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Abstract: A fast and effective wound healing process would substantially decrease medical 

costs, wound care supplies, and hospitalization significantly improving the patients’ quality 

of life. The search for effective therapeutic approaches seems to be imperative in order to 

avoid the aggravation of chronic wounds. In spite of all the efforts that have been made 

during the recent years towards the development of artificial wound dressings, none of the 

currently available options combine all the requirements necessary for quick and optimal 

cutaneous regeneration. Therefore, technological advances in the area of temporary and 

permanent smart dressings for wound care are required. The development of nanoscience 

and nanotechnology can improve the materials and designs used in topical wound care in 

order to efficiently release antimicrobial, anti-inflammatory and regenerative compounds 

speeding up the endogenous healing process. Nanostructured dressings can overcome the 

limitations of the current coverings and, separately, natural origin components can also 

overcome the drawbacks of current antibiotics and antiseptics (mainly cytotoxicity, 

antibiotic resistance, and allergies). The combination of natural origin components with 

demonstrated antibiotic, regenerative, or anti-inflammatory properties together with 

OPEN ACCESS



Materials 2015, 8 5155 

 

 

nanostructured materials is a promising approach to fulfil all the requirements needed for the 

next generation of bioactive wound dressings. Microbially compromised wounds have been 

treated with different essential oils, honey, cationic peptides, aloe vera, plant extracts, and 

other natural origin occurring antimicrobial, anti-inflammatory, and regenerative components 

but the available evidence is limited and insufficient to be able to draw reliable conclusions 

and to extrapolate those findings to the clinical practice. The evidence and some promising 

preliminary results indicate that future comparative studies are justified but instead of talking 

about the beneficial or inert effects of those natural origin occurring materials, the scientific 

community leads towards the identification of the main active components involved and their 

mechanism of action during the corresponding healing, antimicrobial, or regenerative 

processes and in carrying out systematic and comparative controlled tests. Once those natural 

origin components have been identified and their efficacy validated through solid clinical 

trials, their combination within nanostructured dressings can open up new avenues in the 

fabrication of bioactive dressings with outstanding characteristics for wound care. The 

motivation of this work is to analyze the state of the art in the use of different essential oils, 

honey, cationic peptides, aloe vera, plant extracts, and other natural origin occurring 

materials as antimicrobial, anti-inflammatory and regenerative components with the aim of 

clarifying their potential clinical use in bioactive dressings. We conclude that, for those 

natural occurring materials, more clinical trials are needed to reach a sufficient level of 

evidence as therapeutic agents for wound healing management. 

Keywords: dressings; chronic wounds; nanostructured materials; electrospinning; honey; 

essential oils; tissue engineering; infection; inflammation; regeneration 

 

1. Introduction 

Human skin is the largest organ in our body. Adult skin comprises three different layers: the 

keratinized stratified epidermis, formed by the stratum corneum and by the underlying nucleated 

epidermis composed of four differentiated layers showing complex cell-cell interactions; the dermis 

which is a thick collagen-rich connective tissue where follicles, glands, nerves and capillary vessels are 

embedded; and the hypodermis which mainly consists of blood vessels and adipose tissue (Figure 1) [1–3]. 

It forms an effective barrier between the external environment and our organism protecting us from 

water loss and against pathogens and harmful assaults [4]. Its complexity comprises a wide number of 

interconnected constituents providing not only physical protection but also biochemical and adaptive 

immunity. Any change in these constituents results in the alteration of the barrier function, which can 

culminate in a potential damage [3,5]. 
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Figure 1. Schematic representation of human adult skin. Five different layers form the 

stratified epidermis: stratum corneum (a), stratum lucidum (b), stratum granulosum (c), 

stratum spinosum (d) to the stratum basal (e) [1]. (Copyright Karger Publishers 2015). 

This alteration or damage in the skin is of great importance as skin is our first protective barrier,  

so, a fast and efficient repair is imperative to avoid bacterial colonization, chronification, or even more 

severe injuries. When the wound healing machinery does not work properly, it is necessary to use a 

therapeutic treatment to speed up the natural process in order to avoid more serious pathologies and to 

improve the patients’ quality of life. These treatments can be as varied as the type of wound and as the 

part of the body to be healed, and constitute an enormous burden for any health care system. The search 

of cost-effective therapies for wound healing is becoming an essential topic of ongoing research and 

discussion worldwide. 

1.1. Wounds 

Skin wounds are described as disruptions in the normal anatomical structure of the tissue which lead 

to an abnormal behavior. One of the essential issues to study, diagnose, and treat a wound is its 

assessment. Wound assessment has different aspects but the most important is wound extent considering 

the extension of tissue damage and its severity. Skin wounds normally affect just the epidermis and 

dermis and are produced by internal or external forces. However, some wounds are or become deeper 

producing more severe outcomes including the hypodermis, fascia, muscle, tendon, bone and viscera, 

which are normally defined as ulcers [6,7]. 

In general terms, wounds may also be classified as acute and chronic wounds. Acute wounds are often 

produced by trauma (e.g., burns, lacerations, abrasions) and repair themselves in an organized and well 

timed process which results in the anatomic and physiologic re-establishment of the damaged skin [8]. 

On the contrary, chronic wounds fail time-wise, so a complete restoration of the skin structure and 
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function is not successful in those cases [7,9]. Chronic wounds such as pressure ulcers are relatively 

common in long-term patients with reduced mobility, which may lead not only to skin damage but also 

to progressive injury into the muscle, tendon and bone, as well as to infection, septicaemia, osteomyelitis 

and, even death. Other ulcers, such as leg or venous ulcers, are also chronic wounds produced by venous 

hypertension or by failure in venous valves [9,10]. Foot ulcers and associated wounds are one of the 

most devastating complications of diabetes, often associated to injury and infections which may also 

lead to serious complications or even amputation due to the lack of sensitivity to injury, blister formation 

or cut [9]. Early detection is undoubtedly a key factor to avoid these complications together with an 

effective wound care. 

1.2. The Clinical Burden of Wounds in the Health Care System 

In the last decades, the increase in longevity, mainly in developed countries, due to medical 

breakthroughs and improved life quality, demonstrates a sign of progress, but also brings an increase in 

chronic health problems which, in several cases, implies the presence of non-healing wounds [11].  

The chronicity in wounds has become a serious problem not only due to the economic burden of their 

clinical care but also to the emotional costs for patients and their families [7]. 

Concerning the financial burden for health care systems, wound complications are linked to bed 

occupation in hospitals, nurse time spent in wound care, longer and more intensive treatments, and 

medical and surgical interventions [10]. In this regard, the Eucomed Advanced Wound Care Sector 

Group recommended in 2008 to the European Commission the support and promotion of research in 

wound treatment and prevention in the light of the four million annual wound incidences in Europe [12]. 

The Canadian Association of Wound Care has recently published very interesting data [13] pointing out 

to an average cost of C$ 10,376 for treating a chronic wound and C$ 11,840 for treating an acute wound 

without complications, 165 days being the average time to closure for the later. 

Pressure wounds have shown high prevalence in long-term patients in Europe (~20%) with the 

subsequent costs in pressure-redistributing equipment and additional nursing time. For example, it was 

estimated an annual burden of € 461 million in Spain in 2006 associated with those wounds, which 

represents the 5% of the total health-care spending, and, in 2009, it was estimated that the US spent US$ 11 

billion in the management of these types of wounds [14]. In addition, in 2008, leg and foot ulcers showed 

an estimated annual burden of € 10–12 billion to the European Union health care systems. Furthermore, 

it has been calculated that in Europe, in a hospital performing 10,000 operations annually, 3%–4% of 

the surgeries lead to an infected wound with an annual cost of about € 2 million [10]. 

Even though the true impact of wound care can only be estimated, the data summarized above clearly 

show the enormous economic burden of wound care. A more rapid and effective wound healing process 

would substantially decrease medical costs, wound care supplies and hospitalization, and would 

significantly improve the patients’ quality of life. 

1.3. Wound Healing Process: Stages of Wound Healing 

Healthy epithelium maintains its homeostasis due to a complicated balance between tissue injury and 

regeneration which is highly regulated by epithelial stem cells [15]. Wound healing is a highly complex 

dynamic process which goal is the total restoration of the skin structure and function [1,16], and consists 
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of three differentiated though overlapping phases: inflammation, proliferation, and tissue remodeling 

(Figures 2 and 3) [2,17,18].  

 

Figure 2. Normal wound healing stages with the main events involved. 

The inflammatory stage involves blood vessel injury, coagulation, and an acute local inflammatory 

response [6], with the recruitment of neutrophils, monocytes, macrophages, and lymphocytes as well as 

infiltration of leukocytes and subsequent secretion of inflammatory cytokines and growth factors [19]. 

In the proliferation phase, the cytokines and factors released in the previous stage stimulate the 

proliferation of progenitor cells, the recruitment of fibroblasts, keratinocytes, and endothelial cells, and 

finally cell migration and proliferation. As a consequence of these events, at this proliferative stage, 

granulation tissue is formed, angiogenesis induced and extracellular matrix (ECM) secreted [19–21]. 

