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Abstract: Underwater ultrasonic transmissions for fluid-solid and air-solid phononic brass plates are
reported in this work. Although the structure is roughly the same, experimental results show very
different behaviour between fluid-solid and air-solid phononic plates, due to most of the properties
of the fluid-solid perforated plates rely on Fabry-Perot resonances, Wood anomalies and Lamb modes.
In air-solid phononic plates Fabry-Perot resonance is highly attenuated due to impedances difference
between air and water, and therefore some transmission modes are now distinguishable due to
surface modes coupling.
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1. Introduction

At the end of the 19th century Lord Rayleigh [1] studied the reflection coefficient of a
one-dimensional grating. This was the first study of sound interaction with periodic structures.
Since then there have been major studies of sound wave propagation through periodic structures.
During the last decades, much attention has been paid to phononic crystal. The beginning of the
research in the field of phononic crystals started nearly two decades ago considering mainly bulk wave
propagation [2,3]. Concepts such as band-gaps, waveguiding, and negative refraction among others
rapidly extended to plate guided waves (Lamb waves). Theoretical [4–6] and experimental [7–9] studies
dealt firstly with band gap and waveguiding phenomena for air-solid and solid-solid phononic plates.
Most of the work done so far for phononic plates restricts the sound wave propagation to the solid and
the effect of the fluid (which could be treated as vacuum) is then neglected. Recently, phononic crystal
strips are applied to enhance the quality factor of aluminum nitride (AlN) electroacoustic resonators
utilizing the lowest symmetric (S0) Lamb wave mode thanks to strong reflection in acoustic band
gaps [10].

On the other hand, a periodically perforated plate structure has been brought into focus while
researching on the acoustic counterpart of Extraordinary Optical Transmission [11,12]. Resonant
full transmission [13,14], Wood anomalies [15,16], and non-leaky modes [17,18] have been reported
neglecting the role of the solid and constraining the wave propagation to the fluid. These two
complementary points of view can be combined via fluid-solid coupling. Although more difficult to
deal with, this unified perspective enables the observation of Extraordinary Sound Screening [19],
complex interactions between Lamb-like modes and hole resonances [20,21], and full transmission
through non perforated (corrugated) plates [22]. It is clear that the fluid-solid coupling plays a crucial
role in the acoustical properties of phononic plates, portraying a wide range of different behaviours.
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In this letter we provide experimental results for fluid loaded fluid-solid and air-solid phononic
plates. Angle resolved transmission measurements of underwater ultrasound reveal key aspects of the
different behaviour of phononic plates having fluid or air inclusions.

2. Materials and Methods

Underwater ultrasound has been chosen to measure the acoustic transmission through perforated
plates. The geometrical parameters to describe perforated plates are the diameter of the hole d, the array
periodicity a and the plate thickness h. The experimental setup is based on the well-known ultrasonic
immersion transmission technique. This technique makes use of a couple of transmitter/receiver
ultrasonic transducers. Two different couples of transducers were used: one couple with a center
frequency of 250 kHz and a frequency range between 155–350 kHz and the other couple with center
frequency of 500 kHz and a frequency range between 350 and 650 kHz. Each transducer was located at
a distance larger than that of its nearfield distance (43 mm) from the plate and aligned with respect to
the plate. A pulse is launched by the emitter piston transducer through the inspected plate. Then, the
signal is detected by the receiving piston transducer and acquired by the pulser/receiver, post amplified
and digitized by a digital PC oscilloscope (Picoscope model 3224, Cambridge, UK). Time domain data
is finally analyzed after averaging 100 different measures and deleting unwanted reflections by means
of a time window. The transmission spectrum is then calculated from the power spectrum of the signal
normalized with the reference signal power spectrum measured without the sample plate. Typically,
angle dependent measurements were done in angle steps of 1˝ and comprising from 0˝ to 60˝.

The measurements were made using brass plates with 350 mm in width and 450 mm in length
(ρ = 7890 kg/m3, cl = 5670 m/s, ct = 3230 m/s) and 2 mm thickness, immersed in water (ρ = 1000 kg/m3,
cl = 1480 m/s).

A brass plate drilled with periodically square distribution of circular holes having diameter, d, of
1 mm and a unit cell period, a, of 3 mm, was used (Figure 1). Starting from the perforated plate the
fabrication of an air-solid phononic plate was carried out by sticking, carefully, a film (20 µm thick)
around the plate, taking care that did not appear undesired air bubbles when the film was adhered.
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3. Results and Discussion

