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Abstract: This paper presents an experimental study on circular stirrup-confined concrete specimens
under uniaxial and monotonic load. The effects of stirrup volume ratio, stirrup yield strength
and concrete strength on damage evolution of stirrup-confined concrete were investigated.
The experimental results showed that the strength and ductility of concrete are improved by
appropriate arrangement of the stirrup confinement. Firstly, the concrete damage evolution can be
relatively restrained with the increase of the stirrup volume ratio. Secondly, higher stirrup yield
strength usually causes larger confining pressures and slower concrete damage evolution. In contrast,
higher concrete strength leads to higher brittleness, which accelerates the concrete damage evolution.
A plastic strain expression is obtained through curve fitting, and a damage evolution equation for
circular stirrup-confined concrete is proposed by introducing a confinement factor (C) based on the
experimental data. The comparison results demonstrate that the proposed damage evolution model
can accurately describe the experimental results.
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1. Introduction

In engineering applications, the allocation of reinforcement stirrups is an important measure to
improve the mechanical properties of compression members or other structural components under
compression because stirrups allocated perpendicularly to the axial compression/maximum principal
stress orientation are able to confine the transverse deformation of the core concrete. Stirrup-confined
concrete have been studied since 1903, when Considère and Moisseiff [1] first indicated that transverse
stirrups improved the deformation capability of axial compression columns. Over the past century,
numerous researchers have conducted theoretical and experimental studies on confined concrete including
damage related functions and numerical models, etc. by using different approaches (Richart et al., 1928 [2];
Kent and Park, 1971 [3]; Sheikh and Uzumeri, 1980 [4]; Mander et al., 1988 [5]; Karabinis and Kiousis,
1994 [6]; Spoelstra and Monti, 1999 [7]; Montoya et al., 2004 [8]; Papanikolaou and Kappos, 2007 [9];
Rousakis et al., 2008 [10]; Karabinis et al., 2008 [11]; Monti and Nisticò, 2008 [12]; Moghaddam et al.,
2010 [13]; Jiang and Wu, 2012 [14]; Peter et al., 2013 [15]; Nisticò and Monti, 2013 [16]; Nisticò et al.,
2014 [17]; Gambarelli et al., 2014 [18]; Nisticò, 2014 [19]; Wei and Wu, 2014 [20]). These studies confirmed
that confinement (steel and/or FRP) improved the strength of reinforced concrete members. Particularly
for the high-strength concrete with stirrup confinement, the strength increased much higher than that of
unconfined concrete [21]. Not only improving the concrete strength, stirrups can lead to the increase of the
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ultimate compressive strain so the ductility is improved as well [5,13]. In order to quantify these effects,
various confined concrete stress-strain models have been proposed by numerous researchers (Kent and
Park, 1971 [3]; Sheikh and Uzumeri, 1982 [22]; Mander et al., 1988 [23]; Saatcioglu and Razvi, 1992 [24];
Cusson and Paultre, 1995 [25]; Moghaddam et al., 2010 [26]; Samani and Attard, 2012 [27]).

Concrete is a multiphase composite quasi-brittle material, and its damage mechanism is
complicated. The cracking process of concrete is different from those of other brittle materials. Research
indicated that when maximum principal stress reaches a certain level, a large number of microcracks
may exist in concrete, especially at the interface between coarse aggregates and mortar [28,29]. Concrete
cracking process, which can be studied at a microscopic or even macroscopic level [30], is a continuous
formation and merging of microcracks. Such a process eventually leads to the concentration of multiple
microcracks in a very narrow area, and then a visible macrocrack forms, which causes the cross-section
stiffness degradation [31,32]. Numerous modern measurement techniques have been applied to the
research on concrete damage mechanism at a microscopic level, with reliable results [33–40], but
sophisticated equipment is required. Numerical simulation is another option. However, because
of the complexity of numerical algorithms and the computational cost, efforts on the simulation of
the detailed evolution (growth and coalescence) of each microcrack in stirrup-confined concrete are
inefficient. Alternatively, the phenomenological approach at the macroscopic level could be used to
describe the effects of microcracks on the damage evolution. Macroscopic phenomenology studies of
concrete damage mechanism have obtained excellent achievements, which improved the understanding
of concrete damage evolution by measuring the variation of material properties (e.g., elastic modulus and
compression strength) [41–45], whereas most of these studies concentrated on unconfined concrete and
the research on damage evolution of stirrup-confined concrete has not been systematically conducted yet.

