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Abstract: This study presents the fabrication and improved properties of an AlGaAs/InGaAs
metal-oxide-semiconductor pseudomorphic high-electron-mobility transistor (MOS-PHEMT) using
liquid phase deposited titanium dioxide (LPD-TiO2) as a gate dielectric. Sulfur pretreatment and
postoxidation rapid thermal annealing (RTA) were consecutively employed before and after the
gate dielectric was deposited to fill dangling bonds and therefore release interface trapped charges.
Compared with a benchmark PHEMT, the AlGaAs/InGaAs MOS-PHEMT using LPD-TiO2 exhibited
larger gate bias operation, higher breakdown voltage, suppressed subthreshold characteristics,
and reduced flicker noise. As a result, the device with proposed process and using LPD-TiO2 as
a gate dielectric is promising for high-speed applications that demand little noise at low frequencies.
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1. Introduction

The performances of GaAs-based pseudomorphic high-electron-mobility transistors (PHEMTs)
have drastically been improved, and have already been extensively used in both low-noise and
high-power applications at microwave and millimeter-wave frequencies [1–4]. However, microwave
device manufacturing is still being challenged to achieve high uniformity, high yield, and reliable
stability. Hartnagel et al. [5] and Huang et al. [6] describe that major noises in PHEMTs contain
thermal noise, shot noise, hot-electron noise, and generation-recombination noise. Shot noise related
to the Schottky barrier affects the gate leakage current, and plays an important role in low-noise
applications. Hot-electron noise, caused by energetic random electron motion, is associated with
impact ionization. Electrons gain energy from supplied electric field and can be randomized by optical
phonons, intervalley scattering. If electrons gain enough energy, they can collide with electron–hole
pair or impurity and start ionization process. Impact ionization creates current fluctuations and thus is
one of the strongest electronic noise sources. Generation-recombination noise induced by the surface
recombination centers or defects at the gate terminal/Schottky layer interface can increase the ideality
factor, and also produce traps that can contribute to flicker noise. Thus, the Schottky-gate PHEMTs
have limited gate leakage current and noise performance levels.

High-κ materials are widely employed as insulators growing on semiconductor to fabricate
metal-oxide-semiconductor (MOS) gates for larger gate swing voltages and lower leakage currents [7–9].
Titanium dioxide (TiO2) is one of the commonly applied high-κ insulators in the semiconductor
industry. Numerous methods have been used to successfully deposit TiO2 films, such as low-pressure
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chemical vapor deposition (LPCVD) [10], plasma-enhanced chemical vapor deposition (PECVD) [11],
sputtering [12], electron beam evaporation [13], sol-gel deposition [14], and liquid phase deposition
(LPD) [15]. Among those methods, LPD is favorable for its low-cost and low-temperature process.
LPD-TiO2 films have respectively been demonstrated on InP [16], polysilicon [17], glass [18], GaN [19],
and AlGaAs [20]. We also previously conducted a preliminary study of LPD-TiO2 on AlGaAs without
pretreatment [20], and made the LPD-TiO2 more compact through sulfide pretreatment [21] and
postoxidation rapid thermal annealing (RTA) [22]. However, the low-frequency noise and microwave
characteristics of AlGaAs/InGaAs MOS-PHEMT prepared with both ammonium-sulfide-pretreated
AlGaAs and postoxidation RTA have not been investigated yet. In this study, an AlGaAs/InGaAs
MOS-PHEMT using LPD-TiO2 as a gate dielectric after sulfide pretreatment and postoxidation RTA
was fabricated, and dc characteristics and microwave performance were discussed.

