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Abstract: The initiation, propagation, coalescence and failure mode of brittle jointed rock 

mass influenced by fissure water pressure have always been studied as a hot issue in the 

society of rock mechanics and engineering. In order to analyze the damage evolution process 

of jointed rock mass under fracture water pressure, a novel numerical model on the basis of 

secondary development in fast Lagrangian analysis of continua (FLAC3D) is proposed to 

simulate the fracture development of jointed rock mass under fracture water pressure.  

To validate the feasibility of this numerical model, the failure process of a numerical 

specimen under uniaxial compression containing pre-existing fissures is simulated and 

compared with the results obtained from the lab experiments, and they are found to be in 

good agreement. Meanwhile, the propagation of cracks, variations of stress and strain, peak 

strength and crack initiation principles are further analyzed. It is concluded that the fissure 

water has a significant reducing effect on the strength and stability of the jointed rock mass. 

Keywords: fracture propagation; jointed rock mass; fracture water pressure;  

numerical simulation 
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1. Introduction 

To a great extent, it is the nearly ubiquitous presence of fractures that makes the mechanical behavior 

of rock masses different from that of most engineering materials. These fractures have a controlling 

influence on the mechanical behavior of rock masses, since existing fractures provide planes of weakness 

on which further deformation can more readily occur. Fractures also often provide the major conduits 

through which fluids can flow [1]. As the Chinese economy gradually grows, the Chinese government 

will begin to construct numerous huge engineering projects, like hydropower stations, mining, tunnels, 

large-scale underground caverns for energy storage, etc. Therefore, the related problems in jointed rock 

mass will be encountered in the future [2]. A series of cracking processes finally control the overall 

behavior of the rock, which have prompted extensive experimental studies of pre-cracked specimens of 

different materials, including rock-like brittle/semi-brittle materials and natural rocks: glass [3], molded 

gypsum [4], sand-stone-like material [5], granite [6], marble [7], etc. Numerous numerical methods have 

also been used to simulate the fracture development. These methods could be divided into two types: 

continuous and discontinuous numerical methods. Tang et al. [8] developed some numerical methods to 

simulate the initiation and coalescence of flaws in rock-like materials, including the finite element 

method (FEM), boundary element method (BEM) and displacement discontinuity method (DDM), and 

Tang [9] also proposed a new numerical code named RFPA2D (Rock Failure Process Analysis) to 

simulate the propagation and coalescence of cracks in a rock bridge area. In addition, the discrete element 

method (DEM) is also used to simulate the mechanical behavior of rock-like materials [10–13]. The above 

research was not entirely conducted under the conditions of fissure water pressure. Fang and Harrison [14,15] 

adopted a degradation model to simulate the brittle failure in heterogeneous rocks. Xie et al. [16] proposed 

a micromechanical analysis of damage and related inelastic deformation in saturated porous quasi-brittle 

materials in 2012. Then, Zhu et al. [17] gave a deep discussion about two dissipative processes in 

microcracks. Bikong et al. [18] proposed a micro-macro model for the time-dependent behavior of 

clayey rocks in 2015. Richardson et al. [19] presented a method for simulating quasi-static crack 

propagation in 2D, which combines XFEM with a simple integration technique and a very general 

algorithm for cutting triangulated domains. In this paper, to simulate the fissure development of jointed 

rock mass under fissure water pressure, we propose a novel numerical model on the basis of secondary 

development in Lagrangian analysis of continua (FLAC3D) [20], which is an explicit finite difference 

method (FDM). Finally, the numerical model is used to study the fissure development of rock specimens. 

2. An Elastic-Brittle Constitutive Model and Hydro-Mechanical Coupling 

2.1. An Elastic-Brittle Constitutive Model 

As is known to us all, the nonlinear stress-strain relationship of brittle materials, like rock, concrete 

etc., does not result from plastic deformations. It is caused by the initiation, propagation and coalescence 

of the micro-cracks in heterogeneous materials. Therefore, it is appropriate to adopt an elastic-damage 

model to describe the micro-mechanical properties of brittle materials. The behavior of the rock element 

undergoing failure, as used in the analysis of the behavior of a rock specimens [21,22], may be simplified 

to either elastic-brittle, elastic-strain softening (a combination of brittle and ductile) or elastic-ductile 

(plastic) mechanisms, as shown in Figure 1. 
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The above elastic-plastic model and strain-softening model could not effectively simulate the failure 

development of rock materials; even some microscopic problems are difficult to be solved due to the 

large plastic zone appearing in the crack tips. According to the curves of elastic-brittle stress-strain 

relations, a piecewise function could be used to express the whole process of the stress-strain relations. 

