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Abstract: Fiber shedding is a critical problem in biomedical textile debridement materials, which
leads to infection and impairs wound healing. In this work, single fiber pull-out test was proposed
as an in vitro evaluation for the fiber shedding property of a textile pile debridement material.
Samples with different structural design (pile densities, numbers of ground yarns and coating times)
were prepared and estimated under this testing method. Results show that single fiber pull-out test
offers an appropriate in vitro evaluation for the fiber shedding property of textile pile debridement
materials. Pull-out force for samples without back-coating exhibited a slight escalating trend with the
supplement in pile density and number of ground yarn plies, while back-coating process significantly
raised the single fiber pull-out force. For fiber shedding mechanism analysis, typical pull-out behavior
and failure modes of the single fiber pull-out test were analyzed in detail. Three failure modes were
found in this study; i.e., fiber slippage, coating point rupture and fiber breakage. In summary, to
obtain samples with desirable fiber shedding property, fabric structural design, preparation process
and raw materials selection should be taken into full consideration.

Keywords: textile pile debridement material; fiber shedding; single fiber pull-out test; structural
design; back-coating; failure mode

1. Introduction

Skin wounds with various characteristics are a global issue and a major threat to the public
health and economy [1-3]. Those that fail to heal within an anticipated time and do not proceed
through a highly organized reparative process, which results in anatomic and functional integrity, are
considered chronic [2,4]. Pressure, venous and diabetic foot ulcers are the three main categories of
chronic wounds [5-7]. To solve these problems, the primary step in chronic wound treatment is to
achieve effective debridement or wound bed preparation. Wound debridement is the medical removal
of devitalized, damaged, infected or contaminated tissue from the wound bed to improve the healing
potential for the remaining healthy tissue [8,9]. It is the main tool for maintaining a healthy wound bed
in most chronic wounds and a recognized component of good wound care as it reduces the bioburden
of the wound and improves the life quality of patients [10,11]. The TIME concept (Tissue, Inflammation
(or Infection), Moisture, Edge) proposed by European Wound Management Association (EWMA) in
2003 has been widely accepted as a practical guide for the debridement of chronic wounds [12,13].

Inflammation, a natural physiological reaction in the circumstance of wounds, is a normal stage
in the wound healing process. However, intensive or inappropriate inflammation always results in
infection, which complicates the wound, impedes wound healing, and increases patient discomfort
and/or anxiety [14,15]. To control the inflammation or infection, a totally removal of the necrotic tissues
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is requisite in the procedure of debridement. Meanwhile, new pollutant or foreign body should not be
introduced into the wound bed. Among various debridement methods, medical cotton and absorbent
gauze are the most commonly seen biomedical textile materials, which can be used as either a swab
or patch to clean wounds [16,17]. They are preferred due to the low cost and easy operating [18,19].
However, fiber shedding phenomenon was reported when a gauze was attached or detached during
the wet-to-dry debridement [20,21]. The shed fibers remained in the wound bed not only contaminate
the microenvironment but also increase the susceptibility of infection [20]. Thus, fiber shedding
property is an indispensable aspect of any materials designed for wound debridement application.

A monofilament fiber pad has been recently introduced as a new solution to offer quick, effective
and non-traumatic wound debridement for patients suffering from chronic wound [22,23]. It was
reported in our previous study that this material exhibited sufficient mechanical properties, superior
liquid absorption and satisfactory biocompatibility [24,25]. However, since this material is a kind
of knitted pile fabric consists of abundant single fibers in the face side which has a direct contact
with the wound site. A close look into the fiber shedding property of this debridement material is of
great necessity.