2. Experimental

The proposed device structures were grown through metal-organic chemical vapor deposition on
a semi-insulating GaAs substrate. The buffer layer consisted of a 100 nm layer of i-GaAs, followed by
a 250 nm layer of i-Al0.2Ga0.8As, and a 60 nm layer of GaAs. A 10 nm layer of Al0.2Ga0.8As with a Si
doping density of 4.5 × 1017 cm−3 and a 2 nm i-Al0.2Ga0.8As spacer layer were then grown on the
buffer layer, followed by a 14 nm i-In0.15Ga0.85As channel layer, a 2 nm i-Al0.2Ga0.8As spacer layer,
a 18 nm Al0.2Ga0.8As donor layer with a Si doping density of 1.2 × 1018 cm–3, a 70 nm Al0.2Ga0.8As
Schottky layer with a Si doping density of 1 × 1017 cm−3, and a 60 nm GaAs cap layer with a Si doping
density of 5 × 1018 cm−3. Hall measurements showed that the electron mobility was 5900 cm2/V·s
and the electron sheet density was 2.1 × 1012 cm−2 at 300 K.

Wafers were first cleaned using acetone, methanol, and H2O for 5 min with each solvent.
A NH4OH:H2O2:H2O (=3:1:50 by volume) solution was used to perform mesa etching, which reached
the GaAs buffer layer. Ohmic contacts composed of a 400 nm layer of Au/Ge/Ni alloy (84:12:4 by
weight) were deposited through evaporation and then patterned through lift-off processes, followed by
RTA at 380 ◦C for 30 s. After the cap layer and part of the Schottky layer had been etched using the same
etchant, the wafer was immediately dipped into a 5% (NH4)2Sx solution for 10 min. For the referenced
PHEMT, Au was deposited directly on the sulfide-treated AlGaAs of the Schottky layer. For the
MOS-PHEMT, following the (NH4)2Sx pretreatment, the LPD-TiO2 was applied on the sulfide-treated
Schottky layer at 40 ◦C [19]. Oxide thickness was approximately 30 nm after postoxidation RTA at
350 ◦C for 1 min. Finally, the gate electrode was formed through lift-off with Au on the oxide layer.
Figure 1 shows the structures of the referenced PHEMT and MOS-PHEMT. The gate length, gate width,
and the drain-to-source spacing are 1 µm, 100 µm, and 5 µm, respectively. In addition, the oxide
passivated the etched isolated surface wall simultaneously. Microwave on-wafer measurements were
conducted from 0.45 to 50 GHz in a common-source configuration by using an Agilent E8364A PNA
network analyzer at 300 K.
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3. Results and Discussion

Figure 2a shows the X-ray diffraction (XRD) patterns of the LPD-TiO2 that was deposited on
the sulfide-pretreated AlGaAs with and without postoxidation RTA for 1 min. The XRD patterns
did not show peaks corresponding to the anatase or rutile phases when the annealing temperature
was raised to 400 ◦C. The results indicate that the LPD-TiO2 lacked sufficient energy to form a single
phase or a polycrystal phase at temperatures no greater than 400 ◦C during the annealing process.
Figure 2b shows the 1 MHz capacitance-voltage (C-V) characteristics of the referenced PHEMT and the
MOS-PHEMT. The capacitance of the MOS-PHEMT was lower than that of the PHEMT, because the
LPD-TiO2was in series with the PHEMT. The relative dielectric constant (εr) of the LPD-TiO2 can be
calculated using the following equation:

COX =
εr · ε0 · A

tOX
(1)

where COX is the capacitance of the LPD-TiO2, ε0 is the permittivity of free space, A is the metal
plate area, and tOX is the oxide thickness. The calculated εr of the LPD-TiO2was approximately 21,
fitting the range of amorphous TiO2, which was comparable to the εr value (24.4) for GaN using the
same method [19] and to the εr value for polysilicon found by other group [17].

