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Abstract: In manufacturing processes involving diffusion (of C, N, S, etc.), the evolution of the layer
depth is of the utmost importance: the success of the entire process depends on this parameter.
Currently, nitriding is typically either calibrated using a “post process” method or controlled via
indirect measurements (Hy, O,, HyO + CO,). In the absence of “in situ” monitoring, any variation in
the process parameters (gas concentration, temperature, steel composition, distance between sensors
and furnace chamber) can cause expensive process inefficiency or failure. Indirect measurements can
prevent process failure, but uncertainties and complications may arise in the relationship between the
measured parameters and the actual diffusion process. In this paper, a method based on noise and
fluctuation measurements is proposed that offers direct control of the layer depth evolution because
the parameters of interest are measured in direct contact with the nitrided steel (represented by the
active electrode). The paper addresses two related sets of experiments. The first set of experiments
consisted of laboratory tests on nitrided samples using Barkhausen noise and yielded a linear
relationship between the frequency exponent in the Hooge equation and the nitriding time. For the
second set, a specific sensor based on conductivity noise (at the nitriding temperature) was built for
shop-floor experiments. Although two different types of noise were measured in these two sets of
experiments, the use of the frequency exponent to monitor the process evolution remained valid.

Keywords: diffusion; furnace; magnetic; manufacturing; nitriding; sensors; temperature;
thermo-chemistry

1. Introduction

In the manufacturing of aircraft and automotive components, bearings, turbines, and other
products, the nitriding process plays an important role [1,2] in ensuring dimensional stability. This is
because there is no significant change in size at the structural level and only slight volumetric changes
occur at the surface because of the diffusion of nitrogen [3,4].

The structure and chemical composition of nitrided surface layers is controlled by tuning the
nitriding conditions, namely, the temperature and composition of the reactive gas. Currently, nitriding
is typically controlled either using a “post process” method or via indirect measurements (H, O,
H,0 + CO,). The operating principle of a hydrogen probe is based on the thermal conductivity of
H;. When oxygen is the monitored substance, its partial pressure is measured. Several types of
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sensors have been developed based on these two measurement principles. This paper presents a novel
principle for monitoring the nitriding process using noise and fluctuations.

The physical nature of noise is related to physical values that define the macroscopic condition of
materials, which are random variables because of the microscopic movements of atoms and molecules.
The fluctuations of these values result in “parasitic” signals called electronic noise. The fluctuations of
a single physical value give rise to a type of noise called elementary noise [5,6]. The primary physical
parameters whose fluctuations generate elementary noise are electric charge, electric current, electric
polarization, magnetization, and number of carriers.

Methods of studying noise originally emerged primarily as a practical necessity for achieving
electronic circuit components that offer high performance in terms of their noise characteristics.
The investigation techniques used to analyze these types of noise have since been extended from
the study of fluctuations in electric circuits to the study of fluctuations in the physical parameters
mentioned above. This extension is related to the fact that the fluctuations in the parameters
that describe macroscopic physical systems may reveal various properties of those systems that
cannot be derived by studying only the average parameter values. As a result, novel methods of
researching the properties of certain materials and their fluctuations have emerged and have witnessed
significant developments. Our team is recognized as the often-cited pioneers of the analysis of LED
fluctuations [7].

The first researchers to suggest measuring noise to obtain information on materials after processing
were Neri, Gotwald, and Szentpali [8]. Observations of conductivity noise in polymers have
demonstrated that the noise spectrum is sensitive to the chemical environment [9]. A low-noise
cantilever deflection sensor has been shown to increase the sensitivity limit of classical measurement
techniques based on thermal Brownian motion. Molecular-resolution Atomic Force Microscope
images of polydiacetylene single crystals showing insensitivity to the environment (air, vacuum or
water) were reported. These authors obtained a more selective response from metallic oxide gas
sensors using noise spectroscopy. The conductance of these sensors has a cut-off frequency that is
four orders of magnitude lower than that achieved when mobility fluctuations are not considered.
To increase chemical sensitivity, fluctuation-enhanced sensing (FES) was developed, in which the noise
of a carbon-nanotube-based sensor is treated as a source of chemical information.

For the present study, from among the multitude of possible fluctuations (in balance, imbalance,
ambient atmosphere, etc.), 1/f noise was chosen. Although a considerable number of tests and
models have been described [10,11] to explain 1/f noise, none has received unanimous recognition.
The spectrum of this type of noise was empirically described by Hooge as shown below:

S1(w) _ Su(w) _ Ciy
s upb - fm
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where [ is the current (A), U is the voltage (V), f is the frequency (s71), S; (w) is the power spectrum of
the current fluctuations, Sy (w) is the power spectrum of the voltage fluctuations, Cy /¢ is the noise
constant, and m is the frequency exponent. Here, C1,f = /N, where « is a dimensionless constant
(x ~2 x 1073), and N is the total number of charge carriers; however, this expression is questioned by
researchers.