The remodeling phase is characterized by the epithelial-mesenchymal transition (EMT) where cells 

migrate to re-epithelialize the damaged tissue in the edges of the wound. Then, wound contraction occurs 

and fibroblasts differentiate to myofibroblasts which results in scar-tissue formation [15]. As a consequence 

of the angiogenesis initiated in the previous stage, new blood vessels are generated followed by nerve 

sprouting [21]. 

 

Figure 3. Cont. 
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Figure 3. Wound healing stages: inflammation (a), proliferation (b) and tissue remodeling (c). 

(a) Inflammation is characterized by blood vessel injury, coagulation, and acute local 

inflammatory response with the formation of the protective clot against microbial infections; 

(b) The proliferation phase involves cell migration, granulation tissue formation, and 

angiogenesis; (c) Tissue remodeling implies the formation of a disorganized ECM as is 

depicted in the picture as well as a slightly elevated area together with the lack of normal 

skin appendages [22]. (Copyright Nature Publishing Group 2008). 

Different factors may hinder those events including age, obesity, social causes, drugs or previous 

diseases [7,9,11,16,17,23]. Hypertrophic scars, which are the result of an excessive deposition of 

collagen, and non-healing (chronic) wounds are commonly present in the clinic [19]. Chronic wounds 

are frequently associated with a reduced number and well-defined pathologies, such as venous 

insufficiency, ischemia, diabetes mellitus, pressure necrosis, or vasculitis, which can affect healing at 

different stages. Several experimental clinical studies have clearly shown failure in the availability of 

growth factors to aid in the healing cascade because of insufficient production, defective release, 

trapping and/or increased degradation in those chronic cases [6,24]. On the other hand, angiogenesis 

may be insufficient due to previous pathologies [25–28]. 

However, not only previous diseases can hinder healing, the microenvironment of the wound may 

also play an important role. [16,18,19]. Bacterial components have been highlighted as harmful factors 

during wound healing due to their interference with cell-matrix interactions and due a reduced 

inflammatory response they produce [16,23,29,30]. As in other infective processes, bacteria can colonize 

wounds as a biofilm which is a complex aggregate of bacteria embedded in an ECM with the ability to 
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form a highly resistant impervious microenvironment against antibiotics while maintaining the inflammatory 

stage [31,32]. 

2. Solutions and Standard Care Guidelines 

2.1. Current Therapeutic Approaches/Options for Chronic Wound Treatment 

The effective treatment of chronic wounds should be aimed at identifying and resolving the potential 

etiologic factors responsible for the non-healing wound state, leading to an important impact on the final 

clinical outcome. Several clinical practice guidelines and established medical protocols used during 

wound management have been extensively described to promote greater uniformity of care and to 

improve treatment outcomes. In that sense, the Wound Bed Preparation (WBP) emerged in 2000 to 

systematize the treatment of chronic wounds. It was defined as the global wound management in order 

to accelerate endogenous healing or to facilitate the effectiveness of other therapeutic approaches [33]. 

In that way, an initial assessment of the wound together with the overall health status of the patient, to 

consider existing pathologies which might hamper the endogenous healing, are indispensable for 

implementing an adequate treatment programme [34]. In addition, an evaluation of the wound state and 

response to the treatment should be regularly done. 

After thorough evaluation of the patient and their wound, a local wound-care plan must be initiated. 

Consequently, the removal of devitalised tissue, a minimal amount of necrotic tissue, the maintenance 

of normal endogenous antimicrobial and proteolytic activity and an adequate control of inflammation 

and exudate are indispensable requirements for the progression of wound healing, and, therefore,  

the successful treatment of a complex wound. 

Numerous techniques are employed nowadays for wound debridement. The choice of this 

debridement method do not depend on the diagnosis of the wound but on the presence of certain tissues 

covering the wound as well as on particular factors related to the patient and wound situation [35]. 

Inflammation is a physiological response to wounding and is required for wound healing to progress. 

However, excessive or inappropriate inflammation provides an ideal environment for bacterial 

infiltration and proliferation and may cause serious health problems. So, the prolonged inflammation 

characterizing the chronic wounds is a promising target for therapeutic interventions [36,37].  

The recommended treatment for managing infection is a combined strategy to reduce the bacterial 

burden and to optimize the host response. In last years, there has been a renewed interest in the use of 

the antiseptics for the management of infected wounds due to the ongoing risk of allergies and resistance 

to topical and systemic antibiotics. The range of topical antiseptics agents currently used in the 

management of wound infection includes alcohols, acetic acid, chlorhexidine, honey, hydrogen 

peroxide, hypochlorous acid, potassium permanganate, polyhexamethyl biguanide (PHMB), products 

containing iodine (cadexomer iodine and povidone iodine) and products containing silver (silver 

sulfadiazine and silver-impregnated dressings). Dressings incorporating these antiseptics can 

successfully be used in topical management to reduce the load of a wide variety of pathogens [36–38]. 

Exudate production is a normal feature of healing wounds. However, when wounds produce 

insufficient or too much exudate, and/or the composition of the exudate is harmful, a wide range of 

problems can occur that ultimately delay healing, distress patients, and consume considerable healthcare 
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resources [39]. In local wound management, dressings are the main option for managing exudate, being 

employed to increase, maintain, or reduce wound moisture. The final phase of wound healing is the 

epithelialisation. Debridement, control of inflammation, and moisture are essential factors of wound bed 

preparation that may stimulate the edge of the wound to migrate, but if this systematic approach produces 

a well-vascularized healthy wound bed which still fails to heal, additional therapies may be required. [40,41]. 

Alternatively, in patients whose ability to heal is compromised and in situations where skin coverage 

is inadequate, advanced therapies like bioengineered skin substitutes can be used to replace either 

temporarily or permanently the form and function of the skin, promoting the healing of the wound [41–43]. 

Although, these products have some advantages such as their availability in large quantities and 

negligible risks of immunologic issues, the main limitation is their expense. Besides, they still rely 

heavily on optimal wound bed preparation. 

2.2. Wound Dressings 

2.2.1. Classification of Dressings: Passive, Interactive, and Bioactive Dressings 

As aforementioned, one of the main medical options for the treatment of chronic wounds is the use 

of appropriate topical dressings which play an important role for correcting the underlying causes of 

non-healing wounds and, therefore, to aid during the healing process. In some situations, dressings are 

used as the definitive treatment, whereas in others they perform an important adjunctive role, being an 

intermediate step for other treatments. 

Since ancient times, wound dressings have evolved from natural origin materials that simply covered 

and concealed the wound to modern materials specially designed to provide particular benefits. 

Numerous categories and classifications of wound dressings have been published. Wound dressings 

are generally classified into three broad groups based on their nature of action: inert/passive, interactive, 

and bioactive. For many years, the mainstay of wound management was simply to protect the wound 

and all therapeutic efforts focused on drying the wound site. For that, passive dressings which are 

ordinary dressings, such as gauze and tulle, merely were used to cover and conceal the wound while 

repairing underneath. In addition, these passive products, which have a minimal role in the healing 

process, prevented infection by forming a barrier against bacterial colonization. However, these 

dressings produce a waterproof cover over the wound and their use can lead to skin maceration around 

the wound since water vapour and exudation may not pass through becoming trapped within the wound [44]. 

This lack of vapour permeation results in dressing leakage and the need for frequent replacements. The 

pioneering idea to change the nature of wound dressing materials was the discovery of the critical role 

of moisture in wound healing proved by Winter in 1962 [45]. Moist wound healing refers to the provision 

and maintenance of optimal hydration of the exposed tissues in the wound, establishing and maintaining 

an optimal environment for wound repair. Thus, the newer dressings have been designed to establish and 

maintain an optimal environment for wound repair. Interactive dressings are capable of modifying the 

physiology of the wound environment and interact with the wound surface to optimize healing by 

promoting debridement, enhancing granulation and re-epithelialization, and reducing the exudate levels 

and bacterial colonization counts. Interactive products are mostly transparent, permeable to water vapor and 

oxygen and impermeable to bacteria [46–48]. Some of the products including in the category of interactive 
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dressings are hydrocolloids, alginates, collagen, hyaluronic acid (HA) products, foams, hydrogels,  

and semipermeable films. 

In spite of these dressings, many wounds still persist. In order to promote the healing in these complex 

wounds, numerous bioactive dressings have been developed. These products deliver active substances, 

such as antimicrobials and antibiotics, which have a direct role in changing the chemical and cellular 

environment of the local wound, stimulating the healing cascade [48,49]. 

2.2.2. Desirable Characteristics of Wound Dressings 

Nowadays, an ideal wound dressing material should have extraordinary properties which would 

enhance/improve the wound healing process including its ability for maintaining a moist wound 

environment, debridement of wound site, absorption of excess exudate and blood at wound site, free of 

particles and toxic wound contaminants, non-toxic and non-allergenic, allow an adequate gaseous 

exchange, capable of protecting the wound from further trauma, low adherence and ease of removal, 

infection prevention and bacterial invasion protection, thermal insulation, minimal frequency of dressing 

change, easy of application, long shelf-life, comfortable and conformable, and cost effectiveness [47,50,51]. 

However, in spite of all the efforts that have been made during the last years towards the development 

of artificial wound coverings, no currently available dressing combines all those previous requirements 

necessary for a quick and optimal cutaneous regeneration. Therefore, more technological advances in 

the area of temporary and permanent smart dressings for wound care are required. 