This paper aims to investigate the damage evolution in circular stirrup-confined concrete
specimens through experimental study. The tangent module degradation was defined as a damage
indicator, and it was subsequently used to obtain damage evolution curves. Furthermore, the effects
of stirrup volume ratio, stirrup yield strength and concrete strength on damage evolution of the
stirrup-confined concrete are discussed. To describe the effects of various confinement parameters on
concrete damage evolution, a damage evolution equation is proposed by introducing a confinement
factor (C). The proposed damage evolution equation can represent the experimental results reasonably.

2. Specimen Tests

2.1. Materials

Three groups of concrete with different strengths named as groups C1, C2 and C3 were
prepared for concrete specimens. The material compositions of those concrete are listed in Table 1.
The compressive strength of 150 mm ˆ 150 mm ˆ 150 mm concrete cubes were measured according to
the Chinese Standard GB/T 50081-2002 [46]. The 28-day cubic compressive strength of each group is
listed in Table 2. Standard deviations of three test results are 0.66, 0.91 and 1.9, respectively, much lower
than the standard requirement [47]. Two groups of stirrups named Y1 and Y2 with different yield
strengths were used, with diameters of 6.0 and 6.5 mm, respectively. The diameter of the longitudinal
steel bars was 10.0 mm. Tensile tests were performed to measure yield strength and ultimate tensile
strength of stirrups and steel bars, and the results are listed in Table 3. The standard deviations of three
test results are much lower than the standard requirement.

Table 1. Material compositions of concrete.

Group C1 C2 C3

Water (kg/m3) 185 185 195
Cement (kg/m3) 285 310 410
Gravel (kg/m3) 1145 1125 1055
Sand (kg/m3) 785 780 740
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Table 2. 28-day cubic compressive strength of concrete (MPa).

Test
Group

A B C

1 21.2 25.1 38.9
2 22.0 24.8 40.0
3 20.7 26.5 42.6

Average 21.3 25.5 40.5

Table 3. Yield tensile strength (ultimate tensile strength) of stirrups and longitudinal steel bars (MPa).

Test
Y1 Y2 Longitudinal Steel Bar

d = 6.0 mm d = 6.5 mm d = 10.0 mm

1 372 (518) 553 (652) 393 (530)
2 368 (522) 518 (672) 385 (529)
3 370 (520) 538 (669) 390 (532)

Average 370 (520) 536 (664) 389 (530)

2.2. Specimen Design

Thirty standard circular concrete specimens were manufactured with the same dimensions of Φ
150 mm ˆ 300 mm. Among them, eighteen were stirrup-confined concrete specimens, while the other
twelve were unconfined concrete specimens. The variables in the tests were concrete compressive
strength, stirrup volume ratio and stirrup yield strength. In this study, the compressive strengths of
groups A, B, and C concrete are 21.3, 25.5 and 40.5 MPa, respectively. Based on practical engineering
experiences, three stirrup volume ratios were chosen as 0.92%, 1.84% and 2.75%, denoted as S1–S3,
respectively. Y1 and Y2 denote stirrup yield strengths are 370 and 536 MPa, respectively. S0Y0 denotes
the unconfined concrete. The mechanical and geometrical properties of all specimens are listed in
Table 4, where λv is stirrup characteristic value [48] andωwd is mechanical volumetric ratio [49], which
are given by:

λv “
ρv fy

fcu
(1)

ωwd “
volume of confining hoops

volume of concrete core
ˆ

fy

fcu
(2)

Table 4. Mechanical and geometrical properties of all specimens.

