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Abstract: We demonstrate an erbium-doped fiber laser passively Q-switched by a black-phosphorus
polyimide film. The multi-layer black-phosphorus (BP) nanosheets were prepared via a liquid
exfoliation approach exploiting N-methylpyrrolidone as the dispersion liquid. By mixing the BP
nanosheets with polyimide (PI), a piece of BP–PI film was obtained after evaporating the mixture
in a petri dish. The BP–PI saturable absorber had a modulation depth of 0.47% and was inserted
into an erbium-doped fiber laser to realize passive Q-switched operations. The repetition rate of the
Q-switched laser increased from 5.73 kHz to 31.07 kHz when the laser pump was enhanced from
31.78 mW to 231.46 mW. Our results show that PI is an excellent host material to protect BP from
oxidation, and the BP–PI film can act as a promising nonlinear optical device for laser applications.
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1. Introduction

Recently, remarkable progress has been made on two-dimensional (2D) nanomaterials including
graphene, topological insulators, and transition metal dichalcogenides [1–3]. Attributed to their
inherent features of high nonlinearity, ultrafast carrier dynamics, and dimensionality effects [4,5], they
have found important applications, ranging from ultrafast saturable absorbers (SAs) [6–8], photoelectric
detectors [9], and field-effect transistors [10] to optical modulators [11]. For the application of ultrafast
SAs, graphene exhibits an ultrafast recovery time and broadband optical response, while the weak
absorption restricts their light-modulation ability. Topological insulators with insulating bulky states
and gapless surface states have been applied as effective optical SAs [12–15]. Transition metal
dichalcogenides (such as MoS2 and WS2) have been proven to possess thickness-dependent bandgaps
from the visible to near-infrared range [16–18]. By introducing point defects, the optical response can
be extended to longer wavelengths, while the absorption coefficient is still quite small [19].

Black-phosphorus (BP), a newly emerged 2D material, has also attracted interest due to its direct
bandgap that is tunable from 1.5 eV to 0.3 eV by reducing the layer number [20–22]. Thus, BP is
quite attractive at the near and mid-infrared band [23] and fills up the gap between the graphene
(zero-bandgap) [24] and the transition metal dichalcogenides (0.7–2 eV) [25,26]. In a single layer,
each phosphorus atom is held together with three adjacent atoms by covalent bonds, while different
layers are adhered together by the Van der Waals force [27,28], which is similar to that of the
graphene [29]. As a result, multi-layer BPs can be obtained using the liquid exfoliation or mechanical
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cleavage method [30–33]. Currently, mechanically cleaved BP, microfiber-based multi-layer BP, and BP
polymer composites have been used as SAs to generate Q-switched/mode-locked pulses at 1, 1.55, and
2 µm, respectively [21,34,35]. However, in the atmosphere, BP is unstable and tends to be oxidized due
to the existence of O2 or H2O [36–38]. The high power illumination induces optical damage that will
accelerate the oxidation process. It is quite urgent to develop a flexible, low-cost, BP film to facilitate
the application of BP in nonlinear optics and pulsed lasers.

In this paper, we prepare BP nanosheets with a liquid exfoliation approach using N-methylpyrrolidone
(NMP) as the dispersed liquid. By packaging the nanosheets with the polyimide (PI), the oxidation of
the BP can be effectively avoided. After evaporation, a thin BP–PI SA was obtained to realize passive
Q-switched operations in an erbium-doped fiber (EDF) laser. By tuning the laser pump from 31.78 mW
to 231.46 mW, the pulse repetition rate of the Q-switched laser changed from 5.73 kHz to 31.07 kHz
while the pulse duration decreased from 25.77 µs to 3.59 µs.