3. Materials 

3.1. Nanostructured Dressings 

Current efforts in tissue engineering are focused on the creation of three-dimensional scaffolds 

mimicking the ECM. However, when the tissue does not have its inherent potential to regenerate, the 

supply of only a scaffold to the defective site does not assure tissue repair. In that way, as an additional 

method of tuning the biomimetic artificial matrix, different biological molecules such as growth factors, 

angiogenic factors, cell surface receptors and antimicrobial, antibacterial, and anti-inflammatory agents 

can be easily incorporated into those scaffolds to improve cell behaviour as well as tissue regeneration. 

A wide range of nanoscale materials have been reported in the literature showing their successful 

application in tissue repair and wound management. Among all the nanoscale structures used to generate 

artificial ECM, nanofibrous scaffolds have been proposed as the most promising candidates (Figure 4) [52]. 

Several intrinsic properties of nanofibrous scaffolds, such as high surface area to volume ratio, sufficient 

mechanical stability and adequate pore size of the resulting nanofibrous matrix, make these materials 

particularly interesting for wound healing and drug-delivery applications. So, the high porosity of the 

nanofiber matrix allows oxygen and water permeability and nutrients exchange and also the removal of 

metabolic waste preventing fluid accumulation at the wound site. Furthermore, the high surface area 

favours cell attachment and subsequent proliferation and differentiation during tissue regeneration. 
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3.2. Scaffolds Based on Natural Origin and Synthetic Polymers 

The efficacy of these replacements is widely dependent on the choice of their construction materials, 

structures and physicochemical properties. Polymers have been widely used as biomaterials for the 

fabrication of tissue-engineering scaffolds. Thus, different forms of scaffolds such as films, gels, 

sponges, membranes, micro and nanofibers made of natural origin and synthetic polymers have been 

developed and evaluated as dermal substitutes to date. 

 

Figure 4. Scanning Electron Microscopy (SEM; a,b,d,e) and Transmission Electron 

Microscopy (TEM; c,f) micrographs of nanofibrous scaffolds, consisting of polylactic  

acid (PLLA)/polycaprolactone (PCL) (a,b) and chitosan (d,e) polymers, synthetized by 
electrospinning technique (unpublished results). 

3.2.1. Natural Origin Polymers 

Natural origin polymers have been widely used in regenerative medicine because of their 

biocompatibility, biodegradability, biological characteristics and structural similarities with human 

tissues. Naturally derived materials from animals or plants, which are usually constituted by proteins  

or polysaccharides, mimic the fibrillary structure of native ECM and have similar architectural 

resemblances [53,54]. 

Collagen is the major protein component of the ECM, and multiple scaffolds based on this material 

have been described as building material in many biomedical applications including wound dressings. 

For example, collagen-minocycline based hydrogels are potentially applicable for the treatment of 

cutaneous wound infections [55], denatured collagen microfiber scaffolds seeded with human fibroblasts 

and keratinocytes can be used as skin grafts [56], collagen-alginic acid can also be used as wound 

dressing materials [57], electrospun collagen nanofibrous scaffolds have been also applied in wound 

repair [58]. In that regard, Powell et al. [59] compared collagen nanofibrous scaffolds produced by freeze 
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drying and electrospinning methods as skin substitutes demonstrating that although both scaffolds can 

be used to fabricate skin substitutes with optimal cellular organization, proliferation and maturation, 

electrospun scaffolds can potentially reduce wound contraction much faster compared to the freeze-dried 

ones. Currently, Biobrane®, Integra®, Apligraf®, and Transcyte® are available as commercial biological 

skin substitutes based on collagen and are widely used in wound healing [60,61]. 

Gelatin, a natural origin polymer derived from collagen, has also been used in medical applications, 

especially in the production of biocompatible and biodegradable wound dressings. The optimal 

morphology of an electrospun gelatin scaffold for skin repair was studied by Powel and Boyce [62] 

demonstrating that, principally, porosity and interfiber distance play a significant factor in tissue 

morphogenesis. More recently, Bilgic et al. [63] demonstrated that gelatin-based biodegradable scaffolds 

have an enormous potential to enhance wound healing. 

Fibrin, a complex network naturally formed by fibrinogen polymerization in the presence of the 

enzyme thrombin, has been used widely as a natural origin scaffold for wound healing and tissue 

engineering applications owing to its characteristic advantages including reduced inflammation, immune 

response, toxicity, and enhanced cell adhesion [64]. 

The major drawbacks associated with the use of protein based-polymers are their low mechanical 

stiffness and rapid degradation rate in vivo. In order to overcome these disadvantages, crosslinking 

techniques, including chemical and physical methods, have played a pivotal role for producing scaffolds 

with enhanced mechanical properties as well as means of making water insoluble scaffolds [53,54,65]. 

For example, Ulubayram et al. [66] optimized the effect of the type and the amount of cross-linker used 

on the thermal and mechanical properties, stability, and cytotoxicity of gelatin sponges. More recently, 

genipin and glyceraldehyde have been used as crosslinkers due to their low toxicity and reproducibility 

in the creation of gelatin-based scaffolds [67,68]. Furthermore, a range of various cross-linkers 

(transglutaminase, genipin, EDC/NHS, and UV light exposure) were tested in electrospun collagen 

nanofibers to avoid the poor water resistance of collagen [69]. Additionally, the combination with other 

artificial scaffolding materials could resolve this handicap as well. The addition of inorganic fillers in 

the polymeric structure is also another alternative to increase the required mechanical stability under 

operation rendering nanocomposites with superior properties. 

In regard to polysaccharide-based polymers, alkaline (chitin, chitosan), neutral (glucans, dextrans, 

cellulose), acidic (alginic acid, HA) or sulfonated polysaccharides (heparin, chondroitin, dermatan 

sulfate, keratan sulfate) are broadly used for the management of wounds. In that sense, films, gels, or 

sponges of chitosan have recently been investigated for their use in wound care, demonstrating 

antimicrobial and wound-healing effects [70]. In a parallel study, Tchemtchoua et al. [71] showed that 

the adhesion, growth, and differentiation of the three main skin cell types (keratinocytes, fibroblasts and 

endothelial cells) were enhanced when using chitosan nanofibrous scaffolds in comparison to other types 

of chitosan-based structures (films, sponges or gels). The natural polysaccharide alginate has also been 

proposed as suitable building materials in wound dressings. There are numerous studies concerning the 

application of different alginate-based formulations: chitosan-fibrin-sodium alginate composite for 

wound dressings [72], alginate nanofiber-based wound dressings [73], sodium alginate/poly(ethylene 

oxide) blend nanofibers [74], composite alginate, and gelatin-based bio-polymeric wafers for wound 

healing [75] and so on. 
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An important natural origin biopolymer of increasing interest is HA which assists in providing  

wound healing. Researchers have developed scaffolds based on HA for difficult-to-heal wounds,  

post-traumatic, and complicated surgical wounds [76–78]. Recently, gelatin-chondroitin-6-sulfate-HA [79], 

HA/Agarose [80] and photocrosslinked HA/fibronectin [81] based scaffolds have shown a great potential 

in wound healing scenarios. 

3.2.2. Synthetic Polymers 

The functions and properties (e.g., porosity, degradation time, and mechanical characteristics) of 

synthetic polymers can be tailored by modifications in the synthesis processes according to specific 

requirements and applications in order to overcome many of the presented shortcomings of natural origin 

polymers. So, the variation of the different parameters such as chemical composition, crystallinity, 

molecular weight, and copolymerization allow production of scaffolds with predictable and reproducible 

mechanical and chemical properties in large quantities. In addition, they are often cheaper than biological 

scaffolds and have a longer shelf life. 

FDA approved-aliphatic polyesters such as PLA, polyglycolic acid (PGA), PCL and their copolymers 

have being widely applied in skin tissue engineering and as wound dressings. In this regard,  

the development of several wound healing dressings such as curcumin-loaded PLA nanofibers [82], 

PGA/collagen composite nanofibrous scaffolds [83], nanofibrous scaffolds containing gum 

tragacanth/PCL [84] and poly(lactide-co-glycolic acid) (PLGA)/silk fibroin hybrid scaffolds [85] have 

demonstrated a great potential as wound healing materials. Sun et al. [86] showed that the use of 

ginsenoside Rg3-loaded electrospun PLGA fibrous membranes as wound covers induces healing and 

inhibits hypertrophic scar formation. 

Other commonly synthetic polymers used as wound dressing include polyurethane (PU), polyvinyl 

alcohol (PVA), polyethyleneoxide (PEO) and polyethyleneglycol (PEG). For example, Yari et al. [87] 

analyzed the application of different cross-linked PU hydrogels with chemically anchored antibacterial 

groups as wound dressings. Besides, electrospun PU-dextran nanofiber mats containing ciprofloxacin 

HCl showed enhanced antibacterial activity [88]. Also, Dai et al. [89] demonstrated that electrospun 

emodin polyvinylpyrrolidone (PVP) blended nanofibrous membranes accelerated wound healing compared 

to standard treatments. An in vivo study carried out by Yun et al. [90] demonstrated that the use of a 

fibroblast-encapsulated PEG-b-poly(L-alanine) thermogel significantly improved the healing-process 

speed and also the dermal regeneration compared to control systems based on just cell-free  

PEG-b-poly(L-alanine) thermogel and PBS. In another study, it was demonstrated that PEG incorporation 

into ciprofloxacin hydrochloride loaded chitosan scaffolds was effective for quicker and regulated 

wound healing [91]. 