Group Specimen fcu
(MPa) d (mm) s (mm) ρv (%) fy

(MPa) λv ωwd
Number of
Specimens

C1 C1S0Y0 21.3 – – – – – – 4
C1 C1S2Y1 21.3 6.5 70 1.65 370 0.29 0.29 3
C1 C1S2Y2 21.3 6 70 1.65 536 0.42 0.42 3
C2 C2S0Y0 25.5 – – – – – – 4
C2 C2S1Y1 25.5 6.5 140 0.82 370 0.12 0.12 3
C2 C2S2Y1 25.5 6.5 70 1.65 370 0.24 0.24 3
C2 C2S3Y1 25.5 6.5 46.7 2.47 370 0.36 0.36 3
C3 C3S0Y0 40.5 – – – – – – 4
C3 C3S2Y1 40.5 6.5 70 1.65 370 0.15 0.15 3

For ρv is stirrup volume ratio, λv andωwd has the same meaning with different minimum required
values. The minimum ωwd is 0.12 for column critical region at the base or 0.08 for column critical
region above the base [49]. Accordingly, λv have the minimum required values in range of 0.05–0.24 for
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columns with different anti-seismic grades, stirrup types and axial compression ratios [48]. It seems
that the minimumωwd is in the middle range of the minimum λv. It is suitable and safe for common
structural design. The construction drawing of a representative specimen C2S3Y1 with a stirrup
spacing of 46.7 mm is shown in Figure 1 as an example.
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The loading tests were performed using a 1000 kN MTS electro-hydraulic servo system; the 
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surface of specimens at mid-height. The axial deformations of specimens were measured by two 
LVDTs. The locations of axial strain gages and LVDTs are shown in Figure 2b. The loading of the 
tests was displacement controlled with a loading rate of 0.4 × 10−4 s−1. 
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Figure 2. Test setup and instrumentation: (a) test setup; and (b) locations of strain gages and LVDTs. 

In this study, monotonic and cyclic loading compression tests were performed on all the 
specimens. Prior to the tests, the specimens were pre-loaded to 10% of the estimated peak load and 
then held for 60 s to eliminate the slackness of test system and avoid the eccentricity of loading by 
adjusting specimen position until strain gage readings were consistent. 
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Figure 1. Construction drawing of specimen C2S3Y1 and locations of axial strain gauges and lateral
strain gauges: (a) horizontal view; and (b) top view (unit: mm).

2.3. Test Procedure

The loading tests were performed using a 1000 kN MTS electro-hydraulic servo system; the
overall view of test setup is shown in Figure 2a. Two 50-mm axial strain gages were attached on
the surface of specimens at mid-height. The axial deformations of specimens were measured by two
LVDTs. The locations of axial strain gages and LVDTs are shown in Figure 2b. The loading of the tests
was displacement controlled with a loading rate of 0.4 ˆ 10´4 s´1.
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Figure 2. Test setup and instrumentation: (a) test setup; and (b) locations of strain gages and LVDTs.

In this study, monotonic and cyclic loading compression tests were performed on all the specimens.
Prior to the tests, the specimens were pre-loaded to 10% of the estimated peak load and then held
for 60 s to eliminate the slackness of test system and avoid the eccentricity of loading by adjusting
specimen position until strain gage readings were consistent.
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The cyclic loading compression tests were performed on both unconfined and stirrup-confined
concrete specimens. A constant strain increment (∆ε) was used in each test. Because of the discrepancy
in strain between specimens, two loading conditions with different strain increments were selected in
the tests. For unconfined concrete, the magnitudes of strain increment (∆ε) in two loading conditions
were 5.0 ˆ 10´4 and 7.5 ˆ 10´4, whereas for stirrup-confined concrete specimens, the magnitudes
were 1.00 ˆ 10´3 and 1.25 ˆ 10´3 or 0.50 ˆ 10´3 and 1.00 ˆ 10´3. Loading rate was 4 ˆ 10´5/s for
all specimens.

3. Test Results

3.1. Monotonic Loading Tests

The monotonic stress-strain curves of all specimens are shown in Figure 3. Compared with
unconfined concrete specimens, the stirrup-confined concrete specimens had visibly higher stress-strain
peaks. Additionally, the ascending curves of stirrup-confined concrete specimens show a linear portion
followed by a plateau and the descending curves were considerably broader with greater ductility.
The stirrups yielded around the peak stress, at which the confinement effects were greatest.
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Figure 3. Monotonic stress-strain curves for: (a) Group C1 (fcu = 21.3 MPa); (b) Group C2
(fcu = 25.5 MPa); and (c) Group C3 (fcu = 40.5 MPa).