Several testing methods are available to evaluate the fiber shedding propensity of textile fabrics.
The modified Gelbo Flex method is a normative method used to assess the lint and particles generated
from medical textile products in dry state, such as surgical drapes, gowns and protective clothing [26,27].
The fabric sample is subjected to a combined twisting and compression action in a test chamber.
Number of particles released from the testing fabric is counted and classified using a particle counter
within the size range from 0.3 to 25 pm. Another test method for evaluation of the wet linting in
nonwoven dressings is introduced in the EN 1644-2 [28]. The test sample is firstly shook in water
at the frequency of 300-350 Hz for 10 min. Then, fibers shed from the dressing are collected using
a gridded filter. Number of shed fibers is counted and taken as the result. Other testing methods,
such as abrading and tape methods, are also reported to estimate the fiber shedding propensity of the
apparel or garment textiles [29-31]. Though the detailed operation modes of these testing methods are
diverse from each other, they all aim to simulate the type of motions that may cause lint or particles
during application. However, results of all these tests are only presented as the amount (number
and/or mass) of the loosing fibers. Thus, profound analysis on fiber shedding mechanisms is hardly to
be achieved through these methods.

Therefore, the aim of this study was first to propose an in vitro testing method, which can be
employed to evaluate the fiber shedding property of the textile pile debridement material. Furthermore,
influence of structural design (pile density, number of ground yarns and back-coating time) on
the fiber shedding property of the debridement material was explored. In addition, the typical
load-displacement curve and failure modes of the single fiber pull-out test were investigated to better
understand the fiber shedding mechanisms of this textile pile debridement material.

2. Results and Discussion

2.1. Microstructure

The morphological structure of the backside of samples H3-0, H3-1 and H3-2 are presented in
Figure 1. The ground yarns were regularly arranged and formed the single jersey stitch on both
samples before and after back-coating (Figure la—c). Fibers with smooth surface were distributed
independently under high magnification for sample H3-0 (Figure 1d), whereas the filling adhesive
partially covered the fibers and the gaps among each other for H3-1, leaving some fibers still visible
(Figure 1e). As for sample H3-2, a continuous membrane structure was clearly observed, which totally
covered the adjacent fibers (Figure 1f). This was caused by the difference in back-coating repetitions.
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Figure 1. SEM images of the backside for different textile pile materials: (a,d) H3-0; (b,e) H3-1; and
(c,f) H3-2.
2.2. Surface Chemistry Analysis

Chemical changes on the backside of samples before and after back-coating were detected by FTIR
and the spectra of samples H3-0, H3-1 and H3-2 are shown as curve a, b and ¢ in Figure 2, respectively.
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Figure 2. FTIR spectra of the backside for different textile pile materials: (a) H3-0; (b) H3-1; and (c) H3-2.

In the FTIR spectrum of sample H3-0 (Figure 2a), the characteristic absorption peak at 1716 cm ™!
can be assigned to the strong symmetric stretching of carbonyl groups C=O [32]. The absorbance
around 1261 and 1100 cm ™! are attributed to the stretching vibration of C-O group [33]. The bands
appearing at the frequency of 2960, 873 and 725 cm ! are the C-H stretching, C-C out of plane bending
and C-H bending vibrations of the benzene rings in polyester, respectively [34].

After back-coating treatment, the peaks around 2957 cm ™! were noticeably intensified and a new
peak can be seen at 2874 cm ™! in both samples H3-1 and H3-2 (Figure 2b,c). These are the asymmetric
and symmetric vibration of C—-H bonds in methylene group CHj [35,36]. Compared with the spectrum
of sample H3-0 (Figure 2a), there were no evident absorption peaks around 1100, 873 and 725 cm~! in
the spectra of samples with back-coating (H3-1 and H3-2). In addition, both H3-1 and H3-2 exhibit
new characteristic absorption peaks: stretching of the carbonyl group C=0 around 1732 cm~! [35,36],
distortion vibration of CH, at 1452 cm ™! [37], and the stretching vibration of C-O-C, C-C and C=0O in
the acrylic group at 1166, 962 and 843 cm ™!, respectively [38]. All these characteristic absorption peaks
indicate that the polyacrylate latex was successfully coated on the backside of samples H3-1 and H3-2.
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When comparing the FTIR spectra of H3-1 and H3-2, it is interesting to note that the absorption
peaks at 2957, 1452 and 1166 cm~! for H3-2 were more intensive than those of H3-1. This implies
that H3-2 had a relatively high amount of polyacrylate latex coated onto its back surface after
two back-coating treatments compared to H3-1.

