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Abstract: This work compares the preparation of nanocomposites of polystyrene (PS), poly(methyl
methacrylate) (PMMA), and PSMMA co-polymer containing silver nanoparticles (AgNPs) using
in situ bulk polymerization with and without microwave irradiation (MWI). The AgNPs prepared
were embedded within the polymer matrix. A modification in the thermal stability of the PS/Ag,
PMMA/Ag, and PSMMA/Ag nanocomposites using MWI and in situ was observed compared
with that of neat PSMMA, PS, and PMMA. In particular, PS/Ag, and PSMMA/Ag nanocomposites
used in situ showed better thermal stability than MWI, while PMMA/Ag nanocomposites showed
improved thermal stability. The electrical conductivity of the PS/Ag, PMMA/Ag, and PSMMA/Ag
composites prepared by MWI revealed a percolation behavior when 20% AgNPs were used as a
filler, and the conductivity of the nanocomposites increased to 103 S/cm, 33 S/cm, and 40 mS/cm,
respectively. This enhancement might be due to the good dispersion of the AgNPs within the polymer
matrix, which increased the interfacial interaction between the polymer and AgNPs. The polymer/Ag
nanocomposites developed with tunable thermal and electrical properties could be used as conductive
materials for electronic device applications.
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1. Introduction

Recently, nano- and thin-film technologies based on novel systems associating metal particles
with a polymer matrix have achieved unique physical and mechanical properties that were not
possible with the addition of micron-sized particles. These metal nanoparticles (NPs) embedded in
host polymer matrices have become the focus of increasing attention because of their applications
in many fields including optical fibers, sub-wavelength waveguides, nonlinear optical switches [1],
superlenses [2], magnetooptic data storages, directional connectors, electronics as nanowires [3] for
biomedical materials, NP barcode labels [4,5], sensitive materials for DNA screening [6], biosensors [7],
and bio-films with anti-microbial effects of Ag [8] materials. Ag, Au, and Cu NPs are reported to exhibit
a strong biocidal effect on more than 16 species of bacteria including Escherichia coli [9–11]. In addition,
these polymers are attractive materials for application in biosensors because of the considerable
flexibility in their chemical structures and their redox characteristics [12]. The extent of modification of
the property depends on the base polymer; size, distribution, and dispersion of the NPs; and adhesion
at the filler–matrix interface [13]. When the NPs are embedded or encapsulated in a polymer, the
polymer acts as a surface capping agent. In addition, casting of film becomes easier, and the particle
size is controlled well within the desired regime. However, the key problems in this area involve the
synthesis and functionalization of the NPs and their dispersion in a polymer matrix. Ag and Au are
favorite NP-coating materials because of their well-known property of exhibiting optical absorption
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(plasmons) in the visible region. Ag has been widely studied because it is more reactive than Au.
Polymers are usually flexible, lightweight, and able to provide required immobilization of the NPs,
avoiding their coalescence or segregation, thus protecting the novel size-dependent properties of the
nanomaterials. However, depending on the polymer as well as the concentration of the NPs, the
properties of nanocomposites may change. Among various polymers, poly(methyl methacrylate)
(PMMA) is a highly transparent plastic with good mechanical strength and is used variously for
optical and medical applications [14,15]. In addition, polystyrene (PS) exhibits many admirable
properties such as biocompatibility, nontoxicity, high surface area, strong adsorption ability, and
chemical inertness [16–18]. Additionally, the co-polymer of methyl methacrylate and styrene (PSMMA)
is an important polymeric material that has numerous applications in medicine (e.g., as bone cement);
dentistry (e.g., dentures); and the paper, paint, and automotive industries [19,20]. There have been
many reports on AgNPs in polymers using different techniques [21,22] including solution mixing, melt
blending, in situ polymerization, and in situ polymerization using microwave irradiation (MWI) [23,24].
However, it is extremely difficult to homogenously disperse NPs into the polymer matrix because of
the easy agglomeration of the NPs and the high viscosity of the polymer. The MWI method offers
a fast and easy way to synthesize polymer/AgNPs materials. In MWI, dielectric heating energy is
transferred directly to the reactants. Energy is supplied to the molecules faster than they are able
to relax, which creates high instantaneous temperatures and increases the yield and quality of the
products [25–28].