3.2. Cyclic Loading Tests

Figure 4 shows the stress-strain curves of two typical specimens under cyclic loading. The curves
of unconfined concrete specimen C2S0Y0 are shown in Figure 4a,b, and those of stirrup-confined
specimen C2S2Y1 are shown in Figure 4c,d. The corresponding monotonic stress-strain curves are also
shown in the same figures. The envelope curves of cyclic loading tests present similar behavior with
monotonic loading tests.

In the cyclic stress-strain curves, three characteristic behaviors can be observed:

1. When the load reached a certain level, complete unloading always led to plastic deformation.
The strain of unloading points increased with the loading/unloading process progressed.

2. The curves showed obvious stiffness degradation during unloading process. With loading cycles
increased, the unloading elastic modulus decreased continuously.

3. The stirrup-confined concrete bore more loading/unloading cycles with higher ultimate strain
compared with the unconfined concrete when failure occurred.

In this study, two typical cyclic loading curves were selected for discussion. Curves of the
remaining 14 specimens showed similar features, shown in Appendix (Figures A1 and A2).
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3.3. Failure Modes

Figure 5 shows the failure modes under monotonic loading of typical stirrup-confined concrete
specimen C2S3Y1 and unconfined concrete specimen C1S0Y0, respectively. For the stirrup-confined
concrete specimen C2S3Y1, the initial longitudinal microcracks were formed parallel to the axial
direction. With the increase of load, longitudinal microcracks progressed from both ends toward
the center and merged with other longitudinal microcracks. Failure occurred after buckling of the
longitudinal steel bars, and was explosive with total loss in load bearing capacity during stirrup
relative slips. The stirrups bowed out due to the expansion of core concrete with upper end failure, as
shown in Figure 5a. The stirrup slips made anti-buckling detailing failed, causing the longitudinal
steel bars buckling. It suggested that the detailing preventing buckling and anchorage failure were
important for confined concrete compression performance [50]. In contrast, for unconfined concrete
specimen C2S0Y0, independent microcracks progressed, producing a major longitudinal macrocrack
through the cross section, as shown in Figure 5b. It showed that load-bearing capacity reduced more
rapidly after peak load and that the failure was more sudden and explosive.
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4. Analysis and Discussions

4.1. Strength and Ductility of Stirrup-Confined Concrete

The test results for all specimens are listed in Table 5. The average peak compressive strain
(εc0) for three groups of unconfined concrete specimens was evaluated as 1.94 ˆ 10´3, while those
of the stirrup-confined concrete (εcc) were in the range of 2.56 ˆ 10´3–3.76 ˆ 10´3. The ultimate
compressive strain was defined as the strain when stress softened to 50% peak compressive stress.
The average ultimate compressive strain (εcu) of three groups of unconfined concrete was 3.33 ˆ 10´3,
while those of the stirrup-confined concrete (εccu) were in the range of 5.59 ˆ 10´3–8.76ˆ 10´3.
The peak compressive stress ratios (f cc/fc0) and the corresponding peak compressive strain ratios
(εcc/εc0) between stirrup-confined and unconfined concrete specimens are all greater than 1 for all
specimens. The values of fcc/fc0 were in range of 1.07–1.19. Compared with the concrete strength
improvement, the peak strain showed a more remarkable enhancement; εcc/εc0 were in the range of
1.43–2.12. In addition, the ultimate compressive strain ratios (εccu/εcu) were in the range of 1.70–2.79.
It clearly indicated the stirrup confinement improved concrete ductility.

Table 5. Test results.