An apparently generally accepted notion concerning 1/f noise is that it represents fluctuations in
conductivity. The nitriding sensor presented in the paper for real-time process monitoring is based on
this property.

Regarding the theory of electronic noise caused by fluctuations, researchers generally accept the
following expression [7,8]:

C
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where S, (f) is the noise power spectrum density, and the exponent m is the slope of the regression
line of the spectral analysis curve for the acquired signal. In our nitriding experiments, the goal was to
determine this slope and to plot it against the nitriding time. As a result of these experiments, a linear
relationship between the exponent m and the nitriding time was derived.

2. Materials and Methods

Steel samples (35CrNiMO06) nitrided in a chamber furnace were used in laboratory investigations
conducted to determine whether the frequency exponent m could be measured from the Barkhausen
noise [12-14]. Barkhausen noise appears when samples are subjected to low-frequency variable
magnetization in a hysteresis cycle (passing through saturation). Barkhausen noise is a non-stationary
process. To obtain data on the magnetization dynamics, the excitation frequency f must be much
lower than the lowest frequency measured in the noise spectrum. Under circumstances fulfilling this
condition, the shape of the noise power spectrum turns out to be independent of the oscillation speed
of the field. In this study, to ensure the accuracy and stability of the measurements, the noise signals
were synchronized with the excitation signals (magnetization cycle) applied to the samples. The noise
signals induced by the excitation signals were measured for 20 to 200 cycles. Error calculations
performed based on these tests indicated that a measurement duration of 40 cycles was sufficient to
ensure the accuracy and reproducibility of the measurements.

Because the nitriding process changes the composition of the surface layer of a treated sample,
preliminary tests were run using Barkhausen noise. As shown above, the frequency exponent m and
the noise constant « vary linearly, and this relationship may be used to monitor the diffusion process.

Here, a comment on the morphological complexity of the nitrided layer is required.
The Barkhausen signals from a material are known to depend on its crystalline microstructure.
Steels subjected to nitriding contain pearlite and ferrite, and Barkhausen noise is sensitive to these
constituents. For the ultimate goal of the laboratory tests—namely, finding a noise parameter
that enables the monitoring of the diffusion of nitrogen—this sensitivity could be a disadvantage.
Consequently, in the laboratory tests, efforts were made to ensure that all parameters that could
influence the Barkhausen were kept constant: a single type of steel, a single type of heat treatment
process, a single nitriding temperature, and a single diffusion length were chosen. The surface
morphology was found to remain reasonably constant, showing a white porous layer and diffusion
areas with segregated regions of iron nitrides. The existence of these regions indicated an increase
in the volume of the diffusion layer with respect to the core, leading to the emergence of internal
tensions, to which the Barkhausen noise is also sensitive. An attempt was made to select samples
of similar morphology and similar tensions in the diffusion layer to ensure that only nitriding
noise-affecting parameter would need to be considered. At no time was building a final sensor
based on Barkhausen noise considered due to the sensitivity of this type of noise to layer morphology
and tension. In addition, the magnetization processes that occur at higher temperatures were also
considered an impediment because of the resultant changes in the magnetic characteristics of the
steel. All of these considerations led to the decision to design a sensor based on conduction noise;
in such a sensor, the electrode impedance will typically remain constant and will not change unless the
composition of the electrode surface changes as a result of diffusion. The experimental setup shown in
Figure 1 was used to measure the Barkhausen noise.

The system was composed of a “Unipan 237” nano-voltmeter calibrated for low-frequency
noise, a sinusoidal field generator operating at a frequency of 0.2 Hz throughout the hysteresis
curve, an M61WK pre-amplifier, a data acquisition card, and a PC running the LabVIEW graphical
programming software. A spectrum analyzer (SRS780, Stanford Research Systems, Inc., Sunnyvale, CA,
USA) with two pre-amplifiers was also included for regression-based spectral analysis. The spectral
analysis of the signals yielded a linear regression curve approximating the overall range of the acquired
signals. The chemical composition of the specimens is presented in Table 1.
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Figure 1. Laboratory setup for Barkhausen noise measurements [14].
Table 1. Specimen composition and diffusion regime.
Composition of the Steel Used in the Barkhausen Experiments
Element %C %Si %Mn %P %S %Cr %Mo %Al %Ni
35CrNiM06  0.32-0.39 0.1-0.5  0.5-0.8 Max0.03 Max0.035 1.3-1.7 015030 - 1.3-1.7
Diffusion regimes used in the experiments
35CrNiM06 sample (under a protective gas flow of 9 m3/h)
Nitriding time (min) 80 100 160
Diffusion layer (mm) 0.3100 0.3800 0.4500
White layer (mm) 0.0130 0.0140 0.0180
White porous layer (mm) 0.0065 0.0025 0.0080