3.3. Fabrication (Electrospinning, Phase Separation, Auto-Assembly, etc.) 

A wide variety of techniques have been used to fabricate polymers into different types of nanostructured 

dressings in order to improve the wound healing processes and to ensure a good efficient drug loading. 

The fabrication of these dressings should be strictly controlled to obtain the appropriate features to 

perform a successful and rapid healing. In fact, porosity is a key factor in the promotion of new tissue 

formation because cell migration, proliferation, and differentiation are all affected by geometrical 
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constraints from the surrounding microenvironment, and it should be adapted for each application [92–95]. 

However, the required porosity depends on the proximity of capillary vessels to irrigate the wounded 

tissue. If the wound is close to a very well irrigated area the need of generating new angiogenesis, and 

the corresponding large pores, is reduced, but in less irrigated areas large pores are required in the 

scaffold to allow new capillary generation. Also the size of the remodeling zone is important to consider 

when the appropriated pore size scaffold is to be selected. Furthermore, parameters linked to porosity 

such as interconnectivity or changes mediated by degradation or remodeling should be carefully 

monitored [96,97]. 

In the last few years, one of the most extended methods for the fabrication of nanodressings is the 

electrohydrodynamic (EHD) technique or electrospinning. EHD techniques use electrostatic forces to 

produce from nano- to microstructures composed of continuous ultrafine fibers rendering multiple 

shapes due to the use of an electrically charged fluid stream which is collected in its corresponding 

counter-electrode the applied voltage being a crucial element in the formation of the fibers [98–100]. 

The features of the resulting structures regarding composition or morphology can be modified through 

the type of polymer or solvent used or even by modifying the injection speed, in order to fulfil the 

requirements for the envisaged applications which are diverse such as biomedical, pharmaceutical, or 

security and defense [98,101,102]. This simple technique has become very popular for the fabrication of 

these fibers because of its potential to easily scale up or the capability to spin very different types of 

polymers and also the simplicity and low-cost of the equipment required. The fiber is formed when after 

the application of a high electrical potential to a polymer droplet at the tip of an injection needle this is 

ejected when repulsion charges overpass surface tension. Finally, the solvent is evaporated in its way 

towards the grounded counter-electrode and fibers are collected (Figure 5) [102,103]. 

 

Figure 5. Electrospinning experimental set-up with its main components: syringe pumps,  

tip and collector. Coaxial injection capillaries can be used (image on the right) to fabricate 

nanofibrous core-shell structures. 

Electrospun fibers are widely used in dressings and in drug delivery applications due to their specific 

features such as high area to volume ratio, customized porosity, morphology, and functionalization which 

can provide them with hemostatic ability, protection against infections, adequate maintenance of moisture 
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or even mimicking the ECM [98,101,104–106]. Very different polymers have been used to produce 

these fibers from natural origin polymers (e.g., chitosan, collagen, HA), to synthetic polymers (e.g., 

PLLA, PCL) and copolymers (e.g., PLGA, poly(l-lactide-co-caprolactone)) in order to produce scaffolds, 

membranes or implants for tissue engineering and/or with drug delivery ability [98,100,103,107–113]. 

Specifically, electrospun PLLA/PEG materials exerted in vitro bactericidal and hemostatic effects [114] 

while electrospun collagen dressings have shown better in vivo healing ability than classic wound care 

systems [115]. Moreover, silk fibroin/PLGA electrospun nano-dressings displayed improved wound 

closure compared to just PLGA dressings and to control samples in an in vivo wound model of diabetic 

rats due to a demonstrated improved re-epithelialization process [85]. 

In addition, other techniques have been developed for the fabrication of nanofibers with biomedical 

purposes and high drug loading capacity though less extended than electrospinning. The phase separation 

technique involves the polymer dissolution, gelation, and solvent extraction followed by freeze drying 

or vacuum. Under specific conditions, a homogeneous polymer can be separated into two phases due to 

thermodynamic instability or even by mechanical shearing or emulsification of two or more phases,  

to finally obtain a solid polymer-rich phase. The structural characteristics of the final product can be 

modified changing the thermodynamics and kinetics of the specific reaction. In addition, this technique 

allows the loading of sensitive drugs without loss in their bioactivity [92]. Moreover, self-assembly is 

another technique to produce nanofibers which results in the formation of a nanofibrous mesh through 

the organization of preexisting components [116]. Fiber mesh and fiber bonding are other methodologies 

that imply the deposition of a polymer over another polymer followed by an evaporation stage, and the 

joining of nanofibers at their cross-linking points in order to produce nanofibrous meshes [92,117].  

In general, those techniques allow an easy, not expensive and vast production of nanofibers with high 

surface area, though the resulting structures, in general, do not show the required mechanical stability 

making control of the porosity difficult in the case of using phase separation, fiber mesh, and fiber 

bonding techniques; the resulting shapes are not as uniform as in self-assembly techniques, and the 

loading efficiency is low when using self-assembly or fiber mesh techniques [99,116,117]. 

3.4. Dressings for Controlled Drug Delivery to the Wound 

Drug delivery systems are biocompatible particles, hydrogels, dressings, or three-dimensional (3D) 

devices that are able to provide sustained doses of a therapeutic moiety in our body accomplishing 

increased safety and efficiency due to the tight control of the site of release, dosage, and timing [118–120]. 

In the last years, a great number of nanostructured materials have been developed for drug delivery 

because of the increased drug-dissolution rate of these structures through the superior surface area per 

volume ratio [103]. 

Bioactive wound dressings in different forms (e.g., hydrogels, films, electrospun fibers) have been 

developed in recent years to improve the protection against bacterial infections [121]. These dressings 

should fulfill some requirements to develop their functions properly such as maintain moisture, favor 

hemostasis and cell proliferation, and allow functionalization and good flexibility [103]. As mentioned 

above, electrospun fibers are being widely used to fabricate nanostructured dressings with drug delivery 

ability. Furthermore, biomacromolecules as well as hydrophilic and hydrophobic drugs can be directly 

encapsulated into electrospun fibers making their use as drug release systems easy. These features 
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together with their high surface area and 3D porous structure confer them with a high efficiency for drug 

delivery [101,102,122,123]. In addition, the local delivery provided by these types of fibers offer the 

possibility to reduce the minimum required drug dosage which implies less side effects [103]. 

The methodology to load a nanofiber with a specific drug should be highly specialized because drugs 

show different chemical characteristics and every disease needs the most suitable delivery system [103]. 

There are a wide number of techniques to achieve this goal by combining the most used. This 

methodology involves one-step electrospinning due to the dissolution or dispersion of the drug in an 

appropriated solution of the polymer [119,124]. Although it is a very simple technique, it is of great 

importance to know the drug distribution into the fibers and their possible interactions and drug kinetics 

to achieve the required release. Some researchers have improved this loading technique by adding 

hydrophilic polymers or amphiphilic copolymers or even by increasing the hydrophilicity of the fibers 

to obtain a higher loading efficiency and improved sustained release [121,125–127]. There are also other 

techniques used for drug loading in electrospun nanofibers in order to improve sustained delivery and 

maintain drug chemical properties, such as the modification of the fiber surface by bounding or 

conjugation of the drug to the surface of the nanofibers which is useful for achieving a slow release of 

therapeutic biomolecules (e.g., growth factors, genetic material) [102,103,128]. A modification of the 

electrospinning process called coaxial electrospinning in which the drug is placed in the inner jet and the 

polymer is in the outer tubing is also used to achieve a long term drug release [129]. The emulsion of 

the drug within the dissolved polymer or the sequential electrospinning to load more than one drug for 

combination therapies are also strategies widely used [101,103]. 

In this sense, several authors have shown very different studies in which electrospinning is the 

technique of choice to fabricate drug delivery nanodressings. A wide variety of materials have been used 

such as PLGA, poly(vinyl acetate), or cellulose, together with different drugs such as antibiotics,  

anti-inflammatory, antioxidants and/or natural origin compounds, demonstrating a higher efficiency than 

drug-loaded films [121,130–132]. For instance, Choi et al. [102] have shown in a mice diabetic ulcer 

model that the use of PCL or PCL-PEG nanodressings loaded with epidermal growth factors (EGF) 

clearly outperformed the healing of wounds compared to the nanodressings alone or with the  

non-treated wounds. In addition, these authors confirmed the beneficial effects of this type of dressings 

in keratinocyte expression in an in vitro model. Other researchers [133] have developed an in vivo wound 

healing model in diabetic rats highlighting the rapid and efficient restoration of the skin structure and 

function when wounds were treated with coaxially fabricated electrospun fibers loaded with basic 

fibroblast growth factor (bFGF). The gradual release of the growth factor resulted in higher capillarization, 

collagen deposition, and ECM remodeling in a similar fashion compared to normal skin. Furthermore, 

they also showed in vitro enhanced cell adhesion, proliferation and secretion of ECM in a mouse embryo 

fibroblast model. 