Materials 2016, 9, 861 3 of 9 

 

3. Results and Discussion 

Figure 2a shows the X-ray diffraction (XRD) patterns of the LPD-TiO2 that was deposited on the 
sulfide-pretreated AlGaAs with and without postoxidation RTA for 1 min. The XRD patterns did not 
show peaks corresponding to the anatase or rutile phases when the annealing temperature was raised 
to 400 °C. The results indicate that the LPD-TiO2 lacked sufficient energy to form a single phase or a 
polycrystal phase at temperatures no greater than 400 °C during the annealing process. Figure 2b 
shows the 1 MHz capacitance-voltage (C-V) characteristics of the referenced PHEMT and the MOS-
PHEMT. The capacitance of the MOS-PHEMT was lower than that of the PHEMT, because the LPD-
TiO2was in series with the PHEMT. The relative dielectric constant ( r ) of the LPD-TiO2 can be 
calculated using the following equation: 

OX

r

t
A

 0
OXC 

 (1) 

where COX is the capacitance of the LPD-TiO2, 0  is the permittivity of free space, A is the metal 

plate area, and OXt  is the oxide thickness. The calculated r  of the LPD-TiO2was approximately 21, 

fitting the range of amorphous TiO2, which was comparable to the r  value (24.4) for GaN using the 

same method [19] and to the r  value for polysilicon found by other group [17]. 

(a) (b)

Figure 2. (a) XRD spectra of LPD-TiO2 deposited on sulfide-pretreated AlGaAs with and without 
postoxidation RTA; (b) C-V comparison for sulfide-pretreated PHEMT and MOS-PHEMT with 
postoxidation RTA. 

Figure 3a,b shows the transconductance (gm) and the drain current density (ID) as functions of 
the gate-to-source voltage (VGS) at a drain-to-source voltage (VDS) = 2 V. The maximum gm values were 
170 mS/mm and 132 mS/mm for the referenced PHEMT and the MOS-PHEMT, respectively. 
However, the gate voltage swing (defined by a 10% reduction of the maximal gm) was 0.8 V for the 
MOS-PHEMT, which was higher than that of referenced case. The insets show the related ID-VDS 
characteristics for both devices. The maximal VGS of the MOS-PHEMT was larger than that of the 
referenced PHEMT because the MOS-PHEMT had a higher energy barrier between the metal gate 
and AlGaAs Schottky layer. The maximal ID was approximately 270 mA/mm at VGS = 0.5 V and VDS = 2 V 
for PHEMT. However, the maximal ID was approximately 200 mA/mm at VGS = 0.5 V and VDS = 2 V, 
and 420 mA/mm at VGS = 4 V and VDS = 6 V for MOS-PHEMT. The MOS-PHEMT saturation current 
was less than that of the referenced case at the same VGS because of the voltage drop of the LPD-TiO2 

underneath the metal gate. However, it was able to induce carriers VGS from 0.5 to 4 V within the 
channel. By the way, the notable difference of the threshold voltages (Vth) between capacitor and 
PHEMT is owing to the different depth of gate recess by wet etchant from different batches. 

Figure 2. (a) XRD spectra of LPD-TiO2 deposited on sulfide-pretreated AlGaAs with and without
postoxidation RTA; (b) C-V comparison for sulfide-pretreated PHEMT and MOS-PHEMT with
postoxidation RTA.

Figure 3a,b shows the transconductance (gm) and the drain current density (ID) as functions of
the gate-to-source voltage (VGS) at a drain-to-source voltage (VDS) = 2 V. The maximum gm values
were 170 mS/mm and 132 mS/mm for the referenced PHEMT and the MOS-PHEMT, respectively.
However, the gate voltage swing (defined by a 10% reduction of the maximal gm) was 0.8 V for the
MOS-PHEMT, which was higher than that of referenced case. The insets show the related ID-VDS

characteristics for both devices. The maximal VGS of the MOS-PHEMT was larger than that of the
referenced PHEMT because the MOS-PHEMT had a higher energy barrier between the metal gate and
AlGaAs Schottky layer. The maximal ID was approximately 270 mA/mm at VGS = 0.5 V and VDS = 2 V
for PHEMT. However, the maximal ID was approximately 200 mA/mm at VGS = 0.5 V and VDS = 2 V,
and 420 mA/mm at VGS = 4 V and VDS = 6 V for MOS-PHEMT. The MOS-PHEMT saturation current
was less than that of the referenced case at the same VGS because of the voltage drop of the LPD-TiO2