When an incident sound pressure wave impinges on the plate, gives rise a reflected and a
transmitted sound pressure wave. In the solid, high transmission values can be observed revealing a
complex dispersion. For this case, three kinds of modes can be distinguished: Scholte-Stoneley mode,
symmetric leaky Lamb modes, and antisymmetric leaky Lamb modes. The Scholte-Stoneley mode
propagates across the fluid-solid interface with a phase speed slightly slower than that of the water.
At low frequencies, this mode is mixed with the A0 mode and slowly converges to the sound line
as ω increases. Leaky Lamb modes are guided waves produced due to the multiple reflections of
longitudinal and in-plane transverse modes at both plate-fluid interfaces. Figure 2 shows the different
shapes of the symmetric and antisymmetric modes in a 2 mm thickness brass plate. Although there
was not periodicity due to it was not still drilled, in order to compare with subsecuent results, these
are plotted in terms of the normalized frequencies k0¨ a/π and k||¨ a/π, where a is the array periodicity
of the perforated plate, where k0 is the incident wavenumber and k|| is k0 projection on the plate.
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Figure 2. Measured transmitted sound power coefficient, τ, as a function of the parallel wavevector
k||¨ a/π in the ΓX direction and the normalized frequency k0¨ a/π, where a the array periodicity. The
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However, when the plate is periodically perforated, one has to consider the elastic movement
of the plate coupled with the surrounding fluid not only at the plate free surface but also inside
the apertures. In order to evaluate the physical phenomena, without taking into account the elastic
movement of the plate, the transmission sound power can be calculated by solving the sound wave
equation within a hard-solid model [23], that is, assuming that the pressure field does not penetrate
into the material plate because the water/plate impedance is considered infinite. Figure 3 shows
the calculated transmitted sound power coefficient, τ, for the periodically square distribution of
circular holes considered and it is observed the Fabry-Perot full transmission at k0¨ a/π = 1.2 and the
Wood anomaly minima at k0¨ a/π = 2 that is evident when the incidence angle is varied. Due to the
elastic movement of the plate had not been taken into account, Lamb and Scholte-Stoneley waves are
not observed.

Figure 4 depicts the experimental transmitted sound power τ, as a function of the parallel
wavevector k||¨ a/π in the ΓX direction and the normalized frequency k0¨ a/2π, of the brass plate
perforated of thickness h = 2 mm with holes of diameter d = 1 mm arranged periodically in a square
lattice of period a = 3 mm and immersed in water. Complex interaction between minima and maxima
is present in the spectra and it makes clear that the symmetry of the array results in a high angular
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dependence of the spectra. For k||¨ a/π near zero (normal incidence) the Fabry-Perot full transmission
at k0¨ a/π = 1.2 and Wood anomaly can be clearly seen both thickness at k0¨ a/π « 2. However, the
modes appearing from the bottom of the figures are not predicted by the Wood anomaly and are related
to leaky surface modes. These surface modes are leaky Lamb modes observed in the homogeneous
plate (see Figure 2) arising from the plate vibration and the solid-fluid coupling.
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The experimental dispersion of the same brass plate but having air filled holes is showed in
Figure 5. As the wave interaction at an air-solid interface is different from that of a fluid-solid interface,
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the transmission properties of the phononic plate differ from the previous case. As the holes have
been filled with air, the Fabry-Perot resonance was highly attenuated due to the impedance difference
between water and air. Zero order Lamb modes, Scholte-Stoneley mode near grazing incidence and
Wood anomalies are clearly distinguishable but there are new transmission modes that have not been
detected in the case of the water filled holes.Materials 2016, 9, 453 5 of 8 
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By superimposing the dispersion diagram with the graphics of the transmitted sound power
coefficient as a function of the parallel wavevector for the perforated plates with water or air-filled
holes (see Figure 7), it is observed that while some lines of the dispersion diagram clearly indicate a
significant increase in transmission through plate, others do not exhibit.Materials 2016, 9, 453 6 of 8 
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To analyze this fact, we calculate the displacement of the unit cell in the z direction for a fixed
value of the parallel wavevector k||¨ a/π for the corresponding eigenfrequency. Figure 8 shows some
eigenmodes for k||¨ a/π = 0.4. It is noted that some are antisymmetric modes (A1, A2, A3 and A4) with
respect to the forward direction of the plane wave. Clearly these eigenmodes produce poor fluid-solid
coupling and lead to non-radiative bands, while symmetric eigenmodes (S1, S2, S3 and S4) produce
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4. Conclusions

The results presented in this letter give a wide description of the phenomena involved in phononic
plates as they also includes the coupling with the surrounding fluid. The fluid-solid phononic plates
behavior is mainly governed by holes resonances and coherent diffraction effects which interact with
Lamb-like modes. However, in air-solid phononic plates, zero order Lamb modes, Scholte-Stoneley
mode near grazing incidence, Wood anomalies and new transmission modes are clearly distinguishable
while the Fabry-Perot resonance was highly attenuated due to the impedance difference between water
and air. It has been reported here that these differences are due to antisymmetric eigenmodes produce
poor fluid-solid coupling and lead to non-radiative modes, while symmetric eigenmodes has high
fluid-solid coupling and lead radiative modes.
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