Group Specimen fc0 or fcc (MPa) εc0 or εcc (10´3) εcu or εccu (10´3) fcc/fc0 εcc/εc0 εccu/εcu

C1 C1S0Y0 18.69 2.09 4.02 – – –
C1 C1S2Y1 19.92 2.98 6.85 1.07 1.43 1.70
C1 C1S2Y2 20.23 3.1 7.27 1.08 1.48 1.81
C2 C2S0Y0 21.5 1.77 3.14 – – –
C2 C2S1Y1 22.92 2.56 5.92 1.07 1.45 1.89
C2 C2S2Y1 24.57 3.09 6.88 1.14 1.75 2.19
C2 C2S3Y1 25.59 3.76 8.76 1.19 2.12 2.79
C3 C3S0Y0 32.35 1.97 2.83 – – –
C3 C3S2Y1 35.8 2.87 5.59 1.11 1.46 1.98

Table 6 compares the prediction performances using typical confined concrete models with the
values involving peak compressive stress ratio (fcc/fc0) and corresponding peak compressive strain
ratio (εcc/εc0). In the table, for Kent and Park model [3], the underestimation of εcc/εc0 may be
caused by using the same expression to estimate enhancements in both strength and strain, which is
relatively approximate. The model proposed by Saatcioglu and Razvi [24] appears to give the estimable
prediction of circular stirrup-confined concrete compared with the test results. For the theoretical
model of Mander et al. [23], the test results show a difference with the prediction, which may be
caused by the lower confinement effect because the specimen size limits the confinement densification
detailing at the specimen end.

Table 6. Existing models to predict fcc/fc0 and εcc/εc0.

Model Peak Strength Peak Strain fcc/fc0 εcc/εc0

Kent and Park [3]
fcc

fc0
“ 1 `

ρs fy

fc0

εcc

εc0
“ 1 `

ρs fy

fc0
1.14´1.47 1.14´1.47

Mander et al. [23]
fcc

fc0
“ 2.254

d

1 ` 7.94
fle
fc0

´ 2
fle
fc0

´ 1.254
εcc

εc0
“ 1 ` 5

ˆ

fcc

fc0
´ 1

˙

1.11´1.84 1.54´5.21

Saatcioglu and
Razvi [24]

fcc

fc0
“ 1 ` 6.7

f 0.83
le
fc0

εcc

εc0
“ 1 ` 5

k1 fle
fc0

1.12´1.3 1.61´2.51

Present tests – – 1.07´1.19 1.43´2.12
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4.2. Damage Evolution of Stirrup-Confined Concrete

4.2.1. Plastic Strain

The cyclic loading tests in this study showed that after a certain load limit was reached, the
complete unloading of each loading cycle generated irreversible residual deformation, known as
plastic deformation [51,52]. The strain of unloading point increased with the loading/unloading cycle
continued, leading to higher levels of deformation, as shown in Figure 4.

By applying a quadratic polynomial expression to the εp-ε relationship experimentally obtained,
two functions were obtained for unconfined and stirrup-confined concrete, respectively. For simplicity,
a unified function was proposed for both stirrup-confined and unconfined concrete specimens.

εp “

$

&

%

0 @ε ď εce

cpε´ εceq
2
` dpε´ εceq @ε ą εce

(3)

For comparison, a linear function is fitted, and the results are plotted together with the test data
shown in Figure 6. The plastic strain curve of confined concrete shows more elastoplastic behavior.
However, for unconfined concrete, it shows that the curve of linear fitting is an upper bound in
intermediate strain range of 2.0 ˆ 10´3–5.0 ˆ 10´3, and quadratic polynomial fitting is close to an
average curve in that range. With parameters c = 6.283 and d = 0.831, the proposed function of
stirrup-confined concrete shows good correlation with the experimental data with R2 = 0.997, as shown
in Figure 6a. Similarly, the parameters of unconfined concrete were obtained and a good correlation of
R2 = 0.988 is observed, as shown in Figure 6b.
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Figure 6. Proposed function for the εp-ε relationship: (a) stirrup-confined concrete; and
(b) unconfined concrete.