2. Methods

Several approaches have been proposed to fabricate multi- and few-layer 2D materials, such as
liquid exfoliation, chemical vapor deposition, and mechanical cleavage [39,40]. Each method has its
own advantages and application fields. Among them, the liquid exfoliation method is a simple but
quite effective technique for preparing low-dimensional nanomaterials from their bulk crystals under
an ambient atmosphere [19,41–43]. Herein, the multi-layer BP nanosheets are also prepared via the
liquid exfoliation method, as depicted in Figure 1. First, the bulk-state BP crystal (50 mg) is added
into an NMP solution (30 mL), and the mixture is then bath-sonicated at 180 W for 4 h with a cell
crusher. Second, the dispersion of the BP nanosheets is centrifuged for 5 min at a speed of 500 rpm to
remove the unwanted large BP sediment. After that, the upper supernatant BP dispersion is collected
to prepare the sample. Third, by mixing the PI with BP nanosheets, a thin BP–PI film can be obtained
by evaporating the dispersion on a petri dish.
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Figure 1. Schematic diagram for preparing BP–PI films. NMP: N-methylpyrrolidone; black-phosphorus: 
BP; polyimide: PI. 

As shown in the inset of Figure 2a, the BP suspension exhibits a faint brown color and is quite 
stable over dozens of days. The scanning electron microscope (SEM) image in Figure 2a illustrates 
that the width and length of the as-prepared BP nanosheets range from 0.5 μm to 10 μm. It is closely 
related to the centrifugation rate in the fabrication process. As shown in Figure 2b, the thickness of 
most BP nanosheets is given as ~4 nm from the atomic force microscopy (AFM) result. The thickness 
single layer BP is ~0.6 nm [21], which implies that the as-prepared samples are multi-layer BPs. The 
BP sample is further identified from the Raman spectrum. As depicted in Figure 2c, three peaks at 
360.2 cm−1, 436.9 cm−1, and 464.3 cm−1 that correspond to A
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respectively, are clearly observed on the Raman spectrum. The side profile of the BP–PI film is shown 
in Figure 2d, which shows a thickness of 48.08 μm. The experimental results indicate that BP 
nanosheets and the BP–PI film was successfully prepared using the proposed method. 

Figure 1. Schematic diagram for preparing BP–PI films. NMP: N-methylpyrrolidone; black-phosphorus:
BP; polyimide: PI.

As shown in the inset of Figure 2a, the BP suspension exhibits a faint brown color and is quite
stable over dozens of days. The scanning electron microscope (SEM) image in Figure 2a illustrates that
the width and length of the as-prepared BP nanosheets range from 0.5 µm to 10 µm. It is closely related
to the centrifugation rate in the fabrication process. As shown in Figure 2b, the thickness of most BP
nanosheets is given as ~4 nm from the atomic force microscopy (AFM) result. The thickness single layer
BP is ~0.6 nm [21], which implies that the as-prepared samples are multi-layer BPs. The BP sample
is further identified from the Raman spectrum. As depicted in Figure 2c, three peaks at 360.2 cm−1,
436.9 cm−1, and 464.3 cm−1 that correspond to A1

g, B2g, and A2
g vibration modes of the BP, respectively,

are clearly observed on the Raman spectrum. The side profile of the BP–PI film is shown in Figure 2d,
which shows a thickness of 48.08 µm. The experimental results indicate that BP nanosheets and the
BP–PI film was successfully prepared using the proposed method.
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Figure 2. Characterization of BP nanosheets and BP–PI films. (a) Scanning electron microscope (SEM) 
image of the BP nanosheets. The inset is the photograph of the BP nanosheets dispersion; (b) atomic 
force microscopy (AFM) image of the BP nanosheets; (c) Raman spectrum of the BP sample; (d) 
sectional view of the BP–PI film. 

3. Results and Discussion 

The saturable absorption property of the BP–PI film was measured by a balanced twin-detector 
technique, as described in Figure 3a. The illumination pulse was generated from a passively mode-
locked fiber laser, and the optical intensity was adjusted by an attenuator. After that, the pulse was 
split equally with a fiber coupler, in which one branch worked as a reference beam and the other 
branch was inserted with the prepared sample. By comparing the pulse intensities of the two 
branches, the transmission of the film versus the pulse intensity was obtained [44]. As depicted in 
Figure 3b, the BP–PI film exhibited typical characteristics of an SA in that the transmission increased 
with pulse intensity. Based on the fitting results, the modulation depth of the BP–PI film was 0.47%. 
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Figure 3. (a) Scheme of the balanced twin-detector system; (b) nonlinear transmission of BP–PI 
saturable absorber (SA). 

