live load, the tangent stiffness at the finished state of the bridge is used to identify the 

influence line. The reduction of the live load with the span is neglected. 

Figure 16 gives the maximum and minimum deflection values of a half box girder. The minimum 

deflection of the CFRP cable-stayed bridge was nearly same as that of the steel cable-stayed bridge. 

However, because steel-cable-stayed bridges have greater structural rigidity, the maximum girder 

deflection is 0.000119 of the span, but for CFRP cable-stayed bridges, it is 0.000146 of the span, which 

is 1.22-times the former. This indicates that the material properties of the cable have little impact on the 

minimum girder deflection and considerable impact on the maximum deflection. The critical girder 

deflection of cable-stayed bridge is 0.001 of the span, meaning that replacing steel cables with CFRP 

cables might give the bridge a large margin of safety, with respect to structural rigidity. 

Under dead and live loads, the maximum compressive stress in the girders of steel-cable-stayed 

bridges is 189.3 MPa; that of CFRP-cable-stayed bridges it is 9% lower, at 173.9 MPa. This means that 

CFRP cables may be suitable for long-span cable-stayed bridges. 

Structural stability is very important for long-span cable-stayed bridges, because there is a large 

amount of axial pressure in girders and pylons. The stability safety factor can be obtained using the 

following complex eigenvalue equation [40]: 

 ep Gdet λ 0 K K  (21) 
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Here, Kep is the stiffness matrix, which takes material nonlinearity into consideration; KG is the 

geometric stiffness matrix; and λ is the stability safety factor. Unlike the linear elastic eigenvalue 

method, the elastic modulus in Equation (21) was obtained based on the law that the buckling strength is 

equal to the experimental strength, i.e., the effective elastic modulus was adopted for the stiffness matrix, 

which considers the influence of initial defect and elasto-plastic stress of the structural member. 

Figure 16. Maximum and minimum girder deflections under live load. 

 

Elasto-plastic branch instability analysis showed that the minimum stability factor is 3.03 for CFRP 

cable-stayed bridges and 2.88 for steel cable-stayed bridges. The difference is attributed to the buckling 

caused primarily by the pylon. The self-weight of the steel cables is greater than that of CFRP cables, so 

the axial force in the pylon for steel-cable-stayed bridge is greater than that for a CFRP-cable-stayed 

bridge. Figure 17 gives an example of the elasto-plastic buckling mode for cable-stayed bridge with 

CFRP cables. 

Figure 17. Elasto-plastic buckling mode of cable-stayed bridge. 

 

5.2. Aerostatic Characteristics of Bridges under Wind Load 

Wind load is an important factor in the design of long-span cable-stayed bridges. It has two effects on 

the structure: aerostatic and aerodynamic. Fluttering causes the greatest damage amongst all other 

aerodynamic effects. Cable-stayed bridges with streamlined, flat steel box girders are more aerodynamic 

resistant, giving the bridge a relatively high critical wind speed. Therefore, the present paper focuses 

mainly on the transverse deformation of the structure under static wind load. 

The aerostatic effect on the structure is related to the structure shape and wind attack angle. In this 

paper, the static wind load is calculated using three aerostatic coefficients based on the wind tunnel test 

results of scale model. The aerostatic actions on the box girder are as follows: 
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Here, α is the wind attack angle; ρ is air density; B is girder width; An is girder height in the windward 

side; and U is wind speed. Here, U = 40 m/s. D, L and M are the drag force, the lift force and the torque 

action on unit length of the box girder in relation to the drag coefficient CD, the lift coefficient CL and 

the torque coefficient CM, respectively. Figure 18 gives the relation curves between the three aerostatic 

coefficients and the wind attack angles. 

Figure 18. Correlation between aerostatic coefficients and the wind attack angles. 

 

Figure 19 gives the transverse bending moment and deformation of the half-bridge girder under the 

design wind load. Due to the constraints imposed by the middle piers, the bending moment and 

deformation of the side span girders are very small, but that of the mid-span girder is considerably high. 