The results of the nitriding treatments were determined by slicing each test sample and then
determining the penetration depth of the nitrogen into the surface layer by measuring its Vickers
microhardness. The nitriding depth was defined as the depth at which the hardness (in units of HV)
was 50% greater than that of the core. Regarding the microstructure (Figure 2), the thicknesses of the
white layer and the white porous layer were also measured. The results obtained for 35CrNiMO06 steel
samples are shown in Table 1 (the microstructures of other materials differ in their specific values but
not in their qualitative microstructural characteristics).

Diffusion layer White porous layer (mm) White layer

Figure 2. The microstructure of the surface of a 35CrNiMo06 steel sample after nitriding (etched with
2% nital, 500 x magnification).
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The soaking time during nitriding was treated as the independent variable, whereas the dependent
variable was the frequency exponent m. The relationship between these two variables was determined
in two sets of experiments (Figure 3):

(a) All samples were simultaneously introduced into the furnace, which was programmed for a single
nitriding cycle, and the samples were removed after various treatment times;
(b) The samples were individually treated in complete cycles of various durations.

A linear dependence of the frequency exponent on both the nitriding duration and the penetration
depth is apparent (Figure 3c).

Frequency exponent m Frequency exponent m
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Figure 3. (a,b) The dependence of the frequency exponent on the treatment duration and the nitriding
depth (a) when the samples were treated during the same cycle and were successively extracted
and (b) when the samples were treated in independent cycles with different durations; (c) The linear
dependence of the frequency exponent on the nitriding depth.

3. Results and Discussion

Based on the preliminary results presented above, the in situ thermal diffusion process was
studied. Because of the uncontrollable response of steel to magnetic excitation near the selected
nitriding temperature of 580 °C, conductivity noise was used instead of Barkhausen noise. The sensor
consisted of two active electrodes (made of steel being subjected to nitriding) and two passive reference
electrodes (made of stainless steel that had been nitrided to saturation for 56 h) (Figure 4).

The conductivity noise measured at the passive electrodes was not influenced by the diffusion
process, whereas the noise measured at the active electrodes varied as a function of diffusion.
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The distinctive characteristic of this system is its relation to the properties of the nitriding atmosphere,
which consists of atoms and ions and thus conducts electrical signals and creates an electrical circuit
(see the arrows in Figure 4b). Because of the nature of this electrical circuit, the electrodes were placed
as close to each other as possible using a gauged ceramic disk, which also isolated the electrodes from
one another (Figure 4a). This system was positioned (Figure 4c) in the flange of a vertical nitriding
furnace (Figure 4d).

The external connections of the system were cooled to a temperature acceptable for connection to
the measuring instruments. The complete unit, including the cover, electrodes, polarization devices,
equipment, etc., is depicted in Figure 4d. The system, consisting of the electrodes and polarization
devices, was connected to a two-channel dynamic signal analyzer (SRS780, Stanford Research Systems,
Inc.) and an potentiostat/galvanostat (EcoChemie Autolab PGSTAT30, Utrecht, The Netherlands).
Computer control was implemented by means of an application developed in LabVIEW (Figure 5).

The four electrodes could be polarized by a direct current at a voltage between 3 V and 18 V
(in steps of 3 V). The electrode polarization system was shielded to reduce the network noise along the
signal path. The measurement system (Figure 5) provided a means of signal analysis (FFT analysis)
using a Stanford Research SRS780 dynamic analyzer, simultaneously covering the levels of the reference
electrodes and those of the electrodes measuring the progress of the nitriding process. The noise
spectrum in the range of 16-2000 Hz was recorded at hourly intervals.

Passive Active
Electrodes Electrqdes

() (d)

Figure 4. Sensor design: (a) experimental construction; (b) operating principle; (c) sensor in the flange

prior to assembly in the furnace; and (d) furnace assembly for the experiment.
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Figure 5. Real-time measurement system: (a) the measurement scheme; (b) the noise spectrum after
one hour of nitriding; and (c) the noise spectrum after six hours of nitriding.