 

Figure 1. Simplified stress-strain relations of rock elements under different confining 

pressures within a stressed rock body. 

As for the post-failure elements, the mechanical properties must be degraded, and the stress field must 

be redistributed. Consequently, tensile failure occurs, and cracks are initiated. This model could be effectively 

used to simulate the complex fissure development in heterogeneous materials. In this elastic-brittle damage 

model, the specimens under uniaxial tensile loads still have residual strength after they undergo yield 

strength. This model could be expressed as the following equations: 
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where i is the residual strength; ɛt0 is the initial damage threshold; ɛtu is the limit of tensile strain; ŋ is 

the residual strength coefficient; D represents the damage variable; and t is the uniaxial tensile strength. 

According to Mazars’ method [23], the tensile strain ɛ in Equation (1) could be substituted by an 

equivalent strain   in three-dimensional conditions: 
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Based on elastic damage mechanics, the stress-strain relations of the constitutive model could be 

described as the following equations: 
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The damage evolution equations of shear failure are expressed as below: 
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where rc is the residual strength of shear damage; and ɛc0 is the strain threshold of shear damage. 

Finally, when an element is experiencing shear failure, the equations of the constitutive model could 

be expressed as below: 
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2.2. Hydro-Mechanical Coupling of Jointed Rock Mass 

The hydro-mechanical coupling of jointed rock mass is realized by the stress equilibrium equation 

and the continuous seepage equation. The stress equilibrium equation is usually expressed by the 

principle of virtual work. This means that the virtual work difference of body forces and plane forces at 

any time is zero: 

0 (7)

where δε is the virtual strain; δμ is the virtual displacement; t is the plane force; and f is the body force. 

When porous media is considered, the expression of the Biot effective stress is: 

̅ (8)

where ′ is the effective stress;  is the total stress; α	is Biot’s coefficient; and ̅ is the average stress of 

the fluid. Biot’s coefficient would evolve with the damage process, but it is very difficult to obtain its 

variation principle during the coupling process. According to the research results of Walsh [24] and  

Zhao [25], Biot’s coefficient is between zero and one. 

The constitutive model could be expressed by the strain increment: 

d  (9)

where Dep represents an elastic-plastic matrix; and 	is the particle compression induced by pore flow. 

Here, this is calculated as the following equation: 
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ε (1 − D)  (10)

The continuous seepage equation is expressed as below based on a hypothesis of the Darcy flow: 

3
g

1
3 3

0 
(11)

where Sw is the degree of saturation; pw is the pore water pressure; ζ ; k0 is the initial permeability 

coefficient tensor; kr is the permeability coefficient; g is the gravity acceleration vector; n is the 

porosity; and kw is the bulk modulus of water. The above equations provide the theoretical 

fundamentals in hydro-mechanical coupling of jointed rock mass. 

3. Implementation of the Elastic-Brittle Coupling Model in FLAC3D 

A survey of commercially available codes shows that the program fast Lagrangian analysis of 

continua (FLAC3D), produced by Itasca Consulting Group [20], uses an explicit finite difference scheme 

for the analysis of problems in engineering mechanics. FLAC3D implements an explicit time marching 

scheme to solve Newton’s second law to describe material deformation and embodies a number of basic 

constitutive models for use in the analysis of the mechanical behavior of geo-materials. Based on these, 

users can incorporate their own constitutive models by writing a function using a built-in programming 

language, which is called the FISH language. This provides an easy way to enhance the program, and 

hence, solve complex problems in rock mechanics and rock engineering. Thus, FLAC has been adopted 

for the implementation of the elastic-brittle coupling model. Figure 2 shows the procedure for the 

implementation of the elastic-brittle coupling model in FLAC3D. 