Percolation concepts are used to describe an abrupt transition from one behavior to another caused
by the formation of long-range networks and have been used to describe the concentration-dependent
insulator-to-conductor transition in composites of conductive fillers in insulating matrices, particularly
polymer nanocomposites. These composites are technologically useful because they combine the easy
processability of the polymer matrix with the desirable electrical conductivity of the filler network.
Such nanocomposites could find applications in static-discharge housing and packaging for electronics;
electromagnetic interference shielding; and lightweight, flexible conductors for electrodes, circuits,
displays, and sensors [29].

There have been numerous reports on the usage of AgNPs as conducting-filler-based polymer
composites, where improved thermal, mechanical, and electrical properties of the composites were
achieved [30–32]. White et al. [32] reported the electrical percolation behavior in Ag nanowire–PS
composites. These researchers showed that the conductivity of the composites can be easily tuned by
modifying the aspect ratio of nanowires, and Ag nanowires are superior to carbon nanotubes because
they are straight, sufficiently large that minimal interparticle variation in electrical conductivity is
achieved, and disperse easily into experimental solvents and polymers. In another report, Lee et al. [31]
prepared PMMA/polyaniline (PANI)/Ag composites using an electroless coating of Ag on a PMMA
sphere pre-coated with PANI using in situ chemical polymerization. These researchers reported that the
resistivity of the PMMA/Ag and PMMA/PANI/Ag composites varied between 1014 and 10´1 Ω¨ cm
and 108 and 10´4 Ω¨ cm, respectively.

Despite the numerous reports on composites of PS with PMMA or AgNPs, very few studies
have been performed on the combination of these three components. However, the development
of polymer–AgNPs nanocomposites that can fully utilize conducting filler properties and achieve
significantly enhanced electrical and thermal properties with low AgNPs loading remains necessary.

In this paper, PSMMA/AgNPs nanocomposites were synthesized with a low concentration (20%)
loading of AgNPs via in situ bulk polymerization using MWI. To the best of our knowledge, this report
is the first on the enhancement of the thermal and electrical properties of PSMMA/Ag nanocomposites
with percolation behavior using only 20% AgNPs filler, which exhibits a higher conductivity.
Combining the advantages of PS, PMMA, and AgNPs, the nanocomposites exhibited many
excellent properties, such as good solubility and dispersibility in water, satisfactory biocompatibility,
and high electrical conductivity. The synthesized nanocomposites were characterized using
Fourier-transform infrared spectroscopy (FTIR), ultraviolet/visible (UV/Vis) spectroscopy, X-ray
photoelectron spectroscopy (XPS), Raman spectroscopy, X-ray diffraction (XRD), scanning electron
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microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), differential scanning
calorimetry (DSC), thermal gravimetric analysis (TGA), and electrical conductivity measurements
to provide an understanding of the structure–property relationships as well as the percolation
threshold behavior.

2. Results and Discussion

The size and structure of the AgNPs in the polymer matrix were investigated using XRD studies;
therefore, XRD patterns of the polymer/Ag nanocomposites were also obtained. Figure 1 presents
XRD patterns of the AgNPs and polymer/Ag nanocomposites. As observed in Figure 1a, the pure
AgNPs exhibit a crystalline nature with FCC structure with peaks corresponding to (111), (200), (220),
and (311) planes. These results are consistent with the previous literature values for AgNPs and JCPDS
No. 00-003-0921. Figure 1b–d presents XRD patterns of the polymer/AgNPs composites, which exhibit
a two-phase (crystalline and amorphous) structure. The polymer/AgNPs exhibit the broad reflection
and typical amorphous nature for the polymer, as expected, and the typical pattern of the face FCC Ag
crystalline structure indicates the formation of metallic Ag.

Materials 2016, 9, 458 3 of 16 

 

scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), 
differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), and electrical 
conductivity measurements to provide an understanding of the structure–property relationships as 
well as the percolation threshold behavior. 