Other researchers have focused their research on modifying textile dressings with magnetic 

nanostructures to prevent the evaporation of the natural origin compounds limonene and eugenol or other 

essential oils embedded in the dressings to achieve sustained bactericidal ability against different strains 

of bacteria [134,135]. 

There are also studies regarding the production of drug-eluting porous structures for wound dressing 

through the methodology of freeze drying of inverted emulsions [92,99]. In this regard, Elsner et al. [92] 

stated that drug loading can be performed with this technique at any stage of the fabrication without any 
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drug loss or modification due to temperature or chemical interactions. In this case, drug release was 

modulated through the degree of porosity which in turn may be modified by controlling the 

organic:aqueous ratio or drug content. This study showed the high efficiency of these nanodressings 

loaded with the antibiotics gentamicin and ceftazidime against Staphylococcus aureus, Staphylococcus 

albus and Pseudomonas aeruginosa, both in vitro and in vivo, to improve wound healing processes. 

4. Essential Oils, Honey, Aloe Vera, Cationic Peptides and other Natural Origin Antimicrobial, 

Anti-Inflammatory and Regenerative Compounds 

This section encompasses the literature published in the last years describing the application of 

naturally occurring antimicrobials, anti-inflammatory and regenerative molecules in the acceleration of 

the wound-healing process. A wealth of in vitro and in vivo studies with animal models demonstrates 

the antimicrobial, anti-inflammatory, and regenerative properties of essential or edible oils, honey, aloe 

vera, plant extracts, cationic peptides, etc.; however in the sake of concision we shall only review those 

results which involve clinical trials. Results from enteral administration of these natural origin 

components have also been excluded in this review. 

4.1. Antimicrobials 

Everything has antimicrobial properties depending on its dose. “The dose makes the poison” is the 

basic principle of toxicology (credited to Paracelsus). The idea behind this section is to be thought-provoking, 

trying to compare the potential benefits from natural-origin materials topically applied against 

pathogenic microorganisms colonizing wounds compared to the conventional synthetic topical 

antiseptics (iodine, silver, chlorhexidine, polyhexamethylbiguanide, etc.) or with the systemic 

application of antibiotics and also always keeping in mind the required dose needed to reach the same 

antimicrobial level. It is important to mention that to prevent wound infection the use of topical 

antibiotics is not recommended due to the risk of sensitization and development of resistance.  

Natural origin materials have been used in wound care with positive results. 

Natural origin materials can be antimicrobials or can boost the defenses of the infected host. As we 

mentioned before, when the antimicrobial is applied on the wound or on intact skin they are called 

antiseptics [136]. Obviously the material of choice to accelerate the physiological wound healing process 

must have antimicrobial action on bacteria, yeast, fungi, virus, and spores but should be non-cytotoxic 

on human cells without the development of any antimicrobial resistance. 

Honey has been used as antimicrobial for centuries. The composition of the honey depends on the 

floral source that the honeybees use and also on the environmental conditions [137]. Its antimicrobial 

action is attributed to its acidic pH, high osmolarity, and to the presence of hydrogen peroxide (reactive 

oxygen species (ROS) generation), antioxidants, lysozyme, polyphenols, phenolic acids, flavonoids, 

methylglyoxal, and bee peptides [137]. A prospective, multicentre, open label randomized controlled 

trial with 808 patients with venous leg ulcers having ≥50% wound area covered in slough not taking 

antibiotics or immunosuppressant therapy were recruited to compare the efficacy of manuka honey 

versus current hydrogel therapy [138]. The results showed that patients treated with the manuka honey 

had increased incidence of healing, effective desloughing and a lower incidence of infection than the 

controls. However, Jull et al. [139] carried out a community-based open-label randomized trial on 
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patients with venous ulcers using either calcium alginate dressings impregnated with manuka honey (187 

patients) or usual care (181 patients) and showed that honey-impregnated dressings did not significantly 

improve venous ulcer healing at 12 weeks compared with the usual care. Another prospective open label 

multicenter study with 108 patients with sloughy venous leg ulcers treated with manuka honey or 

hydrogel showed a benefit of one versus the other depending on the bacteria present [140]. A randomized 

study with 69 patients using honey-coated bandages compared with silver-coated bandages on the 

treatment of malignant wound showed no differences between both groups [141]. In a prospective 

randomized study (45 subjects) to compare the effectiveness of honey dressings vs. povidone iodine 

dressing in chronic wound healing, honey dressings showed a significant decrease in the wound surface 

area, pain score and increase in comfort score compared to the iodine-based ones [142]. Shorter times of 

healing and a rapid disinfection of neuropathic diabetic foot ulcers were observed when using  

manuka honey-impregnated dressings compared to conventional dressings in a randomized clinical trial 

(63 patients) [143]. Literature reports varied results for honey depending on the infected wound [144] 

and also it has been demonstrated that honey may even have a detrimental effect on diabetic ulcers [145]. 

These contradictory results indicate that more information is needed and multi-center clinical trials and 

with a larger number of patients are required to show a clinical benefit for honey to reduce the incidence 

of wound infection [146]. 

Essential oils are composed of 20–80 constituents existing at significantly low concentrations in 

plants which chemical composition depends on climatic, seasonal, geographic conditions and distillation 

technique [147]. Their antimicrobial action is attributed to some of their varied components including 

terpenes, low molecular weight aliphatic hydrocarbons, acids, alcohols, aldehydes, acyclic esters, etc. 

Different edible oils extracted from fruits have antimicrobial action which is attributed to their acidic pH 

and to the presence of simple phenols and oxygenated compounds. The great advantage is that essential 

oils show little impact on the development of antimicrobial resistance and susceptibility compared to 

other biocidal components [148,149]. 

Darmstadt et al. [150] demonstrated that premature babies (159) who received a daily massage with 

sunflower-seed oil were 41% less likely to develop nosocomial infections than controls (without any 

treatment) and Aquaphor (petrolatum, mineral oil, mineral wax, lanolin alcohol; 157 babies) did not 

significantly reduce the risk of infection. 

A randomized, controlled trial of tea tree topical preparations versus a standard topical regimen for 

the clearance of methicillin-resistant S. aureus (MRSA) colonization was carried out by Dryden et al. [151]. 

In this study 114 patients received standard treatment and a 49% of them were cleared of MRSA carriage. 

110 patients received tea-tree oil regimen and only a 41% of them were cleared. The authors concluded 

that there was no significant difference between treatment regimens and, from the same study they also 

concluded that tea-tree treatment was more effective than chlorhexidine or silver sulfadiazine at clearing 

superficial skin sites and skin lesions. A recent prospective, open-label, randomized, controlled trial with 

445 patients was carried out to determine whether the daily use of 5% tea-tree oil body wash compared 

with standard care had a lower incidence of MRSA colonization [152]. The results showed that a 10% 

of the patients developed new MRSA colonization and therefore, compared with standard care, the daily 

use of 5% tea-tree oil body wash cannot be recommended as an effective means of reducing  

MRSA colonization. 
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Essential coriander oil was very efficient as an antiseptic for the prevention and treatment of skin 

infections with Gram-positive bacteria (Streptococcus pyogenes, S. aureus and MRSA) [153]. In addition, 

no skin irritation could be observed by sensitive photometric assessment in any of the 40 volunteers 

using patches impregnated with this essential oil. 

Lavender oil was used in the treatment of recurrent aphthous ulceration by means of randomized 

double-blind, placebo-controlled study performed in animal models and also in 115 subjects [154].  

A significant ulcer-size reduction, increased rate of mucosal repair, and healing within three days of 

treatment were observed in the animals treated with lavender oil compared to baseline and placebo 

groups. Lavender oil showed a broad antibacterial activity against different tested strains and the patients 

treated with lavender oil showed a significant reduction in inflammation level, ulcer size, healing time, 

and pain relief. As in the case of honey-based products, the literature compiles contradictory or at least 

insufficient results to make a scientific conclusion about the demonstrated benefit of those essential oils. 

Antimicrobial peptides are an evolutionarily conserved component of the innate immune response 

found among all classes of life ranging from prokaryotes to humans which show antimicrobial activities 

against Gram-positive and Gram-negative bacteria [155]. They act with multiple roles as mediators of 

inflammation with the effects on epithelial and inflammatory cells, influencing cell proliferation, wound 

healing, cytokine/chemokine production and chemotaxis [156]. They also do not seem to propagate the 

development of antibiotic-resistant micro-organisms [157]. Lipsky et al. [158] described the results of 

two consecutive, double-blind, randomized controlled trials on diabetic patients with a mildly infected 

diabetic foot ulcers to receive an active topical antimicrobial peptide, pexiganan acetate cream, or an 

active oral antibiotic (ofloxacin), plus a respective inactive placebo. The results with a total of 835 

subjects showed equivalent results (within the 95% confidence interval) for topical pexiganan and oral 

ofloxacin in clinical improvement rates, overall microbiological eradication rates, and wound healing 

rates. A significant reduction of infectious complication after major liver surgery was also observed in a 

clinical trial with patients using bactericidal/permeability-increasing protein (rBPI (21)) [159]. 

Despite some of those good results, the main drawback is their high cost and also that it is difficult  

to maintain a constant optimal therapeutic level due to the short half-life of recombinant proteins  

in vivo [160]. 

