Supplementary Materials: Origin of Activity and Stability Enhancement for Ag₃PO₄ Photocatalyst after Calcination

Pengyu Dong, Guihua Hou, Chao Liu, Xinjiang Zhang, Hao Tian, Fenghua Xu, Xinguo Xi and Rong Shao

Electrochemical Measurement

The electrochemical impedance spectra (EIS) and Mott-Schottky (MS) plots of the as-prepared photocatalysts were measured on an electrochemical analyzer (CHI660E) (Shanghai Chenhua Instruments Co., Ltd., Shanghai, China) in a standard three-compartment cell using 0.5 M Na₂SO₄ (pH = 6.8) solution as the electrolyte. For the preparation of working electrode for electrochemical measurements, a homogeneous catalyst ink was first prepared by dispersing 4 mg of catalyst material and 80 μ L of a 5 wt % Nafion solution in 2 mL of H₂O by ultrasonication, and then 400 μ L of catalyst ink dispersion was drop-coated directly onto the pre-cleaned indium tin oxide (ITO) glass surface by micro-syringe and placed on a hot plate to speed drying. The surface of working electrode exposed to the electrolyte was a circular film with the geometrical surface area of 4 cm². Platinum foil was used as counter electrode and Ag/AgCl electrode as the reference electrode. The EIS were measured at 0.0 V. A sinusoidal ac perturbation of 5 mV was applied to the electrode over the frequency range of 1–10⁴ Hz. The MS plots were obtained at a frequency of 1 kHz.

Figure S1. Cont.

Figure S1. UV-Vis absorption spectra of MB solutions separated from: pristine Ag₃PO₄ (**a**); Ag₃PO₄-100 (**b**); Ag₃PO₄-200 (**c**); Ag₃PO₄-300 (**d**); and Ag₃PO₄-400 (**e**) suspensions during illumination.

Figure S2. TG-DSC curves of pristine Ag₃PO₄.

Figure S3. The survey XPS spectra of pristine Ag₃PO₄ and Ag₃PO₄-T (T = 100, 200, 300 and 400).

Figure S4. (a) High-resolution XPS spectrum of Ag 3d region of the reused Ag₃PO₄-200 sample; and (b) a comparison of Ag⁰ content for fresh Ag₃PO₄-200 sample and the reused Ag₃PO₄-200 sample.

Figure S5. Plots of $(\alpha h\nu)^{1/2}$ versus photon energy $(h\nu)$ of: pristine Ag₃PO₄ (**a**); Ag₃PO₄-100 (**b**); Ag₃PO₄-200 (**c**); Ag₃PO₄-300 (**d**); and Ag₃PO₄-400 (**e**).