 

Figure 2. The procedure for the implementation of the elastic-brittle coupling model in 

Lagrangian analysis of continua (FLAC3D). 
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4. Numerical Simulations on the Specimens Containing Precast Fissures 

4.1. A Two-Dimensional Numerical Simulation 

The dimensions of the length, height and thickness in the two-dimensional numerical model shown in 

Figure 3 are 50 mm, 100 mm and 1 mm, respectively. This numerical model is divided into 7524 elements. 

It contains two types of media, the intact rock mass and precast fissures. The two parallel fissures are 

located in the center of the model. The vertical distance between them is 16 mm; the length of the fissure 

is 18 mm; the thickness is 1 mm; and the dip angle is 45°. The whole numerical model is freely meshed by 

hexahedral elements. The related physico-mechanical parameters are shown in Table 1. 

 

Figure 3. The two-dimensional numerical model. 

Table 1. Physico-mechanical parameters of intact rock mass and precast fissure. 

Rock types 
Elastic modulus 

(GPa) 
Poisson’s 

ratio 
Tensile 

strength (MPa)
Cohesion 

(MPa) 
Friction 
angle (°) 

Dilatancy 
angle (°) 

Intact rock mass 45.0 0.25 0.9 1.6 40 0 
Precast fissure 1.5 0.35 0.5 0.8 20 0 

Next, the elasto-plastic model, the strain-softening model and the elastic-brittle model are also used 

to simulate the fracture development under uniaxial compression. Figure 4 shows the numerical 

simulation results. Figure 4a is obtained by the elasto-plastic model. Although the failure occurs near 

the fissure tips and large-area plastic zones appear, the development of the secondary cracks could not 

be better observed. Figure 4b is obtained by the strain softening model. Although the plastic zone 

becomes smaller, it has the same difficulty as Figure 4a. Figure 4c is obtained by the elastic-brittle model. 

We find that the simulation results are absolutely different with those obtained by the above two models. 

We observe the development of secondary cracks, and no large-area plastic zones appear, which is 

extremely close to the results obtained in the laboratory testing specimens [26]. 
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(a) (b) (c) 

Figure 4. Numerical simulation results using elasto-plastic, strain softening and elastic 

brittle models. (a) Plastic zones obtained by elasto-plastic model; (b) Plastic zones obtained 

by strain-softening model; (c) Plastic zones obtained by elastic-brittle model. 

From the numerical results, it is concluded that the elastic-brittle model is more appropriate to 

simulate the fracture development of brittle geo-materials. 

4.2. Three-Dimensional Numerical Simulations 

The three-dimensional numerical model adopts a cuboid model, as shown in Figure 5, and the 

dimensions of the length, width and height are 50 mm, 50 mm and 100 mm, respectively. Two elliptic 

mica sheets are used to simulate the double fissures, which is more appropriate than the metal sheets in 

mechanical behavior. The long axis, short axis and thickness of the elliptic fissure are 18 mm, 15 mm 

and 1 mm. The fissure planes have an inclination angle of 45° to the horizontal plane, and the vertical 

distance between them is 16 mm. The rolling constraint is fixed to the top and bottom surfaces. In order 

to clearly observe the fissure development, super fine meshes are generated, and the number of elements 

is 270,603, as shown in Figure 6. The uniaxial loading is applied on the top and bottom surfaces.  

The related physico-mechanical parameters are also shown in Table 1. 

 

Figure 5. Location of double parallel fissures. 
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(a) (b) 

Figure 6. The three-dimensional model. (a) A side view; (b) A front view. 

When the elastic brittle numerical model is used to perform the numerical simulations on the fissure 

development in the specimens, the following essentials should be noticed. As for the elements 

experiencing shear failures, their residual shear strength should be reduced to five percent of the original 

shear strength, and for the elements experiencing tensile failures, their tensile strength and cohesion 

should be reduced to only one percent of the original values. However, whatever failures the elements 

experience, the friction angle should be kept invariant, and the bulk and shear modulus should be 

degraded to the same order of magnitude. 

4.2.1. Case Study I: Numerical Analysis on the Double-Fissured Specimen under Uniaxial 

Compression without Fissure Water Pressure 

In this case, the double-fissured specimen under uniaxial compression without fissure water pressure 

is numerically simulated based on the elastic brittle model. Figure 7 shows the fissure development and 

the profile of the secondary cracks. 