2.3. Fabric and Pile Weight per Unit Area

The weight per unit area of ground yarns (red), pile fibers (blue) and total fabric (red plus blue)
are given in Figure 3, from which we can see that the fabric weight consisted of two parts, i.e., pile
and ground yarns weight. Moreover, pile weight accounts for almost 90% of the total fabric weight.
The fabric weight per unit area of six samples shown a slight uptrend from 624.79 g/m? for sample
L.2-0 to 793.62 g/m? for sample H3-0. When controlling the processing parameters, similar pile weights
per unit area were obtained for samples designed with identical pile density. More specifically, the pile
weight per unit area of samples with low, middle and high pile density (samples L2-0, L3-0, samples
M2-0, M3-0 and samples H2-0, H3-0) were about 554, 616 and 687 g/m? individually. This implies
that pile weight per unit area can be precisely controlled by adjusting the preparation technological
parameters, and it is a more appropriate index to reflect the designed pile density, rather than the total
fabric weight per unit area.
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Figure 3. Results of fabric and pile weight per unit area for different samples.

2.4. Characterizations of the Ground Fabric

2.4.1. Morphology Observation

Light microscope images of the ground fabric of six pile materials are presented in Figure 4.
The ground fabric structure of all the samples is a single jersey stitch that consisted of continuous
loops in weft direction. To better illustrate the ground fabric structure, a 3D diagram was drawn
in Figure 5 where the well-constructed stitches were clearly observed. Unlike the regular arranged
stitches in the 3D diagram, the pores formed by the ground yarns were in various shapes and sizes as
shown in Figure 4. Besides, the knitted stitches were more compact in their real status, the loop head
was covered by the two side limbs of previously formed loop. Generally, samples with three plies of
ground yarns (L3-0, M3-0 and H3-0) are much tighter compared to samples with two plies of ground
yarns (L2-0, M2-0 and H2-0).
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Figure 5. 3D diagram of the ground fabric.

2.4.2. Surface Yarn Coverage

Corresponding to the qualitative observation results of ground fabric, difference in tightness
was observed among the six samples. In order to quantitatively describe this characteristic of the
ground fabric, surface yarn coverage was calculated and compared among six samples. As presented
in Figure 6, it is evident that the surface yarn coverage for samples with three plies of ground yarns
(L3-0, M3-0 and H3-0) are about 85%, while samples with two plies of ground yarns (L2-0, M2-0 and
H2-0) have a value around 71%. One-way analysis of variance (ANOVA) gives the same results: the
surface yarn coverage of samples in these two groups are significantly different at the 0.001 level, while
no statistical differences at 0.05 confidence level were observed within each group. This implies that

the number of ground yarns was the controlling structural factor that influenced surface yarn coverage
of the ground fabric.
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Figure 6. Surface yarn coverage of the ground fabric for different samples. (Significant differences
were marked by *** for p < 0.001).
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2.4.3. Distribution of the Stitch Size

As mentioned above, the knitted stitches for six samples were in various shapes and sizes
(Figure 4). To quantitatively analyze stitch size, a total of 100 stitches were measured on each sample
and the distribution of stitch size was assessed via box chart plotted in Figure 7. The bottom, internal,
and top bands of the box represent the first quartiles (25%), median value (50%), and third quartiles
(75%), respectively [39,40]. The lower and upper ends of the whisker are the 10th and 90th percentiles of
the distribution, respectively. Furthermore, the minimum, maximum and average value of the data are
shown as regular triangle, inverted triangle and rhombus, respectively. To acquire an insight into the stitch
size distribution, the most relevant statistical parameters are summarized in Table 1, which includes the
average (Ave.), minimum (Min.) and maximum (Max.) values, as well as the peak values range (PVR) [41].