2. Results and Discussion 

The size and structure of the AgNPs in the polymer matrix were investigated using XRD studies; 
therefore, XRD patterns of the polymer/Ag nanocomposites were also obtained. Figure 1 presents 
XRD patterns of the AgNPs and polymer/Ag nanocomposites. As observed in Figure 1a, the pure 
AgNPs exhibit a crystalline nature with FCC structure with peaks corresponding to (111), (200), (220), 
and (311) planes. These results are consistent with the previous literature values for AgNPs and 
JCPDS No. 00-003-0921. Figure 1b–d presents XRD patterns of the polymer/AgNPs composites, which 
exhibit a two-phase (crystalline and amorphous) structure. The polymer/AgNPs exhibit the broad 
reflection and typical amorphous nature for the polymer, as expected, and the typical pattern of the 
face FCC Ag crystalline structure indicates the formation of metallic Ag. 

 
Figure 1. XRD patterns of (a) AgNPs and (b) PS/AgNPs; (c) PMMA/AgNPs; and (d) PSMMA/AgNPs 
nanocomposites. 

Furthermore, the width of the (111) peak was employed to calculate the average crystallite size 
using the Scherrer equation [33]: 

D = 0.9λ/(B × cosθ) (1) 

where λ is the wavelength of the incident Cu Kα X-ray (1.514 Å), B is the full width at half maxima 
(FWHM) of the diffraction peak, and θ is the diffraction angle. The calculated average sizes for the 
AgNPs and polymer/AgNPs were observed to be ~46 nm and 18, 16, and 13 nm for PS/AgNPs, 
PMMA/AgNPs, and PSMMA/AgNPs, respectively. The particle size was observed to be smaller for 
the PSMMA/AgNPs nanocomposites than for the AgNPs. However, for the different polymer 
composites, the particle size did not vary greatly. The decrease in intensity and broadening of peaks 
in the AgNPs/polymers (Figure 1b–d) reflects the decrease in particle size of the polymer/AgNPs 
compared with that of the AgNPs (Figure 1a). The particle size calculated by XRD was further 
confirmed by TEM analysis. 

To confirm the chemical structure of all the polymer/Ag composites, FTIR spectral analysis was 
performed. Figure 2 presents FTIR spectra of the PS/Ag, PMMA/Ag, and PSMMA/Ag nanocomposites. 
For the PS/Ag nanocomposites, the spectrum shows the presence of the characteristic bands of PS at 
3060, 2920, and 2840 cm−1, which correspond to the aromatic ring and aliphatic C–H and –CH2 
stretching, respectively. The aromatic overtones are observed at 1680–2000 cm−1, and aromatic C=C 
stretching is observed at 1613 cm−1. For the PMMA/AgNPs, the spectrum shows characteristic bands 
of the aliphatic C–H and –CH2 at 2925 and 2852 cm−1, respectively; the bands were reduced in 
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PSMMA/AgNPs nanocomposites.

Furthermore, the width of the (111) peak was employed to calculate the average crystallite size
using the Scherrer equation [33]:

D “ 0.9λ{pBˆ cosθq (1)

where λ is the wavelength of the incident Cu Kα X-ray (1.514 Å), B is the full width at half maxima
(FWHM) of the diffraction peak, and θ is the diffraction angle. The calculated average sizes for the
AgNPs and polymer/AgNPs were observed to be ~46 nm and 18, 16, and 13 nm for PS/AgNPs,
PMMA/AgNPs, and PSMMA/AgNPs, respectively. The particle size was observed to be smaller
for the PSMMA/AgNPs nanocomposites than for the AgNPs. However, for the different polymer
composites, the particle size did not vary greatly. The decrease in intensity and broadening of peaks
in the AgNPs/polymers (Figure 1b–d) reflects the decrease in particle size of the polymer/AgNPs
compared with that of the AgNPs (Figure 1a). The particle size calculated by XRD was further
confirmed by TEM analysis.