Figure 2. Characterization of BP nanosheets and BP–PI films. (a) Scanning electron microscope (SEM)
image of the BP nanosheets. The inset is the photograph of the BP nanosheets dispersion; (b) atomic
force microscopy (AFM) image of the BP nanosheets; (c) Raman spectrum of the BP sample; (d) sectional
view of the BP–PI film.

3. Results and Discussion

The saturable absorption property of the BP–PI film was measured by a balanced twin-detector
technique, as described in Figure 3a. The illumination pulse was generated from a passively
mode-locked fiber laser, and the optical intensity was adjusted by an attenuator. After that, the pulse
was split equally with a fiber coupler, in which one branch worked as a reference beam and the other
branch was inserted with the prepared sample. By comparing the pulse intensities of the two branches,
the transmission of the film versus the pulse intensity was obtained [44]. As depicted in Figure 3b,
the BP–PI film exhibited typical characteristics of an SA in that the transmission increased with pulse
intensity. Based on the fitting results, the modulation depth of the BP–PI film was 0.47%.

Figure 4 is a sketch map of the EDF laser Q-switched by a BP–PI SA. The laser resonator is
composed of an optical coupler, wavelength division multiplexer, a 6-m-long EDF, a polarization
controller, a polarization-independent isolator, and a BP–PI SA. The EDF with an absorption coefficient
of 3 dB/m acts as the gain medium in the laser and a 980 nm laser diode pumps the EDF through the
wavelength division multiplexer. The 10% optical coupler is used to output the laser emission, and
the isolator forces the laser to operate at a unidirectional state. The polarization controller is used for
tuning the polarization state inside the laser cavity, and the obtained BP–PI film is transferred into
the optical fiber ferrules to prepare the fiber-based SA. The other fibers and pigtails of the devices are
standard single mode fibers that have a total length of 33 m.
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When the pump power reached 25.07 mW, a continuous laser was obtained without inserting 
the BP–PI film in the resonator, as the red curve shows in Figure 5a. After inserting the BP–PI SA, 
self-started stable Q-switched pulses were observed in the fiber laser when the laser pump 
approached 31.78 mW. A typical Q-switched operation at the laser pump of 93.94 mW is plotted in 
Figure 5. As shown in Figure 5a, the laser spectrum was centered at 1556.93 nm and the 3 dB spectral 
width was given as 2.66 nm. The pulse profile and typical pulse train are shown in Figure 5b,c, which 
shows a pulse duration of 7.31 μs and a pulse interval of 79.23 μs, respectively. The radio-frequency 
spectrum in Figure 5d shows that the pulse operated at a repetition rate of 12.87 KHz, in agreement 
with the pulse–pulse interval. 
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Figure 4. Experiment setup of the EDF laser Q-switched by a BP–PI SA. LD: laser diode; WDM:
wavelength division multiplexer; PI-ISO: polarization-independent isolator; EDF: erbium-doped
fiber; SMF: single-mode fiber; OC: optical coupler; BP–PI SA: black-phosphorus–polyimide saturable
absorber; PC: polarization controller.

