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Abstract: Four porous carbon samples denoted as LSC-1, LSC-2, LCS-3, and LSC-4 were prepared by
carbonization of loofah sponge pretreated by ZnCl2 activation, immersion in N,N-dimethylformamide
(DMF), DMF-assisted solvothermal and melamine-assisted hydrothermal processes, and the
specific surface areas were 1007, 799, 773, and 538 m2·g−1 with mainly micropores, respectively.
Electrocapacitive properties of four porous carbon-based electrodes were investigated with cyclic
voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy in
symmetric supercapacitors. All the cyclic voltammetries of four types of supercapacitors showed
a rectangular shape, even under a high scan rate of 500 mV·s−1. The capacitances of LSC-1, LSC-2,
LSC-3, and LSC-4 were 107.4, 92.5, 60.3, and 82.3 F·g−1 at the current density of 0.1 A·g−1, respectively,
and LSC-1 displayed the excellent capacitance retention of about 81.3% with a current density up
to 5 A·g−1. All supercapacitors showed excellent electrochemical stability, and the LSC-1-based
supercapacitor showed a cycle stability with 92.6% capacitance retention after 5000 cycles at 1 A·g−1.
The structure–property relationship of LSC samples is discussed and analyzed on the basis of the
experimental data.

Keywords: loofah sponge; porous carbon; biomass; carbonization; capacitance

1. Introduction

Issues concerned with energy are among the most remarkable global challenges of the 21st century.
The global demand for energy supply and environmental protection is increasing dramatically, forcing
the world to face an economic crisis. Based on recent reports, the annual global energy consumption is
about 4.1 × 1020 J, of which 80% comes from non-renewable carbon-intensive fossil fuels, including
coal, oil, and natural gas [1,2]. Excessive reliance on the burning of fossil fuels brings along many
environmental problems, leading an increased burden on the global economy. With the continuous
development of the world, the demand for energy grows rapidly while the total non-renewable energy
sources of the Earth are rather limited. Therefore, developing energy conversion and storage devices
with safety, practicability, sustainability, and good-performance is imperative in order to meet the
growing energy demand and reduce environmental stresses [3–5].

Electrochemical capacitors have aroused much interest in researchers recently, due to their
numerous advantages, including remarkable cycle efficiency, desired cycle life, fast charge/discharge
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rate, and excellent power density, as well as their potential applications in portable electronics, hybrid
electric vehicles, and memory back-up equipment [6–8]. It is beyond doubt that the performance of
electrochemical double layer capacitors is largely governed by the types and forms of their electrode
materials. Studies of potential electrode materials for supercapacitors based on various forms,
functions, and textures of porous carbon have been reported [9–14]. In the view of electrode materials
for supercapacitors, intensive attention has been paid to carbon materials, such as activated carbon,
graphene, carbon nanostructures like tubes and fibers, carbide-derived carbon, and so on [15–18].
In addition, easily available and renewable carbon materials with the advantages of more plentiful
porous structure, heteroatom self-doping, great physicochemical stability, and being environmentally
friendly are widely applied in the energy-related fields to meet the urgent demand of energy
supply [19–22]. Up to now, a variety of biomass materials have been vastly used as the precursors to
obtain char materials for capacitors, like fruits [23,24], nutshells [25–27], grains [28,29], seaweeds [30],
animal bone [31], fungi [32], etc. [33–37]. Most of these reports claimed that the energy storage
performance of biomass-derived carbons approximated—or even surpassed—that of the commercial
activated carbon.

Loofah sponge—as an easily accessible vegetal resource in China—is one of the renewable and
sustainable biomass materials with a natural porous network. Making full use of loofah sponge is still
a challenge, although it has been extensively utilized as adsorbent [38], cell immobilization
medium [39], and composite materials [40]. In this paper, hierarchical porous carbon materials—of
which the main structure is micropore—were obtained via the carbonization of loofah sponge
pretreated by various strategies, including ZnCl2 activation, N,N-dimethylformamide (DMF)-based
process, and melamine-assisted hydrothermal process. Results showed that the porous carbons
obtained by using ZnCl2 activation had the largest specific surface area among the four carbon
samples, and the highest specific capacitance of 107.4 F·g−1 at 0.1 A·g−1 in symmetrical supercapacitors
with 6 M KOH solutions as the electrolyte. Furthermore, all of the porous carbons exhibited good
electrochemical stability, even after 5000 cycles. In the following, the structure–property relationship
of the loofah sponge-based porous carbon (LSC) samples is discussed and analyzed on the basis of the
experimental data.