underneath the metal gate. However, it was able to induce carriers VGS from 0.5 to 4 V within the
channel. By the way, the notable difference of the threshold voltages (Vth) between capacitor and
PHEMT is owing to the different depth of gate recess by wet etchant from different batches.
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The subthreshold characteristics depend on the quality of oxide film and device structure.
They determine the ideal off state, and they have effects on power dissipation and IC applications.
Figure 4a,b shows the measured subthreshold currents of the referenced PHEMT and MOS-PHEMT,
respectively. The subthreshold swing (SS) of the MOS-PHEMT (120 to 125 mV/dec) was lower
than that (173 to 194 mV/dec) of the referenced PHEMT. The ION/IOFF ratio of the MOS-PHEMT
(8.1 × 103 to 4.1 × 104) was higher than that (4.8 × 103 to 1.5 × 104) of the referenced case, where ION

was ID at VGS = Vth + 0.5 V, and IOFF was ID at VGS = Vth − 1 V. These results clearly suggest that
the MOS-PHEMT suppressed its subthreshold current by reducing the surface recombination current
of the LPD-TiO2 around the ohmic contact region. That is, the undesirable carrier injection from the
source terminal in an off state can be suppressed. Improvements of the SS and ION/IOFF ratio were
also associated with suppressed gate leakage characteristics [23], and this association is consistent with
the results shown in Figure 5.
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The LPD-TiO2 caused an improvement in the breakdown voltage associated with the gate leakage
current of the typical gate-to-drain diode characteristics, as shown in Figure 5. Figure 5a shows that
the turn-on voltage (Von) of the MOS-PHEMT, 1.5 V, was obviously higher than that of the referenced
PHEMT, 1.1 V. For the MOS-PHEMT, the gate leakage current density was suppressed by approximately
two orders of magnitude, and the corresponding reverse gate-to-drain breakdown voltage (BVGD)
was more than −21.2 V, as shown in Figure 5b. The Von and the BVGD were defined as the voltage at
which the gate current reaches 1 mA/mm. Generally, an increased Von accompanies an improved gate
voltage swing. The gate leakage current density of the MOS-PHEMT was lower because of the MOS
structure and the elimination of the sidewall leakage path passivated by the LPD-TiO2.
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The gate current density, as a function of VGS, was measured to obtain insights on the influence of
impact ionization. Because of the deep-complex (DX)-center and surface states of AlGaAs, the impact
ionization or kink effect is key concern for the AlGaAs/InGaAs PHEMT. A roughly bell-shaped curve
is the typical behavior of impact ionization, as shown in Figure 6a for the PHEMT. Marked increases in
the gate current clearly occur when devices are biased at higher VDS. The gate current densities of the
MOS-PHEMT and PHEMT were 4.59 × 10−3 mA/mm and 2.47 × 10−2 mA/mm at VDS = 5 V and
VGS = −4 V, as shown in Figure 6a,b, respectively; therefore the MOS-PHEMT device’s performance
was approximately 5.4 times higher than that of the PHEMT. In the referenced PHEMT, significant
hot-electron phenomena occurred in the InGaAs channel because of a high electric field near the
gate-to-drain region; that is, electrons could obtain higher energy to generate electron–hole pairs
through enhanced impact ionizations in the InGaAs channel, which facilitated injection of the holes
into the gate terminal [24] or becoming trapped in pre-existing traps. Furthermore, the generation of
holes by impact ionization and their further recombination could result in fluctuations of the charges
pileup and thus the excess noise. These phenomena also led to increased high-frequency noise at
corresponding voltages [25]. In the MOS-PHEMT, the electric field near the gate-to-drain region at
the same VDS and VGS improved notably compared with the values of the referenced case, because of
the high barrier height of LPD-TiO2 underneath the gate terminal. Thus, the improvements of the
MOS-PHEMT resulted in a smaller channel electric field and a suppressed impact ionization that
further reduced the leakage current density. As mentioned earlier, the suppressed leakage current and
impact ionization effect in Figure 6b were expected to improve noise performance.
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As shown in Figure 7 (different samples from those shown in Figure 3), the measured
unity-current-gain cutoff frequency (fT) and the maximum oscillation frequency (fmax) were
17.3 (11.6) GHz and 26.4 (19.7) GHz at the maximum gm for the MOS-PHEMT (PHEMT). The trend
is consistent with the results previously found for E-mode InGaP/InGaAs MOS-PHEMT with
liquid phase oxidation (LPO) [26]. The increased microwave performances of the AlGaAs/InGaAs
MOS-PHEMT may be attributed to the increase in the ratio of gm to gate-source capacitance (Cgs).
Furthermore, the reduction of the surface recombination may also have contributed to the
frequency response.
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Figure 8 shows the low-frequency flicker noise spectral density (SV) characteristics, which were
measured using a BTA 9812B noise analyzer and an Agilent 35670A dynamic signal analyzer.
On-wafer flicker noise measurements of the referenced AlGaAs/InGaAs PHEMT and AlGaAs/InGaAs
MOS-PHEMT were conducted under VDS of 2 V and drain current of 3 mA for frequencies between
10 Hz and 100 kHz. SV can be expressed as follows [27]:

SV =

(
q · αH · vsat

f γ · Lg

)
·
(

ID, sat

g2
m

)
(2)

where q is the elementary charge, αH is the Hooge parameter, vsat is the effective carrier saturation
velocity, f is the frequency, γ is the frequency exponent, and Lg is the effective gate length. The αH/SV

values at 10 Hz for the referenced case and MOS-PHEMT were 2.8 × 10−4/3.4 × 10−15 V2·Hz−1

and 2.7 × 10−5/1.4 × 10−15 V2·Hz−1, respectively. The corresponding γ values were calculated to
be 1.5 and 1.1, respectively. The higher γ was notably related to generation-recombination noise
(i.e., γ = 2). In other words, the LPD-TiO2 could passivate dangling bonds to improve the surface state
between the LPD-TiO2/AlGaAs interfaces, and a reduction of the surface state was observed with
negligible low-frequency generation-recombination noise of the AlGaAs/InGaAs MOS-PHEMT.

Table 1 summarizes the dc, low-frequency noise, and microwave characteristics for LPD in this
study and previous studies [28,29] and for LPO [30] in AlGaAs/InGaAs MOS-PHEMTs with similar
structures but different types of gate oxides. The use of high-K LPD-TiO2 with both sulfide pretreatment
and postoxidation RTA as a gate oxide and as an effective passivation layer on AlGaAs/InGaAs
PHEMT provides new opportunities for low-noise applications.
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Table 1. Summary of dc, low-frequency noise, and microwave characteristics of AlGaAs/InGaAs
MOS-PHEMTs with similar structures but different types of gate oxides.

Group This Work [28] [29] [30]

Mode D-mode D-mode D-mode D-mode
Gate oxide TiO2 SiO2 Al2O3 Oxidized AlGaAs

Oxidation method LPD LPD LPD LPO
Temperature (◦C) 40 40 40 50
Gate length (µm) 1 1 1 1

Maximum VGS (V) 4 4 2.5 4
Maximum IDS (mA/mm) 420 421 433 380

Gate voltage swing (V) 0.8 2.5 2 0.7
SubthresholdSwing (mV/dec) 120–125 125–165 – –

SV at 10 Hz (V2·Hz−1) 1.4 × 10−15 – – –
fmax (GHz) 26.4 – – –

4. Conclusions

This study demonstrates the feasibility of preparing an LPD-TiO2 gate with both sulfide
pretreatment and postoxidation RTA on AlGaAs/InGaAs MOS-PHEMT near room temperature.
Compared with the referenced PHEMT, the MOS-PHEMT had larger gate voltage swing,
lower subthreshold characteristics, reduced gate leakage current (with a suppressed impact ionization),
enhanced microwave performance, and reduced flicker noise. These features evidence that the
proposed device with simple and low-temperature LPD-TiO2 gate is suitable for device applications.
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