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Abstract: Carbon xerogel-zinc oxide (CXZnO) composites were synthesized by a simple method of
sol-gel condensation polymerization of formaldehyde and resorcinol solution containing zinc salt
followed by drying and thermal treatment. ZnO nanoparticles were observed to be evenly dispersed
on the surfaces of the carbon xerogel microspheres. The as-prepared CXZnO composites were mixed
with laccase (Lac) and Nafion to obtain a mixture solution, which was further modified on an electrode
surface to construct a novel biosensing platform. Finally, the prepared electrochemical biosensor
was employed to detect the environmental pollutant, catechol. The analysis result was satisfactory,
the sensor showed excellent electrocatalysis towards catechol with high sensitivity (31.2 µA¨mM´1),
a low detection limit (2.17 µM), and a wide linear range (6.91–453 µM). Moreover, the biosensor also
displayed favorable repeatability, reproducibility, selectivity, and stability besides being successfully
used in the trace detection of catechol existing in lake water environments.
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1. Introduction

A biosensor, as a type of analytical tool, can be employed to detect analyte existing in various
environments. It consists of a biological recognition component and a physicochemical transduction
device [1]. Since Leland C. Clark invented enzyme based electrodes in 1962, enzyme based
biosensors have attracted a great deal of attention from scientists and researchers [2–4]. Due to
the great advantages of enzyme biosensors over conventional analytical techniques, such as low
price, high sensitive/selective, rapid response, and amenable miniaturization, etc., they have been
applied in multifarious fields, such as clinical medicine, environment monitoring, and food safety,
as well as homeland security [5,6]. Laccase (Lac) is a multicopper oxidase which can catalyze
phenolic compounds to give their oxidation form accompanied by reduction of molecular oxygen [7].
As a consequence, numerous Lac based biosensors have been prepared to detect phenols in tea
infusions and wines, as well as in watery environments [8–10].

In order to improve the sensitivity and selectivity of biosensors, a variety of conductive materials
or conductive nanomaterials have been added to the biosensing system, which mainly contain metal
nanoparticles, metal oxide nanoparticles, carbon materials, and conductive polymers. Among these
materials, carbon materials, including carbon black, carbon nanotube, graphene, carbon nanofiber,

Materials 2016, 9, 282; doi:10.3390/ma9040282 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
http://www.mdpi.com/journal/materials


Materials 2016, 9, 282 2 of 11

mesoporous carbon, etc., are commonly used due to their low cost, outstanding electron transfer
ability, good chemical stability, and biocompatibility [11]. Specifically as a type of porous carbon
material, carbon xerogel (CX) harbors many merits, e.g., low mass density, large surface area, and
excellent electrical conductivity. On the basis of these advantages, CX has been widely applied in
adsorbents, catalyst supports, and electrode materials for supercapacitors and rechargeable lithium-ion
batteries. Only a few literature examples have reported biosensors utilizing CX which possesses a huge
application potential in biosensors. Zinc oxide (ZnO), as an admirable semiconductor material, has
attracted wide attention in various application fields, such as piezoelectric devices, sensors, transparent
electronics, optics, optoelectronics, and actuators [12,13]. The satisfactory electron conduction ability,
good biocompatibility, and chemical stability renders ZnO to be an outstanding modification material
in biosensors [14]. Besides, the isoelectric point (IEP) of ZnO is about 9.5, which is very favorable
for adsorption of proteins with low IEP [15]. However, direct modification of ZnO nanoparticles on
electrodes usually leads to their aggregation, which considerably restricts their electrocatalysis and
electrochemical performance. Combination of ZnO nanoparticles with conductive substrate materials
can effectively solve this problem.

In this work, we synthesized carbon xerogel-zinc oxide (CXZnO) composites through a simple
method of sol-gel condensation polymerization of formaldehyde and resorcinol solution containing
zinc salt followed by drying and thermal treatment. ZnO nanoparticles were evenly dispersed on
the surfaces of the carbon xerogel microspheres in the final products. The as-prepared CXZnO
composites were further employed to modify the electrode with Lac and Nafion to construct a novel
biosensing platform. The obtained biosensor showed excellent bio-electrocatalysis towards the
phenolic compound catechol, with high sensitivity, low detection limit and a wide linear range.
Moreover, the sensor demonstrated its practical application potential by detecting catechol existing in
real lake water with satisfactory recovery. Our study expands the application of carbon xerogel in the
biosensing field and offers theoretical support for exploiting high-efficient enzyme based biosensors.