2. Materials and Methods

2.1. Reagents and Materials

The loofah sponge was collected from a nearby supermarket. Most chemicals, such as NaOH,
KOH, iso-propyl alcohol and ethylene glycol were purchased from Sinopharm Chemical Reagent
Corp. (Shanghai, China). DMF and melamine were obtained from Tianjin Kermal Chemical Corp.
(Tianjin, China). Polytetrafluoroethylene latex (PTFE, 20 wt %) and acetylene carbon black (99.99%)
were purchased from Sigma-Aldrich Chemie GmbH (Deisenhofen, Germany) and Strem Chemicals,
Inc. (Boston, MA, USA), respectively. Double-distilled water and analytical grade reagents were used
without further purification in all experiments.

2.2. Preparation of the Loofah Sponge-Based Porous Carbons (LSCs)

Pretreatment of loofah sponge: loofah sponge was shattered by pulverizer and then pretreated in
30% sodium hydroxide solution at 80 ◦C for 2 h. The treated loofah sponge was thoroughly washed
with distilled water and placed in an oven at 80 ◦C for drying.

Preparation of ZnCl2 activated porous carbon (LSC-1): 2 g of dried loofah sponge was preheated
up to 400 ◦C at a heating rate of 5 ◦C·min−1 and kept at this temperature for 2 h, then cooled to room
temperature naturally. The pre-carbonized solid product and ZnCl2 were completely mixed in an
agate mortar at a weight ratio of 13/1 (solid product/ZnCl2), followed by heating up to 800 ◦C in
a horizontal furnace at a heating ramp rate of 5 ◦C·min−1 and then holding for 2 h under Argon gas
flow. The obtained powders were distilled with water and then dried in an oven.
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Porous carbon prepared from loofah sponge after immersing in DMF (LSC-2): 2 g of loofah sponge
was immersed in 16 mL DMF for 24 h, then dried and heated to 800 ◦C in a horizontal furnace at
a heating ramp rate of 5 ◦C·min−1 under Argon gas flow and kept at 800 ◦C for 2 h, then cooled to
room temperature naturally.

Porous carbon prepared from solvothermal-treated loofah sponge (LSC-3): after 2 g of loofah
sponge was added into 20 mL Teflon lined stainless autoclaves, 16 mL of DMF were added into the
autoclaves. The reactions proceeded at 200 ◦C for 6 h and then naturally cooled to room temperature,
followed by filtering for sample collection, washing with abundant water, and then drying at 75 ◦C
overnight. Finally, samples were calcinated at 800 ◦C for 2 h with a heating rate of 5 ◦C·min−1.

Porous carbon prepared from hydrothermal-treated loofah sponge (LSC-4): 0.86 g of melamine
powder was dissolved in 10 mL distilled water, and the solutions were added into the autoclaves.
The reactions were proceeded at 200 ◦C for 6 h, and then naturally cooled to room temperature,
followed by filtering for collection of the samples, washing with abundant water, and then drying at
75 ◦C overnight. Finally, samples were calcinated at 800 ◦C for 2 h with a heating rate of 5 ◦C·min−1.

2.3. Characterization of the Porous Carbon

X-ray powder diffraction (XRD) was conducted by using an X-ray diffractometer (D8 Advance,
Bruker AXS GmbH, Karlsruhe, Germany) equipped with Cu Kα radiation (λ = 0.15418 nm). The pore
structures of the samples were measured by physical adsorption of nitrogen at liquid nitrogen
temperature (77 K) on an automatic volumetric sorption analyzer (NOVA 1100, Quantachrome
Corp., Boynton Beach, FL, USA). The specific surface area of the samples was determined
by the Brunauer–Emmett–Teller (BET) method. Pore size distribution was evaluated by the
Barrett–Joyner–Halenda (BJH) method. Fourier-transform infrared spectra (FT-IR) were recorded
on an infrared spectrophotometer (Nicolet 5700, Thermo Fisher Scientific Inc., Waltham, MA, USA)
using KBr pellets.