When the pump power reached 25.07 mW, a continuous laser was obtained without inserting
the BP–PI film in the resonator, as the red curve shows in Figure 5a. After inserting the BP–PI SA,
self-started stable Q-switched pulses were observed in the fiber laser when the laser pump approached
31.78 mW. A typical Q-switched operation at the laser pump of 93.94 mW is plotted in Figure 5.
As shown in Figure 5a, the laser spectrum was centered at 1556.93 nm and the 3 dB spectral width was
given as 2.66 nm. The pulse profile and typical pulse train are shown in Figure 5b,c, which shows a
pulse duration of 7.31 µs and a pulse interval of 79.23 µs, respectively. The radio-frequency spectrum
in Figure 5d shows that the pulse operated at a repetition rate of 12.87 KHz, in agreement with the
pulse–pulse interval.
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A typical characteristic of Q-switched pulses is that the repetition rate as well as the pulse duration
changes with pump powers, as demonstrated in Figure 6a. For example, by varying the laser pump
from 31.87 mW to 231.46 mW, the repetition rate changed from 5.73 kHz to 31.07 kHz and the duration
was reduced from 25.77 µs to 3.59 µs. The output power as well as single-pulse energy at different
pump powers are illustrated in Figure 6b. With the enhancement of the laser pump, the average output
power almost rose linearly to 4.2 mW. Correspondingly, the pulse energy increased firstly to 142.60 nJ
and then decreased 128.21 nJ when the laser pump was higher than 191.04 mW. Further increasing the
laser pump, an unstable transitional state between mode-locking and Q-switching was found in the
fiber laser. By removing the BP–PI film or replacing the BP–PI film with a pure PI film, Q-switched
pulses disappeared immediately in the fiber laser, even though the polarization controller or the pump
power was tuned over a full range tens of times. Moreover, the Q-switched state could be established
again by inserting the BP–PI film into the fiber laser, which indicates that the BP nanosheets played a
key role in the shaping of the Q-switched pulse. However, the stable mode locking operation was not
observed in the fiber laser with the proposed SA. These results may be attributed to the large inset loss
or small modulation depth of the SA. For example, when the dispersion-induced temporal broadening
or the output-induced perturbation could not be compensated by the SA, the mode-locking operation
will not be established in the fiber laser.

The BP–PI film exhibits two obvious advantages. First, the Q-switched operation can still be
realized when the BP–PI film is stored for six months or longer in air. Figure 6c,d show the optical
spectrum and pulse train of the Q-switched laser using the BP–PI film from the same sample. However,
Q-switched operation cannot be achieved again using a BP–polyvinyl alcohol (PVA) film. This result
may be attributed to the highly hydrophilic nature of the PVA. Figure 6e shows that the BP–PI film
still exhibits a saturable absorption property after six months or more. Second, we compared the
stability of the BP–PI film and the BP–PVA film versus the laser operation time. In the experiment, the
BP–PI film and the BP–PVA film were inserted into the fiber laser, severally. The output powers were
recorded by a power meter for 10 min. After being divided by the maximum of the output power, the
stability of the BP–PI film and the BP–PVA film versus the laser operation time can be obtained, as
shown in Figure 6f. One can observe that the output power had a larger disturbance for the BP–PVA
film than that of the BP–PI film, which may be attributed to the different fusing points of PI (450 ◦C)
and PVA (180 ◦C). For instance, the laser-induced heat accumulation destroys the BP–PVA film more
easily. The PI is capable of protecting BP from intense laser illumination without oxidation, which is
very important in the applications of ultrafast lasers and nonlinear optics.
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Figure 6. (a) Repetition rate, pulse duration as well as (b) average output power, single-pulse energy of
Q-switched pulses at different pump powers; (c) optical spectrum and (d) pulse train of the Q-switched
laser using the BP–PI film after stored for six months; (e) saturable absorption property of the film;
(f) stability of the BP–PI film and the BP–PVA film versus the laser operation time.

4. Conclusions

We fabricated a BP–PI SA to achieve the passive Q-switched operation in an EDF laser. The BP
nanosheets were prepared via the liquid exfoliation approach utilizing NMP as the dispersion solvent.
The BP–PI SA was obtained by mixing the PI with BP nanosheets and then evaporating the mixture.
Based on the proposed BP–PI SA, the fiber laser delivered the Q-switched pulse with the maximum
repetition rate, pulse energy, and minimum pulse duration of 31.07 kHz, 142.60 nJ, and 3.59 µs
respectively. These results clearly show that a BP–PI film can be an excellent SA for Q-switched fiber
lasers, and may find further applications in such areas as frequency conversion and optical limiting.
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