To confirm the chemical structure of all the polymer/Ag composites, FTIR spectral analysis
was performed. Figure 2 presents FTIR spectra of the PS/Ag, PMMA/Ag, and PSMMA/Ag
nanocomposites. For the PS/Ag nanocomposites, the spectrum shows the presence of the characteristic
bands of PS at 3060, 2920, and 2840 cm´1, which correspond to the aromatic ring and aliphatic C–H
and –CH2 stretching, respectively. The aromatic overtones are observed at 1680–2000 cm´1, and
aromatic C=C stretching is observed at 1613 cm´1. For the PMMA/AgNPs, the spectrum shows
characteristic bands of the aliphatic C–H and –CH2 at 2925 and 2852 cm´1, respectively; the bands
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were reduced in intensity and became broader compared with the neat PMMA (Figure S1). The bands
at 1270–1000 cm´1 originated from the C–H deformations and C–O–C and C–O stretching. The band
at 1747 cm´1 is assigned to the C=O stretching vibrations of the ester group of the PMMA. It was
observed that this band shifted more in the nanocomposites than the peak previously reported for neat
PMMA at 1730 cm´1 [24]. For the PSMMA/Ag nanocomposites, the FTIR spectrum shows the typical
characteristic bands at 2930 and 2860 and 1600 and 1460 cm´1 which correspond to the aliphatic C–H
and –CH2 and aromatic C=C stretching, respectively, in the PS molecules. In contrast, characteristic
bands at 1745 and 1160–1120 cm´1, which correspond to C=O stretching vibrations of ester carbonyl
and C–O–C stretching vibrations, respectively, appear for the PMMA molecules [17]. Notably, the
FTIR results of the polymer/Ag nanocomposites (Figure 2) demonstrate that some characteristic peaks
in the aromatic of PS and ester of PMMA regions are shifted to much higher wave numbers compared
with neat polymers (Figure S1). This finding may suggest that this shift is due to π–π stacking and
acrylate interactions, which may be attributed to the contribution toward the stabilization of the AgNPs
metal surface. These FTIR results may suggest that the π–π bonds of PS and acrylate of PMMA were
opened by the MWI, which will induce more electron chain transfer sites and will thus promote more
interactions between polymers and Ag.
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Further study on the formation of AgNPs on the surface of nanocomposites was performed using
XPS, and the results are presented in Figure 3. XPS is a powerful and reliable technique for exploring
the interaction of Ag NPs and polymers. The XPS survey spectra of the polymer/AgNPs (not shown
here) indicated that not only Ag, O, and C were present. Detailed scans of Ag 3d, C 1s, and O 1s are
presented in Figure 3a–c, respectively. In Figure 3a, the peak observed in the energy region of the
Ag 3d transition is symmetrical, and two characteristic binding energy peaks for Ag 3d for metallic
Ag at 374.33 and 368.33 eV are observed, corresponding to doublets of Ag 3d3/2 and Ag 3d5/2 [34],
respectively. These results indicate the metallic nature of Ag, and no evidence for the existence of Ag+

was obtained. Therefore, the XPS study confirmed the success of the formation of metallic AgNPs
within the PS/Ag, PMMA/Ag, and PSMMA/Ag nanocomposites.

Notably, for the PSMMA/Ag nanocomposites (Figure 3), the extent of two binding energies
corresponding to doublet Ag 3d3/2 and Ag 3d5/2 were shifted to the lower side compared with the
characteristic peaks of metallic Ag. This lower side shift (~0.05 eV) is possibly due to the stronger
interaction between Ag and O in C=O groups promoted using MWI by enhancing electron transfer
from the electron-rich acrylates of PMMA groups to AgNPs.



Materials 2016, 9, 458 5 of 17

Materials 2016, 9, 458 5 of 16 

 

 
(a) (b)

(c)

Figure 3. (a) Ag 3d XPS spectra of AgNPs; (b) C 1s XPS; and (c) O 1s spectra of polymer/AgNPs 
nanocomposites. 