 

Figure 7. The fissure development and profiles of secondary cracks. 
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During the beginning of uniaxial compressive loading, we could observe that small encapsulated 

failure planes initiate near the long-axis tips of the elliptical fissure sheet; the secondary cracks start to 

extend along the loading direction, and the wing cracks are formed. Although the secondary cracks 

initiate and extend gradually, they have no coalescence areas, and the rock mass between the two fissure 

sheets remains intact at this stage. As the loading continues to increase to 44.7% of the peak compressive 

strength, a major failure zone induced by the propagation of secondary cracks is formed in the rock 

bridge. Afterwards, the failure planes start to extend along the fissure edges until the final failure occurs. 

The peak compressive strength is 58.2 MPa. 

The complete stress-strain curve is drawn in Figure 8. In the beginning of loading, the specimen is in 

the linear elastic stage. When the curves approach the peak values, the axial and transvers strains increase 

faster, and the specimen appears dilatancy. When the peak strength appears, the stress decreases rapidly. 

The whole process behaves with the typical characteristics of brittle materials. 

 

Figure 8. The complete stress-strain curve of the double-fissured specimen under uniaxial 

compression without fissure water pressure. 

4.2.2. Case Study II: Numerical Analysis on the Double-Fissured Specimen under Uniaxial 

Compression Considering Fissure Water Pressure 

In this case, the double-fissured specimen under uniaxial compression considering fissure water 

pressures is numerically simulated based on the elastic brittle coupling model. According to the actual 

laboratory experiments, two representative fissure water pressures are considered. One is 3.5 percent of 

the uniaxial peak strength (3.5% α), and the other is 3.5% α. Figure 9 shows the fissure development 

and profiles of secondary cracks under fissure water pressure (3.5% α). Figure 10 is the complete  

stress-strain curve under fissure water pressure (3.5% α). Figures 11 and 12 show the numerical results 

under fissure water pressure (7% α). 
The following results could be concluded from the numerical simulations: 

(1) When the fissure water pressure is equal to 3.5% α, the final uniaxial peak strength is 59.0 MPa. 

At the beginning of loading, we could find that the fissure development has a similar principle. As the 

loading continues to increase to 41.3% of the peak compressive strength, a major failure zone induced 
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by the propagation of secondary cracks is formed in the rock bridge. Therefore, it is concluded that the 

fissure water pressure (3.5% α) has a slight impact on the fissure development. 

(2) As the fissure water pressure is increased to 7% α, its impact could not be neglected. The final 

uniaxial peak strength has obviously been decreased to 42.2 MPa. The cracks initiate and extend while 

the uniaxial load is 2.11 MPa. As the loading continues to increase, the cracks extend rapidly, because 

the fissure water pressure intensifies the tensile effects at the fissure tips. When the uniaxial loading is 

27.85 MPa, a major failure zone induced by the propagation of secondary cracks is formed in the rock 

bridge. Afterwards, the failure planes start to extend along the fissure edges until the final failure occurs. 

 

Figure 9. Fissure development and profiles of secondary cracks under fissure water pressure (3.5% α). 

 

Figure 10. The complete stress-strain curve of the double-fissured specimen under uniaxial 

compression under fissure water pressure (3.5% α). 
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Figure 11. Fissure development and profiles of secondary cracks under fissure water pressure (7% α). 

 

Figure 12. The complete stress-strain curve of the double-fissured specimen under uniaxial 

compression under fissure water pressure (7% α). 

5. Conclusions 

(1) An elastic brittle coupling constitutive model on the basis of secondary development in FLAC3D 

is proposed to simulate the fracture development of jointed rock mass under fracture water pressure.  

The two-dimensional numerical results are found to be in good agreement with the laboratory results. 

(2) The fissure water pressure has a significant impact on the peak strength of pre-cracked rock 

specimen. When the value is small, the peak strength may be increased a little. However, when it 

increases to a bigger value, the peak strength would be decreased rapidly, and a large-area failure zone 

would appear in the rock bridge. The failure planes start to extend along the fissure edges until the final 

failure occurs. 
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