The transverse bending moment and deformation of mid-span girders is slightly larger for steel 

cable-stayed bridges than that for CFRP cable-stayed bridges. The logic behind this is that the 

out-of-plane deformation of the girder is related to the windward area of the cable, and steel cables have 

more windward area than CFRP cables.  

The analysis of the instability of cable-stayed bridges under static wind load showed that when the 

wind speed reaches 60 m/s for a complete bridge or 50 m/s for a bridge still under construction, bridges 

built with CFRP cables showed no buckling failure. This indicates that CFRP cable-stayed bridges 

have better wind resistance than steel cable-stayed bridges. 

Figure 19. (a) Transverse bending moment of girder under wind load; (b) transverse 

deformation of girder under wind load. 
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and the cable response of CFRP cable-stayed bridges under traffic load. The girder deflection and cable 

tension response of the bridge were evaluated for different vehicle speeds and levels of road roughness. 

Because some of the first natural frequencies of long-span cable-stayed bridges are relatively small, the 

calculated results of vehicle-bridge coupling using sophisticated vehicle models show little difference 

from those produced using simplified vehicle models. For this reason, the four-degree vehicle model 

shown in Figure 20a was used to facilitate calculation. Figure 20b shows the power spectral density of 

a sample wave that represents the relatively smooth road surface [41]. 

Figure 20. (a) Four-degree vehicle model; (b) power spectral density of sample wave. 

 

Figure 21 gives the flexural deflection responses of the bridge girder under moving traffic at speeds  

of 60 km/m, 80 km/m and 100 km/h. The horizontal axis represents the location of the vehicle,  

and the vertical axis represents the girder deflection. For both a CFRP cable-stayed bridge and a steel 

cable-stayed bridge, the deflection responses at mid-span are dominated by static deflection and a 

long-period vibration response, and the short-period vibration response is insignificant. The influence of 

traffic speeds was found to be very limited. Figure 21 shows that the flexural deflection of CFRP 

cable-stayed bridge is greater than that of the steel-cable-stayed bridge. This is because the CFRP 

cable-stayed bridge has relatively less structural rigidity, and the deflection response is mainly caused 

by static deformation. 

Figure 21. (a) Deflection response of CFRP cable-stayed bridge; (b) deflection response of 

steel-cable-stayed bridge. 
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the anchorage points at the girder and the pylon. The local vibration of the cable does not influence  

this response. 

Figure 22. Static and dynamic tension responses of cables: (a) CFRP cable under vehicles 

moving at 60 km/h; (b) steel cable under vehicles moving at 60 km/h; (c) CFRP cable under 

vehicles moving at 80 km/h; (d) steel cable under vehicles moving at 80 km/h; (e) CFRP 

cable under vehicles moving at 100 km/h; (f) steel cable under vehicles moving at 100 km/h. 
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(3) CFRP cable-stayed bridge has relatively less structural rigidity, so the maximum girder deflection 

of CFRP cable-stayed bridge is about 1.22-times the steel-cable-stayed bridge. However, the 

maximum compressive stress in the girders of CFRP-cable-stayed bridges is 9% lower than 

that of steel cable-stayed bridges. Additionally, the minimum stability factor of CFRP 

cable-stayed bridges is 5% larger than that of steel cable-stayed bridges. 

(4) The CFRP cables have a lesser windward area than steel cables. Therefore, the transverse 

bending moment and out-of-plane deformation of mid-span girders is slightly larger for steel 

cable-stayed bridges than that for CFRP cable-stayed bridges. 

(5) An analysis of vehicle-bridge coupling vibrations showed that replacing steel cables with 

CFRP cables has little impact on the vibration response of a cable-stayed bridge. 

Using CFRP cables on long-span cable-stayed bridges is facilitatory in terms of mechanical 

properties. As the manufacturing process matures and the cost decreases, CFRP cables will see more 

use in long-span cable-stayed bridges.  
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