2. Materials and Methods

2.1. Chemicals and Reagents

Laccase (Lac, enzyme activity ě10 U/mg) from Trametes versicolor was purchased from
Sigma-Aldrich. Nafion (5% w/w) was obtained from Shanghai Branch, Du Pont China Holding
Co., Ltd. (Shanghai, China). Catechol was purchased from Shanghai Aladdin Chemical Reagent
Company (Shanghai, China). Zinc acetate dihydrate (C4H6O4Zn¨ 2H2O), formaldehyde, resorcinol,
and other chemicals were purchased from the Sinopharm Group Chemical Reagent Co., Ltd. (Shanghai,
China). All of the chemicals were of analytical grade and used without further purification. In addition,
acetate buffer solution (0.1 M HAc–NaAc, pH = 5.0) was used as a supporting electrolyte. All aqueous
solutions were prepared with deionized water (DIW).

2.2. Apparatus

TGA measurement was conducted using a Mettler Toledo analyzer in an air atmosphere, the
temperature range was from ambient temperature to 800 ˝C with a heating rate of 10 ˝C/min.
The chemical components of CXZnO composites were analyzed by a Powder D8 Advance X-ray
diffraction (XRD, Bruker AXS D8, Coventry, UK). The nitrogen absorption and desorption isotherms
of CXZnO composites at 77 K were measured by using a TriStar 3020 surface area and pore analyzer
(Micromeritics, America). The morphologies of CXZnO composites were observed by using a field
emission scanning electron microscope (FE-SEM, Hitachi S-4800, Tokyo, Japan) and a high-resolution
transmission electron microscope (TEM, JEOL/JEM-2100, Tokyo, Japan). Prior to scanning under
the FE-SEM, the samples were sputter coated with gold for 90 s to avoid charge accumulations.
Electrochemical experiments were conducted at room temperature using a CHI 660E electrochemical
workstation (CH Instruments, Inc., Shanghai, China). A three-electrode cell with a glass carbon
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electrode (GCE) (3.0 mm in diameter, purchased from Gaoss Union Technology Co., Ltd., Wuhan,
China), a platinum wire auxiliary electrode, and an Ag/AgCl reference electrode were used for
electrochemical measurements. The electrolyte solution was bubbled with highly pure nitrogen for
15 min before electrochemical experiments and a nitrogen atmosphere was kept over the solution
throughout the experiments except for the amperometric experiments.

2.3. Synthesis of CXZnO Composites

The synthesis procedure of CXZnO composites can be described as follows: 1.375 g of resorcinol
and 2.23 g of C4H6O4Zn¨ 2H2O were dissolved in 10 mL of DIW with the aid of stirring and
ultrasonication followed by adding 2.375 mL of formaldehyde into the formed solution. After fast
stirring for a while, the solution was sealed by plastic wrap and placed in an oven at 76 ˝C.
Through a sol-gel reaction for three days, the plastic wrap was poked to dry the composite gel.
Eventually, the dried gel was put into a high temperature tube furnace to carbonize it in a N2

atmosphere. The heating rate was 5 ˝C/min, maintaining 300 ˝C and 800 ˝C for 1 h and 2 h, respectively,
and cooling down to room temperature. The final products were solely CXZnO composites, and the
composites were further ground to powders for the following experiments. For comparison, ZnO
powders were prepared by directly heating C4H6O4Zn¨ 2H2O with the same thermal treatment process.

2.4. Preparation of Biosensors

The preparation procedures of biosensors are described as follows: 1.5 mg of CXZnO was added
into actetate buffer of pH = 5.0 and with the aid of ultrasonication stirring, a CXZnO suspension was
obtain. Subsequently, 15 mg of Lac and 75 µL of Nafion solution (5 wt %) were added to the above
CXZnO suspension, by which the final mixture solution was achieved. Eventually, 10 µL of the mixture
was dropped onto a freshly polished glass carbon electrode (GCE) surface to fabricate the biosensor,
and the dried modified GCE was named GCE/Lac-CXZnO-Nafion, which was stored at 4 ˝C for use.

GCE/Lac-Nafion and GCE/Lac-ZnO-Nafion modified electrodes were fabricated by a similar
methods with the same amount of Lac for comparison experiments. All the modified electrodes were
immersed into a buffer for 30 min to remove impurities before electrochemical measurements.