As can be seen from Figure 7 and Table 1, there is a wide distribution of stitch size for samples
with two plies of ground yarns varied from 0.31 (H2-0) to 0.36 mm? (L2-0), whereas, samples with
three plies of ground yarns exhibited a relatively narrow distribution about 0.13 mm?. Moreover, the
median value for samples with two plies of ground yarns can reach 0.26 mm? in H2-0, which is much
bigger than that of samples with three plies of ground yarns (around 0.10 mm?). This suggests that the
number of ground yarns are dominant factor influencing the stitch size. However, it is also interesting
to notice that there is a positive correlation between stich size and pile density for samples with the
same number of ground yarns. That is to say, among samples with two plies of ground yarns, L2-0 has
the lowest average value, H2-0 has the highest vale, and M2-0 has value in between. Same trend can
be found in L3-0, M3-0 and H3-0.
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Figure 7. Stitch size distribution of the ground fabric for different samples.

Table 1. Summary of relevant parameters in the distribution of stitch size.

Parameters L2-0 M2-0 H2-0 L3-0 M3-0 H3-0

Ave. (mm?) 023 024 026 009 010 0.12
Min. (mm?) 006 010 012 003 004 005
Max. (mm?) 042 043 044 017 017 0.9
PVR(mm?) 036 033 031 014 013  0.13

2.5. Single Fiber Pull-Out Test

The maximum pull-out load value was defined as single fiber pull-out force to describe the
pull-out behavior of the testing samples. A high pull-out force indicates a good consolidation between
the ground fabric and pile fibers, as well as a low fiber shedding probability during application.
The initial data of single fiber pull-out force for different textile debridement materials were processed
by frequency histograms displayed in Figure 8. GaussAmp function (Equation (1)) was selected to fit
the data by the Origin software shown as black curve in Figure 8.

_ (r—x0)?

y=1yo+ Ae 202 (1)
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where y is the offset, A is the amplitude, x. is the axial coordinate of the peak, and w is related to the
full width at half maximum (FWHM) [42,43]. The fitted parameter values and correlation coefficients
of each figure are listed in Table 2.
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Figure 8. Frequency distributions (histograms) and GaussAmp simulation (black curve) of single fiber

pull-out force for different samples.

Table 2. Parameter values of fitted distribution of single fiber pull-out force for different samples.

Parameters L2-0 M2-0 H2-0 L3-0 M3-0 H3-0 H3-1 H3-2
Yo 0.69 0.26 2.60 2.57 —0.27 1.30 3.23 5.20
A 19.71 1715 1692 1827 1882 1560 1699 24.72
Xc 0.99 1.27 1.39 1.06 1.40 1.57 5.73 6.79
w 0.42 0.48 0.34 0.34 0.45 0.45 1.68 1.12
R? 0.94 0.96 0.95 0.96 0.98 0.98 0.96 0.97

It can be clearly seen that the GaussAmp distribution model was apposite to describe all the
results with correlation coefficients above 0.94. For each kind of sample, there is a certain distribution
of single fiber pull-out force. For example, single fiber pull-out force of sample L2-0 laid within the

0.4-2.0 cN range. This can be associated with the wide distribution of stitch size inside each sample
(Figure 7), which made for difference in frictional resistance between pile fiber and ground yarns.
Furthermore, the pull-out force of a single fiber withdrawn from the debridement material may be
affected by other factors, such as fiber orientation, fiber crimp and fiber position in the pile tuft [44].
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2.5.1. Influence of Structures on the Single Fiber Pull-Out Force

Pile Density

The curve center (x.) of samples L2-0, M2-0 and H2-0 moved towards the right along the x-axis
from 0.99 to 1.27 then to 1.39 cN (Table 2). This can be explained by the difference in pile density,
i.e., the pile weight per unit area (Figure 3). On the basis that all the six samples having the same
stitch density, the higher the pile weight per unit area, the more the amount of pile fibers per stitch.
Consequently, the inter-fiber squeezing action and cohesive force among pile fibers in sample H2-0
was stronger compared to that of M2-0 and L2-0, which resulting in a higher single fiber pull-out force
for H2-0. Drift in the same direction can also be found among samples with three plies of ground yarns
before back-coating. The peak value of single fiber pull-out force for M3-0 and H3-0 were 32.08% and
48.11% higher than the peak value for L3-0, respectively. It can be summarized that higher pile weight
per unit area leads to increased single fiber pull-out force and decreased fiber shedding propensity.
Therefore, high pile weight per unit area is preferred when design the fabric structure for textile pile
materials for debridement application.