Several pathogenic bacteria are developing antibiotic resistance and therefore, initially the study of 

the potential applicability of those natural occurring antimicrobial agents is justified [161,162]. 

However, as in the case of nanosilver, more studies are need to assess their potential role in antimicrobial 

resistance [163]. 

4.2. Anti-Inflammatory 

Tea-tree oil thanks to its main component, terpinen-4-ol, can reduce histamine-induced skin 

inflammation as demonstrated in a study with 27 volunteers [164]. Javed et al. [165] reviewed the role 

of dentifrices with essential oil formulations in periodontal healing retrieved from 20 clinical trials from 

1968 to 2010 and concluded that dentifrices formulated with essential oils have beneficial effects on the 

clinical and microbiological parameters of periodontal inflammation. 

Oral lichen planus is a chronic inflammatory condition that affects mucous membranes of the mouth. 

A randomized, double-blind, clinical trial involving 40 patients comparing the benefits of using aloe 
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vera versus triamcinolone acetonide (a topical corticosteroid) demonstrated that aloe vera gel was more 

effective than the corticosteroid in the treatment of oral lichen planus [166]. 

Lalicevic and Djordjevic [167] compared in an open-label, single-blind, randomized clinical trial 

benzydamine hydrochloride (BNZD) and Salvia officinalis (SO) as adjuvants applied locally to a 

systemic nonsteroidal anti-inflammatory drug (ibuprofen for children and diclofenac in adults) in 

controlling pain after tonsillectomy, adenoidectomy, or both. In this study, they showed that the risk for 

severe pain after tonsillectomy, adenoidectomy, or both was reduced when BNZD was used as adjuvant 

therapy instead of SO. Also there was a lower infection risk when BNZD, rather than SO, was applied 

as adjuvant therapy. 

4.3. Regenerative 

Healing advances were observed in a clinical trial with 120 primiparous women, with singleton 

pregnancy, who were treated during episiotomy recovery either with lavender oil or with povidone-iodine 

(controls). The results concluded that there was no significant difference between those two groups in 

surgery-site complications. However, redness in lavender group was significantly less than in  

controls [168]. Another clinical trial with 89 women was carried out to analyze the recovery after 

episiotomy using lavender based-on olive oil and olive oil [169]. The results also suggested that lavender 

based-on olive oil and olive oil should be added to routine water sitz bath for post-episiotomy care.  

In another clinical trial involving 111 primiparous women, Eghdampour et al. [170] demonstrated that 

women treated either with aloe vera or with calendula ointment showed a faster episiotomy wound 

healing compared to the untreated group. 

A clinical study involving 30 patients treated with sesame oil or just with saline having fresh traumatic 

wounds showed that this oil was effective by reducing pain, minimizing wound surface, reducing the 

discharge and promoting the epithelialization compared to the controls [171]. 

Aloe vera gel has been traditionally used to treat burn wounds and several studies concluded that 

cumulative evidence tends to support that aloe vera might be an effective interventions used in burn 

wound healing for first to second degree burns but the same study states that more studies are needed to 

corroborate it [172]. A systematic review of the literature including clinical trials concluded that 

controlled clinical trials in humans demonstrated no benefit when aloe vera was incorporated into topical 

therapy [173]. 

A prospective randomized double-blind clinical trial was conducted with 90 women who had 

undergone cesarean operation applying aloe vera or just a simple dressing. A significant difference was 

observed between the two groups with respect to the wound healing score 24 h after the operation; 

however after eight days, the difference in the wound healing score was not significant [174]. 

A prospective clinical trial was conducted with 60 patients to evaluate the effects of a topical cream 

containing 0.5% aloe vera juice powder in the treatment of chronic anal fissures by Rahmani et al. [175]. 

The study concluded that there were statistically significant differences in chronic anal fissure pain, 

hemorrhaging upon defection and wound healing before and at the end of the first week of treatment 

with the gel in comparison with the untreated group (placebo). A comparative study stablished between 

second degree burn patients (50) treated with aloe vera gel compared with those treated with 1% silver 

sulphadiazine cream showed that faster wound healing and less pain were reported for the group treated 
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with the aloe [176]. Once again we found controversial results or incomparable results because the effect 

of any antiseptic depends on the wound type, chronicity, the moment to apply the therapeutic compound, 

the condition of the patients, origin, age, combinatory effects, contact time, the antiseptic of choice for 

a particular (e.g., bacterial strain) infection, etc. 

Propolis, a resinous mixture that honey bees collect from tree buds, sap flows, or other botanical 

sources, was also used in a clinical trial to study its influence in the treatment of recurrent aphthous 

stomatitis, a common, painful, and ulcerative disorder of the oral cavity [177]. The results obtained 

indicated that patients in the propolis group self-reported a significant improvement in their quality of 

life and a statistically significant reduction of outbreaks compared to the untreated controls. 

A randomized clinical trial of 37 patients with neuropathic diabetic foot ulcers was set to analyze the 

benefits of extract of kiwifruit compared to a standard dressing treatment [178]. The group treated with 

the kiwifruit experienced a larger reduction in the size of the ulcer than the untreated one at the same time. 

The amount of collagen, angiogenesis, vascularization and granulation tissues were significantly higher 

in the experimental groups than in the controls. Wound healing kinetics were also evaluated on 34 patients 

with chronic venous leg ulcers treated either with the plant species Ageratina pichinchensis or with 7% 

propylene glycol alginate [179]. The results showed that the plant extract produced a 100% therapeutic 

effectiveness, while the control treatment achieved this condition in 81.8% of the control group patients. 

Ulcer size reduction was significantly higher in the group of patients administered with the extract. 

Banana leaf, tree bark, cocoa, turmeric, β-glucans, etc. have also demonstrated their antioxidant,  

anti-inflammatory, antimicrobial, and angiogenic properties in in vitro studies and, for some of them,  

in clinical trials [180]. 

There is an endless list of natural origin products which have been used since antiquity to heal 

wounds, but still scientific evidence of those properties is still to be demonstrated using double-blinded 

multi-center randomized placebo-controlled trials to reach a sufficient level of evidence. 

4.4. Dose Analysis 

To compare the doses needed to obtain the same output in the prevention of infection during wound 

healing when using natural origin components or synthetic ones we compared the minimal inhibitory 

and minimal bactericidal concentrations (mic and mbc, respectively) published for just honey in the sake 

of concision. In this regard Tan et al. [181] calculated the mics for two different honeys against nine 

different bacteria (S. pyogenes, coagulase-negative Staphylococci, MRSA, Streptococcus agalactiae,  

S. aureus ATCC 33591, Proteus mirabilis, Shigella flexneri, Escherichia coli and Enterobacter cloacae) 

and the values ranged from 8.75% (w/v) to 25% for tualang honey, while those for manuka honey ranged 

between 8.75% and 20% (w/v). The mics and mbcs reported by Henriques et al. [182] when challenging 

S. aureus NCTC to manuka honey were 2.9% (w/v) and 4.5% (w/v) as mean mic and mbc values, 

respectively. Against P. aeruginosa ATCC 27,853 the doses required of manuka honey were 9.5% (w/v) 

and 12% (w/v), mic and mbc respectively. 

Mic and mbc doses of 20% (w/v) and 40% (w/v), respectively were required when using manuka 

honey against biofilm forming strains of S. pyogenes MGAS6180 [183]. Against oral bacteria 

(Streptococcus mutans adhered on a glass substrate), Badet and Quero [184] reported a total inhibition 

of multi-species biofilm at the concentration of 200 μg/mL using manuka honey and a total biofilm 
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inhibition was reached at a concentration of 500 μg/mL. Propolis was much more effective against S. 

aureus and Escherichia coli compared with honey as reported by Rahman et al. [185]. These authors 

estimated that propolis at concentrations of 2.74 to 3.5 and 3.5 mg/mL is effective to inhibit S. aureus 

and E. coli, respectively. On the contrary, honey was effective to inhibit S. aureus at the concentration 

of 375 mg/mL but failed to inhibit E. coli growth at same concentration. 

Different Malaysian honeys were evaluated against S. aureus, Bacillus cereus, E. coli, and  

P. aeruginosa and compared using equivalent phenol concentrations (EPC) [186]. The results showed 

that gelam honey possessed lowest mic value against S. aureus with a 5% (w/v) mic and mbc of 6.25% 

(w/v). The highest mic values were shown by pineapple honey against E. coli and P. aeruginosa as well 

as acacia honey against E. coli with a 25% (w/v) mic and a 50% (w/v) mbc values. Agar inhibition assay 

showed kelulut honey to possess highest total antibacterial activity against S. aureus with 26.49 EPC 

and non-peroxide activity of 25.74 EPC. Lowest antibacterial activity was observed in acacia honey 

against E. coli with total activity of 7.85 EPC and non-peroxide activity of 7.59 EPC. 