3. Results and Discussion

3.1. Characterization of CXZnO Composites

Thermogravimetric analysis (TGA) characterization was employed to determine the contents of
carbon xerogel in CXZnO composites. The result is displayed in Figure 1, which shows the weight loss
of the CXZnO composites terminated at around 640 ˝C. The weight loss below 640 ˝C can be ascribed
solely to carbon, hence, the content of ZnO in the composites can be assessed in Figure 1, which is
about 40%.
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X-ray diffraction (XRD) analysis was used to investigate the chemical ingredients and crystal
structures of the CXZnO composites, and the result is shown in Figure 2A. The diffraction peak
occurring at about 24˝ is attributed to the {0 0 2} plane of graphite carbon [16]. In addition, the peaks
at ca. 31.8˝, 34.4˝, 36.3˝, 47.5˝, 56.6˝, 62.9˝, 66.3˝, 67.9˝, and 69.1˝ correspond to the {1 0 0}, {0 0 2},
{1 0 1}, {1 0 2}, {1 1 0}, {1 0 3}, {2 0 0}, {1 1 2} and {2 0 1} crystalline planes of zinc oxide, respectively [17].
The XRD result demonstrates that the CXZnO composite was successfully synthesized.

Figure 2B displays the nitrogen adsorption-desorption isotherm of CXZnO composites.
According to the BDDT classification [18], the isotherm belongs to a combination of type I and
type II of micro-mesoporous materials. Meanwhile, the specific surface area of CXZnO composites
was tested to be 340.5 m2/g with a pore volume of 0.161 cm3/g, and the average pore size was about
2.2 nm through the Barrett-Joyner-Halenda (BJH) model (Figure 2C). The large specific surface area and
special micro-mesoporous structure were both favorable for the immobilization of biological enzyme
protein, leading to high bioelectrocatalytic properties.
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size distribution curve (C) of CXZnO composites.

Figure 3A shows the SEM morphology image of CXZnO composites. A large number of
microspheres were gathered together, some of which formed a chain-like structure. The average
diameter of these microspheres was about 1.8 µm. It can be seen from the enlarged SEM image of
CXZnO composites (Figure 3B) that most microspheres possessed smooth surfaces while there were
also some nanoparticle loaded microspheres, which may be the CXZnO composite microspheres.
Figure 3C,D displays the TEM image of CXZnO composites, it can be clearly observed that there are
two kinds of morphologies, one shows smooth surfaces with no nanoparticles, and the other has rough
surfaces with evenly distributed nanoparticles. The average diameter of these nanoparticles is around
103 nm. So the small sizes and uniform distribution of the ZnO nanoparticles were both favorable to
perform their electrocatalytic activities. Meanwhile, the nanoparticles also offered abundant active
sites for Lac immobilization.
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3.2. Electrochemical Studies of Modified Electrodes

Electrochemical Impedance Spectroscopy (EIS) characterization was utilized to compare the
interface resistances of different modified electrodes, the result of the Nyquist plot of impedance
is shown in Figure 4A. The values of charge transfer resistance (Rct) of modified electrodes are
proportional to the diameters of semicircles. Apparently, bare electrode (GCE) shows almost a straight
line, indicating the negligible Rct value. However, an obvious semicircle occurred on the curve
for GCE/Lac-Nafion, the Rct value is about 227 Ω, suggesting that the interface resistance was
increased by the immobilization process of Lac. In addition, the Rct value of GCE/Lac-ZnO-Nafion
was almost equal to that of GCE/Lac-Nafion, implying that the addition of ZnO did not decrease
the interface resistance of the modified electrode. This may be explained by the fact that ZnO
is a type of semiconductor material, which may possess similar electron conductive ability to
Lac. While, the semicircle diameter of the curve for GCE/Lac-CXZnO-Nafion was smaller than
those of GCE/Lac-Nafion and GCE/Lac-ZnO-Nafion, the Rct value was also decreased to 145 Ω.
This demonstrated that the CXZnO composites accelerated the electron transfer thereby weakening
the interface resistance of the modified electrode hence revealing the excellent electron conductivity of
carbon xerogel.