2.4. Electrochemical Performance

The electrodes were composed of 5 wt % PTFE, 10 wt % acetylene carbon black, and 85 wt % porous
carbon active materials [35,41]. All materials were mixed uniformly and then pressed onto a nickel
foam substrate at 1.4 MPa, followed by drying in a vacuum oven at 110 ◦C for 12 h. The amount of
active materials on each current collector was about 4.7 mg·cm−2. Symmetrical two-electrode cells were
assembled with aqueous 6 M KOH electrolyte isolated by a porous membrane. Cyclic voltammetry
(CV), galvanostatic charge–discharge (GCD) and electrochemical impedance spectroscopy (EIS) tests
were employed to study the capacitive performance of the samples. The EIS spectra were measured
at open circuit potential in the frequency range of 0.01 Hz–100 KHz with the amplitude of 5 mV.
All the electrochemical measurements were performed on an electrochemical workstation (CHI760e,
CH Instrument Inc., Austin, TX, USA). All the tests were conducted at room temperature.

3. Results and Discussion

3.1. Morphology and Structure of Porous Carbons

The XRD patterns of the four porous carbon samples reveal the absence of sharp and strong
peaks (as shown in Figure 1), indicating the amorphous state of all the LSC samples. On one hand,
one broad peak located at about 23◦ and a weak peak located at 44◦ were the characteristic peaks of
amorphous graphitic carbon, suggesting a limited degree of graphitization of LSC samples. On the
other hand, the appearance of the weak peak centered at 44◦ indicated the improvement of the electrical
conductivity. Especially, a slightly sharper peak observed at 44◦ for LSC-1 suggested the enhanced
graphitization degree of LSC-1 compared with the other samples.
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The porosity properties of carbon materials were analyzed by nitrogen adsorption and 
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isotherms with different BET specific surface areas. The specific surface areas of the samples were 
found to be 1007 m2·g−1 for LSC-1, 799 m2·g−1 for LSC-2, 773 m2·g−1 for LSC-3, and 538 m2·g−1 for LSC-4, 
as calculated from nitrogen isotherms at −196.6 °C. Obviously, a large amount of absorbed nitrogen 
at the low relative pressure was observed, which is characteristic of microporous materials. A 
hysteresis loop with the value of P/P0 extending from 0.42 to 0.95 can be observed for LSC-1, LSC-2, 
and LSC-3, reflecting the coexistence of both the micropore and mesopore structures in these 
materials. The pore-size distribution gained from the isotherm suggests that a great quantity of pores 
less than 5 nm exists in LSC-1, LSC-2, and LSC-3. However, LSC-4 is typical for microporous 
materials. These pores are more likely to arise from the spaces among the numerous pore structures 
themselves within the LSC samples. The sharp distribution of micropores around 0.6 nm indicates 
that the LSC samples have distinct potential for energy storage. The single-point total volume of pores 
for LSC-1 at P/P0 = 0.99512 was 0.438 cm−3·g−1. These results suggest that the ZnCl2 activated 
carbonization method endowed the LSC with the largest specific surface area. However, either DMF 
immersion or DMF-assisted solvothermal process could not lead to a drastic difference in the physical 
properties of LSCs. LSC-4 pretreated by melamine-assisted hydrothermal process showed the 
smallest specific surface area with only microporous structure, probably because of the complicated 
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Figure 1. X-ray powder diffraction (XRD) patterns of loofah sponge-based porous carbon
(LSC) samples.