The antimicrobial efficacy of conventional antiseptics has been reported against S. aureus (including 

MRSA), Enterococcus faecalis (including vancomycinresistant Enterococcus), Streptococcus pneumoniae, 

E. coli, P. aeruginosa, Clostridium perfringens, Haemophilus influenzae and Candida albicans using 

PVP-iodine, triclosan, chlorhexidine, octenidine and polyhexanide as conventional antiseptics used in 

wound treatment [187]. The results showed that for chlorhexidine, octenidine and polyhexanide, mic48 

and mbc24 ranged from 16 to 32 mg/L. Maximum values for triclosan ranged from 256 to 512 mg/L, 

with an efficacy gap against P. aeruginosa, while the maximum values of PVP-iodine were 1024 mg/L, 

with a gap against S. pneumoniae. Comparing the minimal effective concentrations, octenidine was the 

most effective. After 1 min, only octenidine and PVP-iodine fulfilled the requirements for antiseptics. 

We can conclude that, according to those reported data, honey shows mic and mbc values in the same 

order of magnitude than conventional antiseptics and potentially applicable after validation in clinical 

settings. As an example, commercially available dressings based on chemically treated honey are 

nowadays available in Europe [188]. 

5. Combination of Nanostructured Dressings with Essential Oils 

As we mentioned in the previous section, it was already demonstrated that some naturally occurring 

molecules have antimicrobial [137,151,153], anti-inflammatory [164,166,167] and regenerative 

properties [172–178]. From a fabrication point of view, besides the advantages already mentioned of 

these natural origin materials over antibiotics, their hydrophobicity allows an efficient combination with 

polymeric matrices often used as wound dressings [189]. Several strategies were used to load essential 

oils in dressings; the first is the modification of commercial wound dressing by immersion in active 

principle solutions; the second is the preparation of polymeric films containing those essential oils and 

the third one is their encapsulation into the polymeric fibers.  

5.1. Modification of Commercially Available Wound Dressings 

As previously mentioned (Section 4.1), honey impregnated dressings were tested by different 

researchers with controversial results [139,141–143,146], suggesting that the benefits of adding honey 

to dressings to reduce the rates of wound infection deserves further research. 
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Edwards-Jones et al. [38] impregnated aliquots of tea tree (Melaleuca alternifolia), patchouli 

(Pogostemon cablin), lavender (Lavendula officinalis), geranium and commercial grapefruit extract 

(Citridal™) and their combinations on the central area of either a gauze or Gamgee® dressing. The 

activity of individual oils and combinations against S. aureus were studied in an in vitro dressing model. 

Results showed that Geranium and Citricidal™ was the most effective combination against MRSA 

strains in the vapor phase, but this combination was not as effective against Oxford Staphylococcus. 

More recently this in vitro study was moved towards clinical trials by Chin et al. [190]. These researchers 

used the same dressing model with patients who had wounds infected with S. aureus. They found that 

all participants treated with tea tree oil, except one, showed accelerated healing times. The use of this 

essential oil in wound dressings appears to be a safe complementary treatment of abscessed wounds. 

These results suggest that there is, in this case, a correlation between in vitro models and in vivo 

scenarios. Since this was a small study (only 10 volunteers) a larger study controlling as many variables 

as possible is needed as we mentioned in our previous section. 

The effect of Valencian orange oil against MRSA was also evaluated in a dressing model [191].  

The orange oil was spotted into cotton dressing pads placed on Petri dishes seeded with MRSA and 

wrapped with a bandage as shown in Figure 6. The growth of MRSA strains was inhibited by the vapor 

released from the dressing pad and exhibited clear inhibition zones on agar plates (Figure 6f–h) 

demonstrating that essential oils can be applied as natural origin anti-MRSA agents on the outer layer of 

a dressing. 

 

Figure 6. Dressing model using an agar plate. (a) arrows indicate the cold pressed Valencia 

orange oil spots on gauze dressing pad; (b) complete setup of dressing model with gauze 

dressing pad wrapped with bandage. Untreated control plates of bacterial strains S. aureus: 

(c) COL; (d) Mu50; and (e). Inhibition of S. aureus: (f) COL; (g) Mu50; and (h) caused by 

the cold pressed Valencia orange oil [191]. (Copyright BioMed Central 2012). 

Budzynska et al. [192] modified the commercial dressing Sorbact® by its immersion in an essential 

oil solution (Melissa citrate indica, Pelargonium graveolens, Cymbopogon nardus and Eugenia 

caryophyllata) to evaluate its antimicrobial action. The dressing containing essential oils could keep 
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absorbed bacteria/fungi inside and efficiently limit their growth. As we mentioned before, in order to 

avoid the problem of the high volatility of the essential oils and to improve their stability they were 

combined with magnetite nanoparticles (MNP) [135]. The MNP functionalized with the essential oil of 

Anethum graveolens (AG) and SO were added to sterile rayon/polyester based wound dressing by 

immersion in a chloroform suspension and posterior drying. Both essential oils showed a significant 

decrease in C. albicans viable cell counts; they preferentially inhibited the early stages of biofilm 

formation (after 24 h) but also reduced the formation and development of mature biofilms. Due to the 

different release profiles of the two oils, the inhibitory effect of AG reached a maximum at 48 h while 

SO reached the maximum at 72 h. Both essential oils increased the resistance of the dressing to fungal 

colonization. The same group also proved that Satureja hortensis essential oil attached to MNP added 

to commercial dressing exhibited antimicrobial properties being more resistant to C. albicans fungal 

adherence and biofilm development [193]. Holban et al. [194] also had used magnetite nanoparticles to 

stabilize carvone, the major active compound found in Anethum graveolens essential oil. Textile wound 

dressings containing these functionalized nanoparticles significantly reduced microbial adherence and 

fungal mature Candida tropicalis biofilm formation for 72 h. 

Other strategies should be implemented to reduce the high volatility of the essential oils which  

might lead to a burst release of the antibacterial compounds. A sustained long-term release is necessary 

in order to employ these dressings during the healing process of different wounds and/or at different 

wound stages. 

5.2. Polymer Films and Foams Containing Essential Oils 

Another way to fix those essential oils to the dressings is their incorporation into polymeric films to 

prevent their evaporation and burst release. The load of the bioactive species into the films could be 

performed in a very simple way by casting a solution of the polymer and the essential oil choosing the 

appropriated surface chemistry to adsorb or chemisorb the essential oil into the polymer. 

In this regard, thymol, a monoterpene of the essential oil from Lippia gracilis, was mixed in a collagen 

solution in order to obtain a collagen-based containing thymol film. The dispersion was then casted and 

allowed to dry [195]. Sterilized pieces of the obtained films were tested to evaluate their anti-inflammatory 

effects on rats and mice. The results revealed that thymol significantly ameliorated inflammatory 

responses and possessed wound healing potential. The films promoted wound contraction in only 7 to 

14 days. Moreover, thymol induced a more regular and dense collagen arrangement of the granulation 

tissue fibrils/fibres, suggesting that this molecule might also favor fibroblastic proliferation and  

collagen deposition. 

Thymol was also used to load gelatin films to examine their antioxidant and antimicrobial  

action [196]. In this case, the films were also prepared by casting gelatin, glycerol as plasticizer, 

glutaraldehyde as cross-linker and thymol. The resulting gelatin films showed good mechanical 

properties and the presence of this natural origin monoterpene also increased the solubility and reduced 

the swelling and water uptake. Gelatin films incorporated with thymol exhibited excellent antioxidant 

and antibacterial properties. However, the same authors pointed out that further in vivo research is needed. 

Chitosan is another polymeric matrix that has been used to host thyme oil. Altiok et al. [197] 

incorporated this essential oil into chitosan films by solvent casting. Chitosan was selected because of 
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its demonstrated nontoxicity, biodegradability, biofunctionality, biocompatibility and depending on its 

deacetylation degree and molecular weight, antimicrobial characteristic. Tensile strength and Young’s 

modulus were reduced by the incorporation of thyme oil because of the resulting porous structure after 

the addition of the oil. But this porosity also leads to higher values of water vapor permeability and 

higher oxygen diffusion, properties that, as we mentioned before, are desirable during the wound healing 

process to maintain the moisture balance. The antimicrobial activity of the films was evaluated against 

four different pathogens: E. coli, Klebsiella pneumoniae, P. aeruginosa and S. aureus. The highest 

antimicrobial effect was achieved against K. pneumoniae at 1.2% (v/v) of thyme oil being the minimum 

concentration which prevents the growth of all selected microorganisms. Those films also showed 

antioxidant activity, although further studies are necessary to determine the cytotoxicity of the prepared 

films in order to confirm the potential of thymol loaded chitosan films as wound dressing materials. 

Sodium alginate (NaAlg) is also preferred as a construction material for wound dressing applications 

since it has shown wound healing properties [198]. Liakos et al. [199] blended Elicriso italic, chamomile 

blue, cinnamon, lavender, tea tree, peppermint, eucalyptus globulus juvenile, lemongrass, and lemon 

essential oils with NaAlg solutions containing also glycerol as plasticizer. Igepal, as surfactant, was also 

added to the solution in order to control and minimize the size of the highly hydrophobic essential oil. 

The resulting solutions were then cast onto glass slides to obtain the films. The antibacterial and 

antifungal activities of the prepared films were tested against E. coli and C. albicans. Cinnamon,  

tea tree, peppermint and lemongrass loaded films were able to inhibit the growth of C. albicans at all the 

concentrations studied (15%, 50% and 66%) and they were able to inhibit E. coli at the intermediate and 

highest concentrations. Lavender was able to inhibit both microorganisms at the intermediate and highest 

concentrations. Eucalyptus and lemon were incapable to stop the E. coli growth but lemon successfully 

inhibited the growth of C. albicans in all concentrations and eucalyptus in the intermediate and highest 

ones. Elicriso oil was found to be effective against fungal colonization only at the highest used 

concentration and chamomile blue was the only essential oil which was found to be ineffective against 

both E. coli and C. albicans in all the studied concentrations. 