The electrocatalytic properties of four modified electrodes, including bare GCE, GCE/Lac-Nafion,
GCE/Lac-ZnO-Nafion, and GCE/Lac-CXZnO-Nafion, were compared using the cyclic voltammograms
of these electrodes in pH = 5.0 acetate buffer solution containing 100 µM catechol, the result is shown in
Figure 4B. These electrodes all show a pair of distinct redox peaks, which can be ascribed to the redox
electrochemical reaction of catechol occurring on the electrode surface. It was observed that bare GCE
possessed the smallest oxidation and reduction peak current values, indicating the poor electrocatalytic
activity of bare GCE. GCE/Lac-Nafion presented higher peak current values as compared to bare
GCE, the oxidation peak current value reached to 12 µA, and the reduction peak current value was
ca. 11.67 µA. This can be attributed to the high-efficient catalysis of Lac toward catechol. The peak
current values for GCE/Lac-ZnO-Nafion were decreased to some extent, which suggested that the
aggregated ZnO particles may impair the electrocatalytic activity of the modified electrode. It is
noticeable that GCE/Lac-CXZnO-Nafion shows the largest redox peak current values, which were
increased to 14.68 µA and 14.31 µA, respectively. This demonstrated that the CXZnO composites
can enhance the electrocatalytic properties of the modified electrode, maybe attributing to the good
conductivity of CXZnO composites and the synergetic catalysis of ZnO nanoparticles. The whole
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electrochemical reaction was a quasi-reversible cyclic process and the sensing mechanism of Lac on
GCE/Lac-CXZnO-Nafion is illustrated in Scheme 1. Under the presence of molecular oxygen, the
catechol was oxidized to 1,2-benzoquinone by Lac, coupled with the electrocatalytic reduction of
oxygen to water on the surface of GCE. The reaction process can be described as follows:

Catechol ` LacpoxyqÑ 1, 2-Benzoquinone ` Lacpdeoxyq ` 2H+ ` 2e´

Lacpdeoxyq ` O2 ` 4H+ÑLacpoxyq ` 2H2O
(1)
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Figure 4. (A) Electrochemical impedance spectroscopy (EIS) of modified electrodes: bare GCE,
GCE/Lac-Nafion, GCE/Lac-ZnO-Nafion, and GCE/Lac-CXZnO-Nafion in 0.1 M KCl containing 5 mM
Fe(CN)6

3´/4´. Frequency range: 0.01 Hz–100,000 Hz. Amplitude: 5 mV; (B) Cyclic voltammograms of
(a) bare GCE; (b) GCE/Lac-Nafion; (c) GCE/Lac-ZnO-Nafion; and (d) GCE/Lac-CXZnO-Nafion in
pH 5.0 acetate buffer solution containing 100 µM catechol at 100 mV/s; (C) Cyclic voltammograms of
GCE/Lac-CXZnO-Nafion in pH = 5.0 acetate buffer solution containing 100 µM catechol at scan rates
of 50, 100, 120, 150, 200, 250, and 300 mV/s (a–f), respectively. Inset: Plots of the corresponding anodic
and cathodic peak currents vs. scan rate; (D) Electrocatalysis of GCE/Lac-CXZnO-Nafion towards
catechol in pH = 5.0 acetate buffer solution with scan rate 100 mV/s. Catechol concentrations (µM):
(a) 100; (b) 200; (c) 300.

Figure 4C shows the influence of scan rates on the cyclic voltammograms of
GCE/Lac-CXZnO-Nafion. As the scan rates grew from 50 mV/s to 300 mV/s, both the anodic peak
and cathodic peak current values increased. It can be seen from the inset of Figure 4C, the peak current
values enhanced linearly with the scan rates and were proportional to the scan rates. This indicated
that the electrochemical conduction occurring on the electrode surface was a surface-controlled
electrochemical reaction process. Figure 4D displays the electrocatalysis of GCE/Lac-CXZnO-Nafion
towards catechol with different concentrations. Obviously, the current values of redox peaks increased
with the increment of substrate (catechol) concentration, implying that GCE/Lac-CXZnO-Nafion
possessed exceptionally good electrocatalytic properties toward catechol and can be applied in a
catechol enzyme-based biosensor.
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Scheme 1. Schematic illustration of the catalyzed oxidation of catechol by laccase on the
electrode surface.

3.3. Analytical Performance for Detecting Catechol

Chrono-amperometry was employed to investigate the analytical performance of the as-prepared
biosensor for detecting catechol. To acquire the optimal current response and the highest sensitivity
of the biosensor, before the amperometric tests, some parameters like solution pH and applied work
voltage were optimized. As shown in Figure 5, the optimal pH and applied potential were pH 5.0 and
0.5 V, respectively, which were fixed in the following chrono-amperometry tests.
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Figure 5. (A) The pH effects; and (B) applied potentials of GCE/Lac-CXZnO-Nafion on the catalytic
currents of catechol in 0.1 M acetate buffer solution containing 100 µM catechol.