4.2.2. Effects on Concrete Damage Evolution

The cyclic loading tests clarify that the concrete stiffness degrades because of the development
of microcracks with the increase of plastic strain. In order to describe this phenomenon, a damage
indicator D was defined to represent the evolution of concrete damage by Lemaitre [53]. According to
this concept, the damage indicator D can be calculated by means of Equation (4), where E0 is initial
elastic modulus and Eu is unloading secant stiffness of the line connecting present unloading point to
next loading point in the loading cycles.

D “ 1´ Eu{E0 (4)

The effects of the stirrup volume ratio, stirrup yield strength and concrete strength on concrete
damage evolution were investigated by comparing the test results, which are illustrated in Figure 7.
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Figure 7a shows the effect of stirrup yield strength on the damage evolution of specimens with
identical concrete strength and stirrup volume ratio, 21.3 MPa and 1.65%, respectively. It can be
observed that the damage evolution of specimens with 536 MPa stirrup yield strength proceeded more
slowly than those of specimens with 370 MPa stirrup yield strength. It demonstrates that the stirrup
confinement effect is affected by stirrup yield strength to some extent. Higher stirrup yield strength
leads to a higher confining pressure while inhibiting concrete damage evolution.

Figure 7b shows the effect of stirrup volume ratio on the damage evolution of specimens
with identical concrete and strengths stirrup yield strengths, 25.5 and 370 MPa, respectively. For
unconfined concrete specimens, damage emerged at ε = 2.0 ˆ 10´3 and the curves increased sharply,
suggesting rapid damage evolution. With stirrups allocated, damage emerged at strain in the range of
2.0 ˆ 10´3–4.0 ˆ 10´3, indicating that the damage evolution was delayed significantly. As compared
with unconfined concrete, the damage evolution curve was gradual and longer. It is also observed in
Figure 7b that the slopes of the curves gradually decreased, and that the ultimate compressive strain
increased, as the stirrup volume ratio increased from 0.82% to 2.47%. It clearly demonstrates that when
the stirrup volume ratio increased, the concrete damage evolution was restrained.

Figure 7c shows the effect of concrete strength on the damage evolution of specimens with
identical stirrup volume ratios and yield strengths, 1.65% and 370 MPa, respectively. The high-strength
concrete damage evolved more rapidly than low-strength concrete. The reason is that high-strength
concrete exhibited limited transverse deformation under axial compression relatively, and a lower
passive confinement effect was observed. In addition, internal microcracks generation and merging
processes were more rapid in high-strength concrete than those in normal concrete, which leads to a
faster damage evolution.
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4.3. Proposed Damage Evolution Equation

Figure 8 shows the damage evolution curve of a typical stirrup-confined concrete specimen
(C1S2Y1, blue line) with stress–strain curve of monotonic compression (black line) superimposed.
The test results revealed that the shapes of stress-strain curves of stirrup-confined concrete specimens
were different from those of the unconfined concrete specimens. The former curves were broader, with
an interval point located on the gradually declining branch, which was less steep than the latter curves
(d2σ/dε2 = 0 at the interval point). Based on the strain at interval point εin, the plastic phase could
be divided into two stages: plastic stage 1 and plastic stage 2. The damage evolution also presented
distinct features in the different states:

1. In the elastic stage (Curve OA in Figure 8), no damage appeared, meant D was very small (close
or equal to zero).

2. Plastic stage 1 included the ascending branch before peak stress and the declining branch
after peak stress up to interval point. In the ascending branch, microcracks formed quickly,
which resulted in rapid damage evolution, although with a small amount of damage (Curve
AB in Figure 8). After peak stress, the crack merging processes progressed further, and
damage accumulated during this stage. However, damage began to stabilize because of stirrup
confinement effect (Curve BC in Figure 8).

3. In plastic stage 2, few new microcracks were generated, and damage increased very slowly while
loading increased continuously until failure occurred (Curve CD in Figure 8).
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The evolution of damage indicator of stirrup-confined concrete (Dcc) is modified from Dc by
multiplying a confinement factor (C) as follows

Dcc “

#

0 @ε ď εce

CˆDc @ε ą εce
(5)

where Dc is the damage indicator of unconfined concrete defined by Li and Li [54], which is given by

Dc “ 1´
1

1`
ˆ

Yc ´ ac

bc

˙lc
(6)

where Yc is damage energy release rate (Li and Li [54]), which is given by

Yc “
´

1` kc
εp

ε

¯

ˆ
E0ε

2
ce

2
(7)

In Equations (6) and (7), ac, bc, lc and kc are parameters of unconfined concrete (Li and Li [54]) that
need be calibrated with experimental data and their values are summarized in Table 7.