Another polymer used to prepare films loaded with essential oil is PVA because this polymer shows 

excellent mechanical and barrier properties. Kavossi et al. [200] prepared PVA films incorporated with 

Zataria multiflora essential oil by casting. The resulting films showed antifungal activity against 

Paecilomyces variotii, Trichoderma harizanum, Aspergillus oryzae, and Aspergillus niger. The authors 

claimed that this oil is a good source of phenolic monoterpenes (thymol and carvacrol) that easily 

interfere with the phospholipids present in the cell membranes. 

The solution casting method to obtain polymeric films loaded with essential oils even if it is a 

relatively simple method can have some drawbacks including the use of organic solvents, low incorporation 

yields and resulting in heterogeneous dispersions. Dias et al. [201] proposed supercritical solvent 

impregnation to overcome most of these limitations. The use of supercritical carbon dioxide avoids the 

use of organic solvents and allows the possibility to work at low temperatures and with most of the 

polymeric matrices usually intended for wound dressings. Using this method they added quercetin and 

thymol as bioactive compounds to natural-based polymeric matrices: N-carboxybutylchitosan (CBC) 

and agarose (AGA). CBC films and foams of both polymers were prepared by solvent casting and freeze 

drying, respectively. These foams and films were loaded with a high pressure mixture of bioactive 

compound supercritical CO2 and a co-solvent (ethanol). The in vitro study revealed that all quercetin/thymol 
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was released during a 9 h period. As expected, the higher porosities of foam-like structures permitted 

the loading of higher amounts of the essential oils and an increased available surface area. The systems 

presented adequate water vapor adsorption and transmission rates that were in the range required during 

wound healing. 

5.3. Fiber-Based Mats 

Wound dressings composed of polymer woven or non-woven microfibers or nanofibers (natural 

origin and synthetic) have received significant interest because of their outstanding characteristics [202,203] 

but just a few of the reported materials incorporate essential oils in their formulation. 

Alginate fibers produced by wet spinning were loaded with eucalyptus essential oil by doping the 

spinning solution of alginic acid with the bioactive compound [204]. Divalent cations (Ca2+) were used 

in the coagulation bath to cross link the alginic acid polymer chains by the formation of junction zones 

(egg-box model). The antibacterial activity of the resulting fibers was confirmed against S. aureus. 

PCL and PLA nanofibrous mats loaded with thymol were prepared by Karami et al. [205] by 

dissolving the polymers in a mixture of chloroform and dimethylformamide together with thymol.  

The authors found that thymol acts as plasticized and rearranged the polymer chain layer leading to a 

decrease in the viscosity of the polymer solution and, as a consequence, the average nanofiber diameter 

was reduced. Due to the limited solubility of thymol in the electrospun polymer solutions only 1.24% 

v/v of herbal drug could be loaded in the fibers. A bimodal release profile was observed: in the first  

12 h there was a burst release, following by a gradual drug release observed up to 48 h. The antibacterial 

evaluation of the hybrid mat carried out via the disc diffusion method resulted in the formation of 

inhibition zones of 10.4 and 7.8 mm against S. aureus and E. coli, respectively. The performance of the 

PCL/PLA mat containing thymol in an in vivo rat wound healing model showed a faster healing than 

when using a Comfeel® Plus commercial dressing. This improvement in the healing process was 

attributed to the water vapor permeability of the electrospun mats (3–4 mg/cm2h−1) compared to the not 

permeable commercial material (Figure 7). 

 

Figure 7. Cont. 
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Figure 7. (a) Photographs obtained from wounds covered with (A) gauze, (B) Comfeel® 

Plus, and (C) electrospun PCL/PLA (50/50) nanofibrous mats containing thymol at different 

times: 1, 3, 7, 10, and 14 days. (b) Degree of closure (%) for wounds treated with gauze, 

Comfeel Plus, and electrospun PCL/PLA (50/50) nanofibrous mats containing thymol after 

days of post-treatment [205]. (Copyright Jonn Wiley & Sons 2013) 

Cinnamon, lemongrass, and peppermint essential oils were encapsulated in electrospun cellulose-based 

nanofibers [189]. Solutions of the cellulose acetate and the essential oils in acetone were electrospun to 

obtain the loaded fibers. Antimicrobial assays using E. coli demonstrated that fibers encapsulating  

6.2 and 25 wt. % of essential oils were able to effectively stop upon contact the proliferation of E. coli. 

The comparison of the bactericidal activity of the resulting fiber mats versus planar films showed that 

the fibrous network strongly enhances the antibacterial effect against E. coli (~1.5 µm in diameter) [200]. 

However, against C. albicans (~4 µm in diameter), even with a 40 w/w % of essential oils in the cellulose 

acetate solution was not capable to successfully inhibit their growth. According to the authors, E. coli 

was able to penetrate inside the fiber matrix (empty space around 2–10 µm) and get in direct contact 

with the antibacterial material, while C. albicans cells did not penetrate inside the mesh of the mat and 

therefore they were only in contact with the outermost layers. The biocompatibility of the mats was 

evaluated using two in vitro cell models: immortalized fibroblasts and normal human keratinocytes.  

The unloaded fibers mats exhibited high cell compatibility and no cytotoxicity at the doses tested and 

the morphological analysis revealed that the cells can attach and spread on the fibers’ surface. But a 

reduction in the cell viability was observed for essential oil loaded fibers due to the anti-proliferative 

effect of the compounds against eukaryotic cells [206,207]. 

6. Conclusions 

Wounds are undoubtedly a severe problem for patients’ health and quality of life as well as for the 

health care system. The chronicity of a wound is usually derived of previous pathologies which hamper 

wound healing. The basic concept of tissue, infection/inflammation, moisture, and edge of wound 

remains as the best care in order to speed up the natural healing process. Nowadays, wound care 

practitioners are aware of the importance of both wound examination and assessment of the general 

health status of the patient to achieve successful wound healing. 
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Topical wound dressings play an important role in the wound management and their therapeutic 

availability has increased remarkably in the past years. However, in spite of wide variety of existing 

dressings (passive, interactive and bioactive) on the market, there is not any wound dressing that fulfills 

all the requirements to be applied in the different stages of wound healing. Therefore, the search for an 

ideal dressing continues to be a challenge in the tissue engineering field. Novel strategies in wound repair 

are currently centered on the development of 3D scaffolds with structural and biochemical similarity to 

the natural ECM. Nanotechnological advancements have allowed creating materials and devices that are 

overcoming some of the limitations of the current dressings. Thus, nanofibrous scaffolds made of natural 

origin and/or synthetic polymers hold great potential for wound dressings because of their unique 

properties such as high surface area to volume ratio, adequate porosity, and biocompatibility. 

Electrospinning has become the most used technique for the fabrication of nanodressings due to its 

simplicity and versatility. The loading of different types of therapeutic compounds such as drugs, 

biomacromolecules or other natural origin compounds with antimicrobial, anti-inflammatory or 

regenerative properties in those nanofibers is attracting much attention because of the possibility to 

improve the current bioactive dressings with the perspective of achieving better therapeutic alternatives 

to non-healing wounds, which also might fulfil the reduction of adverse side effects and the protection 

against wound infection. 

Microbially compromised wounds have been treated with different essential oils, honey, cationic 

peptides, aloe vera, plant extracts, and other natural occurring antimicrobial, anti-inflammatory, and 

regenerative molecules but the available evidence is limited and insufficient to be able to draw reliable 

conclusions and to extrapolate those findings to the clinical practice. Instead of talking about the 

beneficial or inert effects of those natural occurring materials the scientific community directs towards 

the identification of the main active components involved and their mechanism of action during the 

healing, antimicrobial, or regenerative processes and in carrying out systematic and comparative 

controlled tests. For many of those components the scientific basis behind which support the beneficial 

effect at a molecular level still needs to be addressed. The evidence and some promising preliminary 

results indicate that future comparative studies are justified. However, some of the clinical trials reported 

are biased due to the lack of methodology during the tests. Also, several factors that have not been, in 

many cases, previously considered should be taking into account in those future studies including the 

healing kinetics, the wound type, chronicity, the moment to apply the therapeutic compound, the 

condition of the patients, origin, age, combinatory effects, contact time, the bacterial strain present, etc. 

Double-blinded multi-center randomized placebo-controlled trials are needed to reach a sufficient level 

of evidence and to generate new practices to extrapolate those findings to the clinical practice. 

The modification of commercial dressing with essential oils and honey has proven to provide them 

with bactericidal and antifungal properties that would favor the wound healing process. However, these 

materials cannot solve the problem of the high volatility of the EOs that severely limit the effectiveness 

of the dressing. Some attempts to increase the stability of EOs were carried out using magnetic 

nanoparticles to anchor them to the dressing showing good results. A more effective way to control the 

releasing of the bioactive compounds necessary to the healing process of different wounds and/or at 

different wound stages would be the encapsulation in the polymeric matrix constituting the dressings. 
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