## **Supplementary Materials**



Figure S2. <sup>1</sup>H NMR of 1b.



Figure S4. <sup>1</sup>H NMR of 2a.



Figure S6. <sup>1</sup>H NMR of 2c.



Figure S8. <sup>1</sup>H NMR of 3b.



Figure S10. <sup>1</sup>H NMR of 4a.



**Figure S12.** <sup>1</sup>H NMR of **4**c.



Figure S14. <sup>13</sup>C NMR of 1b.



Figure S16. <sup>13</sup>C NMR of 2a.



Figure S18. <sup>13</sup>C NMR of 2c.



Figure S20. <sup>13</sup>C NMR of 3b.



Figure S22. <sup>13</sup>C NMR of 4a.



Figure S24. <sup>13</sup>C NMR of 4c.



Figure S25. Normalized absorption spectra of 1b in various solvents.



Figure S26. Normalized absorption spectra of 1c in various solvents.



Figure S27. Normalized absorption spectra of 2b in various solvents.



Figure S28. Normalized absorption spectra of 2c in various solvents.



Figure S29. Normalized absorption spectra of 1a in various solvents.



Figure S30. Normalized absorption spectra of 2a in various solvents.



Figure S31. Normalized emission spectra of 1b in various solvents.



Figure S32. Normalized emission spectra of 1c in various solvents.



Figure S33. Normalized emission spectra of 2b in various solvents.



Figure S34. Normalized emission spectra of 2c in various solvents.

Table S1. Summary of optical absorption and emission properties of 3a–3c in various solvents.

|     | 3a/3b/3c      | λ <sub>abs</sub> (nm) <sup>a</sup> | λ <sub>em</sub> (nm) <sup>a</sup> | Stokes shift (nm) | $\Phi^{b} \times 10^{2}$ |
|-----|---------------|------------------------------------|-----------------------------------|-------------------|--------------------------|
| c   | yclohexane    | 667/670/670                        | 711/714/716                       | 44/44/48          | 3.03/4.74/3.14           |
| d   | liethyl ether | 675/676/676                        | 726/725/726                       | 51/46/51          | 0.44/0.80/0.92           |
| e   | thyl acetate  | 687/688/687                        | 741/740/740                       | 57/54/55          | 0.22/0.41/0.42           |
| dic | hloromethane  | 698/702/701                        | 755/758/758                       | 52/55/54          | 0.20/0.40/0.41           |
|     | acetonitrile  | 699/703/703                        | 760/760/761                       | 61/56/57          | 0.25/0.26/0.26           |
|     | 1 . 0 10-514  | h                                  |                                   |                   |                          |

<sup>a</sup> Measured at  $2 \times 10^{-5}$  M; <sup>b</sup> Determined with *N*,*N*<sup>o</sup>-dioctyl-3,4,9,10-perylenedicarboximide as reference [42].

Table S2. Summary of optical absorption and emission properties of 4a–4c in various solvents.

| 4a/4b/4c        | $\lambda_{abs} (nm)^{a}$ | λ <sub>em</sub> (nm) <sup>a</sup> | Stokes shift (nm) | $\Phi^{b} \times 10^{3}$ |
|-----------------|--------------------------|-----------------------------------|-------------------|--------------------------|
| cyclohexane     | 625/624/620              | 721/720/712                       | 96/96/92          | 2.42/3.72/5.79           |
| diethyl ether   | 632/633/631              | 736/733/734                       | 104/100/103       | 0.61/0.82/0.98           |
| ethyl acetate   | 638/639/640              | 747/748/747                       | 109/109/107       | 0.47/0.63/0.58           |
| dichloromethane | 658/655/658              | 791/788/789                       | 133/133/131       | 0.33/0.45/0.40           |
| acetonitrile    | 656/658/657              | 800/796/798                       | 144/138/141       | 0.17/0.36/0.34           |

<sup>a</sup> Measured at  $2 \times 10^{-5}$  M; <sup>b</sup> Determined with *N*,*N*<sup>2</sup>-dioctyl-3,4,9,10-perylenedicarboximide as reference [42].