Table 7. The parameter of ac, bc, lc and kc used to calculate damage.

Group ac bc lc kc

C1 0.0113 ´0.191 1.0 ´2.719
C2 0.0110 ´0.432 1.0 ´7.071
C3 0.0227 ´1.579 1.0 ´1.579

Considering the different features of damage evolution before and after the interval point
mentioned above, the expression of confinement factor (C) is given by

C “

#

exp rm p´3.150´ nˆ
?
εˆ lnpεqqs @ε ď εin

arctan pAmpε´ εinqq ˆ 2p1´ Cinq{π` Cin @ε ą εin

(8)

where Cin is confinement factor corresponding to εin ˆ Cin = 0.5 is suggested through the calibration
with test data. The parameters m, n, and Am in Equation (8), which are obtained by the regression
analysis of experimental results, are given by:

m “ 0.06319 fcc
1.1 ˆ p1.296´ λv

0.7q
2

(9)

n “ 0.53494 fcc
0.15 ˆ fy

0.15p5´ 1.79λv
0.2q (10)

Am “ expp5.3` 0.1ˆ fcc
0.4{λv

0.6q (11)

The comparisons of proposed damage evolution with experimental results of the three
stirrup-confined concrete specimen groups C1, C2 and C3 are shown in Figure 9. The damage
began to increase from zero at a strain range of 2.0 ˆ 10´3–4.0 ˆ 10´3, displaying the same plastic
deformation developments as those of the experimental data. The damage increased significantly
before eventually stabilizing at Dcc = 0.8–0.9, corresponding to the ultimate strain. In most cases,
the proposed damage evolution curve accurately simulates the experiment results. It can be used to
develop plastic damage models of stirrup-confined concrete.
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Figure 9. Comparisons of the proposed Dcc to the experimental results of specimens: (a) C1S2Y1;
(b) C1S2Y2; (c) C2S1Y1; (d) C2S2Y1; (e) C2S3Y1; and (f) C3S2Y1.

5. Conclusions

A study of damage evolution of circular stirrup-confined concrete specimens under monotonic
and cyclic compression loadings was presented. The effects of stirrup volume ratio, stirrup yield
strength and concrete strength on stress-strain curves and damage evolution of stirrup-confined
concrete were investigated. Based on experimental results, expressions for plastic deformation and
damage evolution were proposed. The following conclusions can be drawn from this study:

‚ Strength and ductility of reinforced concrete can be improved by stirrup confinement effect.
The ratio fcc/fc0 was introduced to describe the concrete strength improvement, which ranged from
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1.07 to 1.19; additionally, the peak strain and ultimate strain displayed remarkable enhancements,
as εcc/εc0 and εccu/εcu were in the range of 1.43–2.12 and 1.70–2.79, respectively.

‚ The stirrup-confined concrete specimens showed clear transverse expansion instead of brittle
failure, and the stirrups bowed out when failure occurred. The stirrups with lower stirrup volume
ratios show limited confinement effect. At higher stirrup volume ratios, the stirrups provide
higher confinement effect. Thus, the stirrup volume ratios play an important role in transverse
confining of concrete.

‚ Confining pressure from stirrups reduces microcrack formation and restrained the damage
evolution of concrete. As stirrup volume ratio increases, the stirrups provide a stronger transverse
confining pressure, further restraining the damage evolution of concrete. Higher stirrup yield
strength can generate a larger confining pressure, which would inhibit damage evolution. Due
to the brittleness of high-strength concrete, growth and merging of microcracks proceed rapidly,
causing the acceleration of damage evolution.