Number of Ground Yarns

On the other hand, ground yarn plies also played an evident role in impacting the single fiber
pull-out force of textile pile debridement materials. Compared to samples with two plies of ground
yarns, the single fiber pull-out force of samples L3-0, M3-0 and H3-0 increased 7.07%, 10.24% and
12.95%, respectively. This is corresponding to the results of surface yarn coverage (Figure 6) and stitch
size (Figure 7). The change in the number of ground yarns from two to three lead to apparent raise
in surface yarn coverage and reduce in stitch size. In other words, the ground fabric became tighter
with the supplement of ground yarn plies. Thus, the squeezing pressure on pile fibers provided by
ground fabric was enhanced, which resulted in a higher single fiber pull-out force. For this reason,
ground yarn plies should be designed at a relative high level in order to obtain textile pile debridement
materials with suitable single fiber pull-out force and desirable fiber shedding property.

Back-Coating

Considering the influence of back-coating treatment on single fiber pull-out force, the x. values
of H3-1 (5.73 cN) and H3-2 (6.79 cN) are more than three times higher than that of H3-0 (1.57 cN),
which indicates that back-coating treatment was an effective approach to improve the single fiber
pull-out force. As shown in Figure le, a partial coverage of the fiber surface was noticeable on sample
H3-1, which only experienced one time back-coating treatment, while a nearly complete filling of
the fiber interspaces was achieved on sample H3-2 after two back-coating treatments (Figure 1f).
The procedure of back-coating not only changed the surface structure, but also offered a chemical
combination between the pile fibers and the ground yarns. It is the back-coating process that changed
the binding mode between pile fibers and ground yarns from mechanical fixation into chemical
combination. Therefore, back-coating is an indispensable process of the textile pile debridement
preparation. Samples after back-coating treatment shown a substantial enhancement in single fiber
pull-out force and fiber shedding property.

2.5.2. Mechanism Analysis

Samples without Back-Coating

The load vs. displacement curve plotted in Figure 9 corresponds to the generally observed single
fiber pull-out behavior of samples without back-coating (H3-0). In this representative curve, some
relevant points were marked with letters to better illustrate the pull-out process elaborated in Figure 10.
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Figure 9. Load—displacement curve obtained from samples without back-coating (H3-0).
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Figure 10. Schematic diagram of the single fiber pull-out process.

In Figure 9, a dramatic rise in pull-out load was observed from the origin point O to point A, which
can be attributed to the fiber straightening in the initial response [45]. The serrated shape occurred
during AB section was due to the friction and sliding between the extracted fiber and its surrounding
fibers in the pile tufts under the knitted stitches of the ground fabric [46]. Afterwards, the profile
experienced a fluctuating decline from point B to C as the length of anchored fiber under the knitted
fabric and the number of fiber-to-fiber interactions decreased [47]. In the last CD stage, the pull-out
load was maintained at a relative low level for the reason that there was only loose contact between the
extracted fiber and its adjacent pile fibers in vertical direction. The displacement between point C and
D was about 10 mm, which is approximate to the pile height of the samples. All these characteristics
conclude that the bond strength between ground fabric and pile fibers is quite lower than the tensile
strength of the pile fiber itself in samples without back-coating. This can be explained by the binding
mode between pile fibers and ground yarns. Since there was no back-coating on the backside, the
consolidation of pile fibers was only provided by the mechanical combination from ground yarns.
Thus, an intact pile fiber was withdrawn from the fabric at a rather low level of external force [47].

Figure 10 gives a clear illustration of the entire process of the single fiber pull-out test. The single
fiber pull-out behavior on samples without back-coating was composed of three different mechanisms:
fiber straightening (OA), fiber friction and sliding under the ground fabric (AB and BC), and fiber
frictional slip among vertical pile fibers (CD) [48].
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Samples with Back-Coating

Three distinct responses, namely fiber slippage, coating point rupture and fiber breakage, were found
during the single fiber pull-out test on samples with back-coating. Representative load—displacement
curve, fracture morphology and schematic diagram of the pull-out process of each failure mode are
presented in Table 3.

Table 3. Three failure modes of single fiber pull-out test on samples with back-coating.