Figure 6A depicts the typical current-time response curve of the GCE/Lac-CXZnO-Nafion upon
successive additions of catechol into pH = 5.0 acetate buffer solution with 0.5 V of applied potential.
Herein, two concentrations of catechol solution (2 mM and 20 mM) were successively added into the
acetate buffer solution. It can be clearly seen that once the 100 µM of catechol was added, the response
current increased instantly, the time for the current value reaching 95% of the next maximum response
current value was only 3 s, indicating a fast response of biosensor, which may be attributed to the easy
diffusion of catechol in the Lac-CXZnO-Nafion composite film. Figure 6B shows the calibration curve
of response currents vs. catechol concentrations. The current values increased linearly with the ascent
of catechol concentration. The linear range was from 6.91 µM to 453 µM with a correlation coefficient
(R2) of 0.983 (n = 13). The sensitivity was 31.2 µA/mM and the detection limit was estimated to be
2.17 µM at a signal-to-noise of 3 (S/N = 3). Table 1 compares the biosensing performance of different
laccase based biosensors. Our biosensor showed satisfactory detection results toward catechol with
low detection limit, high sensitivity and wide linear range.
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Table 1. Biosensing performance comparison of different laccase based biosensors toward catechol a.

Electrodes Detection Limit
(µM)

Linear Range
(µM)

Sensitivity
(µA/mM) Ref.

MB-MCM-41/PVA/lac 0.331 4–87.98 – [19]
GCE/MCN/Tyr 0.01 0.05–12.5 – [20]

Lac/AP- rGOs/Chit/GCE 7 15–700 15.79 [21]
Lac-FSM7.0-GC 2 2–100 – [22]

Cu-OMC/Lac/CS/Au 0.67 0.67–13.8 104 [23]
GCE/Lac-CXZnO-Nafion 2.17 6.91–453 31.2 This work

a The dashes in the table represent values that were not reported in the references.

The fabrication reproducibility of the GCE/Lac-CXZnO-Nafion was investigated by successive
detection of 100 µM catechol by six modified electrodes prepared in the same way. The relative standard
deviation (RSD) was 3.2%, implying the acceptable reproducibility of the GCE/Lac-CXZnO-Nafion.
The RSD of the GCE/Lac-CXZnO-Nafion for 20 times of successive detection of 100 µM catechol was
1.7%, indicating excellent repeatability of the GCE/Lac-CXZnO-Nafion. The selectivity experimental
result is shown in Figure 7. The current response of the GCE/Lac-CXZnO-Nafion for 100 µM catechol
solution and 100 µM catechol solution containing 100 µM interferents (hydroquinone, catechin, gallic
acid, phenol, and aminophenol) was measured, respectively. Apparently, these interferents almost
produced no effects on the current response of the biosensor, indicating the good selectivity of the
GCE/Lac-CXZnO-Nafion.
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It can be seen from Figure 8 that the storage stability of the GCE/Lac-CXZnO-Nafion in pH = 5.0
acetate buffer solution at 4 ˝C was satisfactory. Furthermore, over one month of storage, the response
current value could retain 93.6% of the original value, suggesting the excellent storage stability of the
GCE/Lac-CXZnO-Nafion.
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3.4. Real Sample Analysis

To test the practical application of the biosensor, we conducted recovery experiments using real
lake water from Taihu Lake, Wuxi, China. An amount of 100 µM of catechol was added into the lake
water samples, which was named Cadded. The determined content was denominated Cfound and the
result is shown in Table 2. It is seen that the recovery was very close to 100%, and the RSD was only
2.52%. This real sample analysis test demonstrated that the as-prepared biosensor can be successfully
applied for the trace detection of catechol in a lake water environment.

Table 2. Determination of catechol content in real water samples (n = 5).

Sample Cadded (µM) Cfound (µM) Recovery (%) RSD (%)

a 100.00 103.26 103.26 2.52
– 100.00 98.93 98.93 –
– 100.00 97.31 97.31 –
– 100.00 102.47 102.47 –
– 100.00 101.95 101.95 –

a: Taihu Lake water.

4. Conclusions

In summary, a sol-gel condensation polymerization of formaldehyde and resorcinol solution
containing zinc salt was used to prepare the precursors of CXZnO composites. The precursors were
further dried and carbonized to obtain the CXZnO composites. A novel biosensor was fabricated
by modifying a mixture containing CXZnO composites, Lac, and Nafion on the electrode surface.
The as-prepared biosensor showed very good biological electrocatalysis towards catechol with high
sensitivity, low detection limit, and wide linear range. Besides, the sensor was successfully used in
trace detection of catechol existing in the real lake water environment. This novel composite further



Materials 2016, 9, 282 10 of 11

expands the application of carbon xerogel materials in the field of biosensing, and paves the way to
develop highly sensitive phenolic biosensors.
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