‚ Based on experimental results, a plastic strain expression was proposed, and a confinement factor
(C) was introduced to the proposed damage evolution equation, to describe the effects of various
confinement parameters on concrete damage evolution. The established damage evolution
model can well represent the whole damage evolution process in circular stirrup-confined
concrete. Because of less confinement parameters involved, the model can be conveniently
applied to evaluate the plastic damage behavior of circular stirrup-confined concrete with
reasonable accuracy.

‚ Evidently, more test results are needed to fully validate the proposed model. In addition, the size
effect of specimen on damage evolution model was not considered in the present study. As such,
the proposed damage evolution model for circular stirrup-confined concrete can be refined in
future research works.
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List of Symbols

d Stirrup diameter
s Stirrup spacing
ρv Stirrup volume ratio
λv Stirrup characteristic value
fy Stirrup yield strength
fcu Cubic compressive strength of the concrete
F0 Ultimate load of the unconfined concrete
Fc Ultimate load of the stirrup-confined concrete



Materials 2016, 9, 278 15 of 19

E0 Elastic modulus of the unconfined concrete
Ec Elastic modulus of the confined concrete
Eu Secant stiffness of the line connecting present unloading point to next loading point
f c0 Peak compressive stress of the unconfined concrete
fcc Peak compressive stress of the stirrup-confined concrete
ε Strain
∆ε Strain increment
εc0 Peak compressive strain corresponding to f c0

εcc Peak compressive strain corresponding to fcc

εcu Ultimate compressive strain of the unconfined concrete
εccu Ultimate compressive strain of the stirrup-confined concrete
εce Elastic compressive limit strain of the stirrup-confined concrete
εp Plastic strain
εin Plastic strain at the interval point
Dc Damage indicator of unconfined concrete
Dcc Damage indicator of stirrup-confined concrete
C Confinement factor
Cin Confinement factor corresponding to εin
Yc Damage energy release rate function
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Figure A1. Cyclic stress–strain curves of unconfined concrete specimen: (a) C1S0Y0, Δε = 5.0 × 10−4;  
(b) C1S0Y0, Δε = 7.5 × 10−4; (c) C3S0Y0, Δε = 5.0 × 10−4; and (d) C3S0Y0, Δε =7.5 × 10−4. 
Figure A1. Cyclic stress–strain curves of unconfined concrete specimen: (a) C1S0Y0, ∆ε = 5.0 ˆ 10´4;
(b) C1S0Y0, ∆ε = 7.5 ˆ 10´4; (c) C3S0Y0, ∆ε = 5.0 ˆ 10´4; and (d) C3S0Y0, ∆ε =7.5 ˆ 10´4.
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Figure A2. Cyclic stress-strain curves of stirrup-confined concrete specimen: (a) C1S2Y1, Δε = 5.00 × 10−4; 
(b) C1S2Y1, Δε = 1.00 × 10−3; (c) C1S2Y2, Δε = 1.00 × 10−3; (d) C1S2Y2, Δε = 1.25 × 10−3; (e) C2S1Y1,  
Δε = 1.00 × 10−3; (f) C2S1Y1, Δε = 1.25 × 10−3; (g) C2S3Y1, Δε = 1.00 × 10−3; (h) C2S3Y1, Δε = 1.25 × 10−3; 
(i) C3S2Y1, Δε = 1.00 × 10−3; and (j) C3S2Y1, Δε = 1.25 × 10−3. 
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Figure A2. Cyclic stress-strain curves of stirrup-confined concrete specimen: (a) C1S2Y1,
∆ε = 5.00 ˆ 10´4; (b) C1S2Y1, ∆ε = 1.00 ˆ 10´3; (c) C1S2Y2, ∆ε = 1.00 ˆ 10´3; (d) C1S2Y2,
∆ε = 1.25 ˆ 10´3; (e) C2S1Y1, ∆ε = 1.00 ˆ 10´3; (f) C2S1Y1, ∆ε = 1.25 ˆ 10´3; (g) C2S3Y1,
∆ε = 1.00 ˆ 10´3; (h) C2S3Y1, ∆ε = 1.25 ˆ 10´3; (i) C3S2Y1, ∆ε = 1.00 ˆ 10´3; and (j) C3S2Y1,
∆ε = 1.25 ˆ 10´3.
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