Items Fiber Slippage Coating Point Rupture Fiber Breakage

Z z s
Representative 3 3 0 A =1
. 2 o 5
load—displacement 3 R E
curve g N 3

D ,1/o c

"0 24 6 8 101214 18 15 20 22 24 28 28 2 4 6 g8 10 12 14 16 18 6 2 4 6 8 10 12 14
Displacement (mm) Displacement (mm) Digplacement {mm)

Fracture morphology

Schematic diagram of ‘ ‘ | |
the single fiber _ _ — - BIEIE N
pull-out process - —{?’—% ;_ -{ _E _§ i BIRE _{I
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U< o A B C
(8] A B 5}

The load—displacement curve of fiber slippage mode was similar to that of H3-0 (Figure 9).
This suggests a pretty weak bonding point where the pull-out load was sufficiently stronger than
the consolidation between pile fiber and its surrounding coating material [47,49]. SEM observations
revealed that the slipping fiber was intact but some residual coating was found along the fiber surface.
The coating remaining on the fiber increased the friction resistance during the pull-out procedure.
Thus, the AB section of fiber slippage mode was fluctuated at a higher level (1.0-2.0 cN) than that of
sample H3-0 (0.6-1.4 cN).

Unlike the fiber slippage mode that exhibited a profile characterized with frequent fluctuations,
the load—displacement curve of coating point rupture mode was relative smooth. It can be observed
that the pull-out curve was comprised of two approximately linear parts (OA and AB) before the crest
value was achieved. Then, a marked drop in load occurred immediately after the peak point B (around
4.8 cN), indicating a simultaneous fracture at the binding site of the pile fiber and its circumambient
coating material (disconnection of the green line in the pull-out process C) [49,50]. Besides, a broken
fiber end wrapped with a thick layer of coating material was observed from the SEM image of coating
point rupture mode, which confirms the failure mechanism described above.

The load-displacement relation for fiber breakage mode displayed an almost linear increase (OA)
at the beginning. Then, the load suddenly dropped to point B, which suggests partial damage occurred
in the middle of the fiber length (blue dash line in the pull-out process B) [51,52]. Afterward, the
remaining part of the fiber continued to take the pull-out load and the curve raised from point B
to C (dash-dot line in the pull-out process C), then reach to the maximum value at point D (above
8 cN) followed by a straight descending (complete disconnection of the dot line in the pull-out
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process E). The SEM micrograph of fiber breakage mode shown a fiber cracked into two parts, which
corresponds to the two fallings phases (AB and DE) occurred in the load-displacement curve. All these
characteristics indicate an ideal point where the chemical consolidation force between pile fiber and
its surrounding coating materials was stronger than the pile fiber strength. At this circumstance, the
single fiber pull-out force was mainly relied on the tensile strength of polyester pile fiber used as raw
materials. In another words, the properties of the pile fiber, such as fiber critical length, also played
an important role in affecting the mechanical properties of the textile pile debridement materials [53].

According to the description above, the 100 results of single fiber pull-out test for each sample can
be classified into three failure modes. In addition, the pull-out force required for different modes show
an uptrend in the order of fiber slippage, coating point rupture and fiber breakage. The percentages of
each failure mode for samples with different back-coating repetitions are listed in Table 4. It shows
that all the 100 fibers pulled from H3-0 belong to the category of fiber slippage, while the major
failure mode for samples H3-1 and H3-2 was fiber breakage. Results illustrated in Table 4 denote
that the back-coating process is effective in improving the single fiber pull-out force for textile pile
debridement materials. That is to say, the fiber shedding phenomenon can be well controlled via
back-coating treatment, which considerably reduces the probability of wound contamination and
infection. However, fiber breakage still occurred for samples with two back-coatings, which was due
to the limitation of raw material strength. Therefore, in order to obtain samples with desirable fiber
shedding property for wound debridement application, fabric structural design, preparation process
and raw materials selection should be taken into full consideration.

Table 4. Percentage of each failure mode for samples with different back-coating repetitions.