The porosity properties of carbon materials were analyzed by nitrogen adsorption and desorption
measurements. The nitrogen adsorption–desorption isotherms and the pore size distribution of all the
LSC samples are shown in Figure 2. These carbon materials have type I and IV isotherms with different
BET specific surface areas. The specific surface areas of the samples were found to be 1007 m2·g−1

for LSC-1, 799 m2·g−1 for LSC-2, 773 m2·g−1 for LSC-3, and 538 m2·g−1 for LSC-4, as calculated from
nitrogen isotherms at −196.6 ◦C. Obviously, a large amount of absorbed nitrogen at the low relative
pressure was observed, which is characteristic of microporous materials. A hysteresis loop with the
value of P/P0 extending from 0.42 to 0.95 can be observed for LSC-1, LSC-2, and LSC-3, reflecting
the coexistence of both the micropore and mesopore structures in these materials. The pore-size
distribution gained from the isotherm suggests that a great quantity of pores less than 5 nm exists
in LSC-1, LSC-2, and LSC-3. However, LSC-4 is typical for microporous materials. These pores are
more likely to arise from the spaces among the numerous pore structures themselves within the LSC
samples. The sharp distribution of micropores around 0.6 nm indicates that the LSC samples have
distinct potential for energy storage. The single-point total volume of pores for LSC-1 at P/P0 = 0.99512
was 0.438 cm−3·g−1. These results suggest that the ZnCl2 activated carbonization method endowed
the LSC with the largest specific surface area. However, either DMF immersion or DMF-assisted
solvothermal process could not lead to a drastic difference in the physical properties of LSCs.
LSC-4 pretreated by melamine-assisted hydrothermal process showed the smallest specific surface
area with only microporous structure, probably because of the complicated reaction during the process.
More detailed structural information is listed in Table 1.
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Table 1. Specific surface areas, pore volumes, and pore width of LSC samples.
SBET: Brunauer–Emmett–Teller surface area; DMF: N,N-dimethyl formamide.

Sample Preparation
Method

SBET
(m2·g−1)

Micropore Area
(m2·g−1)

MicroporeVolume
(cm−3·g−1)

Vpore
(cm−3·g−1)

Pore Width
(nm)

LSC-1 ZnCl2 activation 1007 753 0.273 0.438 0.545

LSC-2 DMF soaking 799 459 0.191 0.444 0.548

LSC-3
DMF

solvothermal
treatment

773 608 0.243 0.328 0.573

LSC-4
Melamine

hydrothermal
treatment

538 382 0.156 0.258 0.578

3.2. Electrochemical Characterization of LSC

The electrocapacitive properties of LSC-based supercapacitors (SC-LSCs)—denoted as
SC-LSC-1, SC-LSC-2, SC-LSC-3, and SC-LSC-4, assembled from LSC-1, LSC-2, LSC-3, and LSC-4,
respectively—were evaluated by a sequence of electrochemical techniques, including CV, GCD, and
EIS tests at room temperature. Figure 3 represents the CV curves of four SC-LSCs at different scan
rates with a potential window ranging from 0 to 0.8 V. As seen, all of the SC-LSCs exhibit an ideal
capacitive behavior with rectangular shape at relatively low scan rates, namely the typical nature of
double-layer capacitor during the charge–discharge process. Even at a high scan rate of 500 mV·s−1,
as shown in Figure 3d, the CV profiles of SC-LSCs maintain the quasi-rectangular shape of the
voltammograms with little distortion, which can be ascribed to the excellent electrical conductivity
and the low mass-transport resistance of the samples. Apparently, the rapid ionic transportation due
to the short ion pathway and electrolyte reservoir are derived from the hierarchical pore structure of
LSC samples. Similarly, compared with other samples, SC-LSC-1 shows the highest capacitance value
due to the ideal hierarchical porous structure and high surface area of LSC-1.

The GCD curves of all the SC-LSCs are shown in Figure 4, the electrodes of which show a typical
triangular shape, although imperfect symmetry with a small IR drop. According to the discharging
profiles (Figure 4a), based on the charge–discharge curves, the specific capacitance of LSC samples can
be calculated by the following formula:

C = I∆t/∆Vm

where C, I, ∆t, ∆V, and m are the specific capacitance (F·g−1), the discharge current (A), the discharge
time (s), the voltage range (V), and mass of active material (mg). The capacitances of LSC samples
were measured to be about 107.4, 92.5, 60.3, and 82.3 F·g−1 at the current density of 0.1 A·g−1 for
LSC-1, LSC-2, LSC-3, and LSC-4, respectively. When the current density was 1 A·g−1 (Figure 4c),
the capacitances of SC-LSCs were 87.8, 81.8, 49.3, and 68.1 F·g−1 for LSC-1, LSC-2, LSC-3, and LSC-4,
respectively. Then, the corresponding capacitances slightly decreased to 82.0, 79.5, 45.6, and 57.2 F·g−1

with an increase in the current density up to 3 A·g−1 (Figure 4d). A large decrease in the capacitance
of SC-LSCs was seen at low current densities, followed by slight increase in the high current density.
It can be concluded from all the GCD curves in Figure 4 that the discharge time for SC-LSC-4 was
obviously decreased compared with the other three supercapacitors.
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The variations of the capacitance with the current density of SC-LSCs are shown in Figure 5a.
The capacitances of SC-LSCs decreased obviously when the current density was less than 1 A·g−1.
With the continuous increase of the current density, the capacitances were almost constant, especially
for SC-LSC-3 and SC-LSC-4. As depicted in Figure 5b, the variations of inner resistance (IR) drop
with the current density of all the SC-LSCs suggests the low values of less than 0.03 V for IR drop
when the current density was no more than 1 A·g−1. A slight increase of IR drop was observed with a
further increase of current density. The smallest IR drop at 5 A·g−1 was less than 0.04 V for SC-LSC-1.
Even for SC-LSC-4, the largest IR drop at 5 A·g−1 was only about 0.075 V. The cycling stability of
these symmetric supercapacitors was evaluated at the current density of 1 A·g−1. As derived from
Figure 5c, even undergoing 5000 charge–discharge cycles, there is still above 92% capacitance retention
for all the SC-LSCs, indicating the prominent electrochemical stability of LSC-based supercapacitors.
The last 10 charge/discharge curves (4991th–5000th cycles) for SC-LSC-1 are shown in Figure 4d.
It can be obviously seen that all the GCD curves show almost symmetrical shapes. The capacitance
calculated from the final cycles is about 82 F·g−1 at 1 A·g−1 for SC-LSC-1—92.6% of the initial value.
These results indicate that loofah sponge can be used as carbon precursor to prepare porous carbons
with a good potential for electrode materials. The excellent capacitance retention of SC-LSCs during
the cycle test should be ascribed to its highest specific surface area with proper microporous and
mesoporous structures.
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For supercapacitors, the relevant frequency behavior and equivalent series resistance (ESR) are
usually assessed with the powerful tool of EIS [41,42]. For the purpose of learning more about the
electrodes with remarkable power performance, the Nyquist plots (Figure 6a) of the SC-LSCs were
characterized in a frequency ranging from 0.01 Hz to 100 KHz. According to the enlarged plot curves
shown in Figure 6b, a semicircular shape was seen at high frequency, while a drastic increase in the
imaginary part of the impedance was seen at a lower frequency. In the high frequency range, the left
plot intersection at the real part (Z’) is associated with the electrolyte resistance (Rs) and the square
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resistance of all the SC-LSCs. The semicircle region of the plot curve for each SC-LSC accounts for the
charge transfer resistance (Rc), which indicates the migration rate of hydrated K+ and OH− ions in
SC-LSCs at the interface between the solution and the electrode surface.
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4. Conclusions

Four types of porous carbons were synthesized from loofah sponge based on different
pretreatments before carbonization. All prepared loofah sponge-based porous carbons showed mainly
microporous structure. It was found that porous carbons prepared by ZnCl2 activation method
showed the largest specific surface area and displayed the best electrochemical performance among
all the loofah sponge-based porous carbon samples, with a capacitance of 107.4 F·g−1 at 0.1 A·g−1

in symmetrical two-electrode cells. The capacitances of these porous carbon-based supercapacitors
only changed slightly with current densities larger than 1 A·g−1. All of the supercapacitors showed
excellent electrochemical stability, and the capacitance of the LSC-1-based supercapacitor maintained
above 92.6% after 5000 charge–discharge cycles at 1 A·g−1. These results indicate that loofah sponge
can be considered as a good candidate to prepare hierarchical porous carbons with high surface area
and excellent electrochemical properties through rational design.
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