To ensure a sufficiently high surface area for ammonia dissociation, the furnace was charged with
a ballast composed of pipes with clean surfaces defatted with alcohol. After the chamber (Diameter,
D =0.2m, height, H = 0.5 m, Volume, V = 0.0157 m?3) was sealed, it was flushed with a nitrogen
flow of 150 L/h for 30 min. Once the oven had reached 300 °C, a flow of ammonia (50 L/h) was
supplied. Once a temperature of 520 °C was reached, the dew point had dropped below 20 °C;
consequently, the intensity of the reduction reactions began to decrease. After 1.5 h at this temperature,
the atmosphere in the furnace contained ammonia and dissociated ammonia (2NH3 = N, + 3H>).
The nitriding potential, which was defined based on the composition and morphology of the desired
white layer, was adjusted by increasing or reducing the flow of ammonia. At the end of the process,
the treated batch was cooled along with the oven while maintaining the flow of ammonia down to
a temperature of 400 °C to produce a shiny metal surface. Before the furnace was opened, it was
flushed with nitrogen at a flow rate equal to five times the volume of the oven. For safety reasons,
during the process, the oven was maintained at a pressure 0.5-1.5 mbar greater than that of the
environment using a super-pressure valve.

Figure 5b,c shows clean spectra of the 1/f type, corresponding to frequency index values of 0.92
for 1 h of nitriding (Figure 5b) and 1.66 for 6 h of nitriding (Figure 5c). Table 2 presents the parameters
of the noise spectra measured over 8 h of diffusion at intervals of 1 h. Simultaneously, the impedances
of the noise-normalization electrodes were measured using the PGSTAT30. The LabVIEW software
enabled the readout of the noise spectra and the calculation of the noise parameters (i.e., the noise
constant Cy /s and the frequency exponent m for various nitriding stages) (Table 2).

The graphical presentation of the normalized noise (Figure 6b) shows that early in the diffusion
process, when microstructural changes insignificantly affected the measured impedance values, there
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is a large spread of the measured points around the regression line. As the process continues,
microstructural modifications become more important (the nitrogen content in the surface layer
increases, changing the microstructure and, consequently, the noise values). The distance between the
points and the regression line diminishes, representing a continuous increase in measurement accuracy.
The graphical presentation of the variation in the frequency exponent m as a function of the nitriding
time (Figure 6¢c) shows the same phenomenon. The linearity of the behavior is maintained, thereby
confirming the validity of the experiments based on Barkhausen noise, a finding of utmost importance.

Table 2. Measured noise and fluctuation parameters.

Sensor

Figure 6. Variations in noise/fluctuations with the nitriding time: (a) impedance; (b) normalized noise;

(c) normalized noise exponent.
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Conclusions

An experiment was conceived to investigate the possibility of using electronic noise and
fluctuations as a means of tracking in situ diffusion processes in general and the nitriding process
in particular.

A material undergoing a diffusion treatment will exhibit a permanent change in impedance due
to changes in the chemical composition of its surface layer (in the specific case considered in this
paper, these changes are caused by an increase in the amount of nitrogen in this layer). This change
in impedance causes the conduction noise to be proportional to the amount of diffused nitrogen,
which was the main motivation for this project.

The proposed sensor is a circuit consisting of four electrodes. The reference electrodes consist
of a material whose chemical composition will not be further modified by diffusion treatment.
The other two electrodes, made of the same steel as that of the furnace charge, will exhibit changes
in impedance, thereby allowing the conduction noise of the circuit formed by the electrodes
(a circuit that is closed by the atmosphere of the furnace) to be recorded and calibrated as
a function of the amount of diffused nitrogen.

Experiments proved that the frequency exponent m that was selected as the parameter to be
measured to evaluate the evolution of the nitriding process is a reliable tool for this purpose
because of its sensitivity to nitrogen-diffusion-induced microstructural changes.

The linear relationship between the frequency exponent m and the diffusion progress offers good
accuracy in predicting the quantity of diffused nitrogen, a useful parameter for monitoring the
rather sophisticated process of nitriding.

The extension of the noise analysis from magnetic excitation (Barkhausen noise) to conduction
noise has proven to be highly reproducible.

Future research should address the correlation between the microstructures formed as a result
of diffusion and the electrical signals generated by the sensor. We expect that the proposed
measurement technology will enable not only the monitoring of the evolution of the nitriding
process but also the prediction of the microstructure that will result from the nitriding treatment
(compound layer, porosity, etc.).
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