Sample No. Fiber Slippage (%) Coating Point Rupture (%) Fiber Breakage (%)

H3-0 100 0 0
H3-1 10 26 64
H3-2 0 7 93

3. Materials and Methods

3.1. Materials

Polyester staple fiber and multifilament yarn (Jiangsu Chemical Fiber Co., Ltd., Sugian, China)
were selected as the raw materials to fabricate the textile pile fabric. Table 5 lists some general
information of these raw materials. A biocompatible polyacrylate latex was also coated onto the
backside of the pile material during the procedure of post treatment.

Table 5. Raw materials used to fabricate textile pile fabric.

. Linear Number of Filaments = Maximum Tensile .o

Raw Materials Density per Yarn Force (cN) Elongation (%)
Staple fiber 3D! - 8.17 £0.59 48.05 +£9.34
Multifilament yarn 150D ! 36 533.01 +21.13 28.29 + 0.70

1D = denier (mass in g of 9000 m length).

3.2. Design and Fabrication of the Textile Pile Debridement Material

Eight prototype samples of the textile pile materials were designed in this study. The structural
parameters for each sample, including pile density, ground yarn plies and back-coating time, are listed
in Table 6, together with the pile height and stitch density. All the samples were knitted with the same
single jersey stitch structure, as shown in Figure 11. From the backside view (Figure 11a), the pile fibers
(blue) were physically anchored by the ground fabric (red), while, seen from the face side (Figure 11b),
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typical knitting loops formed by the ground yarns were clearly observed and two ends of the pile tufts
vertically extended out of the ground fabric to form the U shape pile face.

Ground yarns

Pile fibers

Figure 11. Single jersey stitch structure of the pile fabric: (a) backside view; and (b) pile side view.

Table 6. Fabric structures of eight prototype samples.

Sample No Pile Ground Back-Coating Pile Height Stitch Density
) Density  Yarn Plies Time (mm) (Course x Wale) (/cm?)
L2-0 Low 2 None 10 9.0 x 6.0
L3-0 Low 3 None 10 9.0 x 6.0
M2-0 Middle 2 None 10 9.0 x 6.0
M3-0 Middle 3 None 10 9.0 x 6.0
H2-0 High 2 None 10 9.0 x 6.0
H3-0 High 3 None 10 9.0 x 6.0
H3-1 High 3 Once 10 9.0 x 6.0
H3-2 High 3 Twice 10 9.0 x 6.0

All the samples were firstly knitted on a special circular machine (SK18, Mayer Industries Inc.,
Tailfingen, Germany) under ambient conditions of 20 °C and 60% RH. Then, the pile face went through
a cutting machine and the pile fibers were trimmed to the height of 10 mm, as designed in Table 6.
After cutting, the backside of the samples were coated with biocompatible polyacrylate latex and dried
in an oven.

3.3. Microstructure

Scanning electron microscopy (SEM) was employed to investigate the surface characteristics of
the textile pile materials. The micrographs of the backside of samples before and after back-coating
were obtained using a TM-3000 SEM (Hitachi, Tokyo, Japan) with an accelerating voltage of 15 kV.

3.4. Surface Chemistry Analysis

Fourier transform infrared spectrometer (FTIR) analysis was performed on a Nicolet 6700 FTIR
(Thermo Fisher Scientific, Waltham, MA, USA) to study the surface chemistry of the backside of
samples before and after back-coating in the range from 4000 to 500 cm . The spectra were analyzed
using proprietary software (Omnic V 7.3, Thermo Fisher Scientific, Waltham, MA, USA, 2006).

3.5. Fabric and Pile Weight per Unit Area

Five specimens measuring 10 cm x 10 cm were conducted under standard condition for 24 h before
weighting on an analytical balance [54]. Then the pile fibers were carefully detached from the ground
yarns, collected and weighted. Special attention was paid to avoid fiber losing during this procedure.
Both fabric and pile weight per unit area were calculated as Equations (2) and (3) [55], respectively.

_Mm

Wy "

@
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4%
Wy = = ©)
where Wy and W), are the fabric and pile weight per unit area in g/ m?, Wi and W, are the weight of
the total fabric and collected pile fibers (g) in a testing area of A, which is 0.01 m? in this study.

3.6. Characterizations of the Ground Fabric

3.6.1. Morphology Observation

Samples with a size of 10 cm x 10 cm were conducted under standard condition for one day [54].
Then, the pile fibers in the central of the samples were carefully extracted out of the loops formed
by ground yarns to give an exposed area of ground fabric measuring 2 cm x 2 cm. Afterwards,
the exposed area was taken for morphology observation under a PXS8-T stereoscopic microscope
(Olympus, Takachiho, Japan).

3.6.2. Surface Yarn Coverage

The photomicrographs of the ground fabric were analyzed by Image | software (Version 1.49q,
National Institutes of Health, Bethesda, MD, USA, 2015) to obtain the surface yarn coverage.
The original light microphotograph (Figure 12a) was firstly transferred into binary image, as shown in
Figure 12b. Then, the percent coverage of the ground yarn was calculated by dividing the pixelated
value of the black area by that of the total area.

Figure 12. Original photo (a) and binary image (b) used to calculate the surface yarn coverage of the
ground fabric.

3.6.3. Distribution of the Stitch Size

Image Pro Plus software was used to measure the stitch size of the ground fabric. As shown in
Figure 13, only the intact stitches that hold pile fibers were marked and measured (red parts). A total
of 100 stitches were collected on each sample and the distribution of the stitch size was investigated.

Figure 13. Measurement of the stitch size of the ground fabric.

3.7. Single Fiber Pull-Out Test

Single fiber pull-out test is a well-recognized test for fiber composite [56]. In this study, an XQ-2
single fiber tensile tester (Shanghai Lipu Applied Science and Technology Research Institute, Shanghai,
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China) was employed to evaluate the single fiber pull-out behavior of the textile pile debridement
materials at the stretching speed of 20 mm/min. The schematic diagram and photograph of the
experimental system are illustrated in Figure 14. Testing specimen with a length of 4 cm and a width
of 2 cm was folded at its length direction with pile fibers outward. The two ends of the specimen were
snipped free of fibers, warped with scotch tape and held in the lower jaw. A clip was employed to
clamp a single pile fiber stood upright from the ground fabric of the pile material. The other side of the
clip was fixed with yarn, which was gripped by the upper jaw. A total of 100 pile fibers were extracted
from each pile debridement material on 10 specimens.

(a) (b)

Upper jaw

Clip

Specimen

Lower jaw

Figure 14. Schematic diagram (a) and photograph (b) of the single fiber pull-out testing setup.

3.8. Statistical Analysis

The results were analyzed statistically using Origin 8.5 software (Origin Lab Inc., Northampton,
MA, USA). Statistical differences were determined by a one-way analysis of variance (ANOVA) and
the means were considered significantly different at p < 0.05 (*), p < 0.01 (**) and p < 0.001 (***).

4. Conclusions

In this research, single fiber pull-out test was proposed as an in vitro method to evaluate the
fiber shedding property of the textile pile debridement materials. The influence of structures on
the single fiber pull-out force was studied. By increasing pile density and number of ground yarns,
a slight ascending trend in single fiber pull-out force was achieved. Moreover, back-coating treatment
prominently enhanced the pull-out force of single fiber in pile materials. That is to say, back-coating
is an effective means to improve the fiber shedding property of textile pile debridement materials.
These results imply that textile pile debridement materials with back-coating have a relatively low
probability for fiber shedding during wound debridement application. Thus, in order to avoid any
unexpected infection caused by the shed fibers, back-coating treatment is highly recommended
for the preparation of textile pile materials. To better understand the mechanisms of the fiber
shedding phenomenon in textile pile debridement materials, a close look into the single fiber pull-out
behavior and modes of failure were performed. Typical load-displacement curve of samples without
back-coating were characterized with consecutive fluctuating, which indicates a totally extracted
pile fiber. In contrast, three modes of failure were observed on samples with back-coating, namely
fiber slippage, coating point rupture and fiber breakage. All findings in this study not only provide
a feasible in vitro approach for fiber shedding evaluation, but also offer a guideline for designing
and manufacturing of the textile pile materials that meet the basic clinical requirements for wound
debridement application.
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