Figure 3b,c presents the C 1s and O 1s spectra of the Ag/polymer system. The peaks are wide 
and symmetrical. For PS/AgNPs, three different carbon functionalities are considered: (1) 
hydrocarbon (C–H/C–C) at 284.6 eV; (2) alcohol or ether (C–OH/C–O–C) at 285.9 eV; and (3) ester 
(O–C=O) at 288.6 eV [35,36], mainly due to the presence of the carbon atoms in C12 H25 SH 
introduced onto the AgNPs. For the PMMA/AgNPs and PSMMA/AgNPs, the profile of the C 1s line 
was altered, indicating that there was a change in the intensity of its three components, as observed 
in Figure 3b,c. In addition, the binding energy was observed to shift toward the lower side for all 
three components of the carbon peaks. This lower side shift in the binding energy occurred because 
Ag tends to lose unpaired valence electrons; therefore, a strong A–C interaction would result in a 
shift of the C 1s peak toward low binding energy. This claim was further confirmed by considering 
the O 1s spectra (Figure 3c). The O 1s core-level peaks of the polymer/AgNPs are presented in Figure 
3c. As resolved by deconvolution, the O 1s spectrum consisted of a BE peak at 532.6 eV related to the 
O–C=O group [37,38]. This result implies interaction between Ag and O, especially between Ag and 
O–C=O groups. A shift in the binding energy to the lower side was observed for the PMMA/AgNPs 
and PSMMA/AgNPs nanocomposites, and the electron transfer from the Ag to the oxygen led to a 
shifting in the O 1s binding energy. The reaction between Ag and O and even polymers should be 
responsible for the variation. 

The formation of AgNPs in the polymer matrix was also confirmed by UV-Vis spectra of the 
PS/Ag, PMMA/Ag, and PSMMA/Ag nanocomposites (Figure 4). The weak absorption band of the 
AgNPs at approximately 410–420 nm corresponds to the characteristic peak of metallic silver [39–41]. 
The spectra clearly demonstrate that the absorption peaks of PSMMA/AgNPs nanocomposites were 
red-shifted to higher wavelength compared with the PMMA/AgNPs and PS/AgNPs nanocomposites, 
respectively. This finding indicates the restoration of the electronic conjugation within the polymer 
matrix and the formation of AgNPs [31]. A very weak peak characterized the absorption peak of the 
AgNPs dispersion into the polymer matrix, which might be attributed to a non-aggregated dispersion 
of NPs [42]. 

Figure 3. (a) Ag 3d XPS spectra of AgNPs; (b) C 1s XPS; and (c) O 1s spectra of
polymer/AgNPs nanocomposites.

Figure 3b,c presents the C 1s and O 1s spectra of the Ag/polymer system. The peaks are wide and
symmetrical. For PS/AgNPs, three different carbon functionalities are considered: (1) hydrocarbon
(C–H/C–C) at 284.6 eV; (2) alcohol or ether (C–OH/C–O–C) at 285.9 eV; and (3) ester (O–C=O) at
288.6 eV [35,36], mainly due to the presence of the carbon atoms in C12 H25 SH introduced onto
the AgNPs. For the PMMA/AgNPs and PSMMA/AgNPs, the profile of the C 1s line was altered,
indicating that there was a change in the intensity of its three components, as observed in Figure 3b,c.
In addition, the binding energy was observed to shift toward the lower side for all three components
of the carbon peaks. This lower side shift in the binding energy occurred because Ag tends to lose
unpaired valence electrons; therefore, a strong A–C interaction would result in a shift of the C 1s
peak toward low binding energy. This claim was further confirmed by considering the O 1s spectra
(Figure 3c). The O 1s core-level peaks of the polymer/AgNPs are presented in Figure 3c. As resolved by
deconvolution, the O 1s spectrum consisted of a BE peak at 532.6 eV related to the O–C=O group [37,38].
This result implies interaction between Ag and O, especially between Ag and O–C=O groups. A shift
in the binding energy to the lower side was observed for the PMMA/AgNPs and PSMMA/AgNPs
nanocomposites, and the electron transfer from the Ag to the oxygen led to a shifting in the O 1s binding
energy. The reaction between Ag and O and even polymers should be responsible for the variation.

The formation of AgNPs in the polymer matrix was also confirmed by UV-Vis spectra of the
PS/Ag, PMMA/Ag, and PSMMA/Ag nanocomposites (Figure 4). The weak absorption band of the
AgNPs at approximately 410–420 nm corresponds to the characteristic peak of metallic silver [39–41].
The spectra clearly demonstrate that the absorption peaks of PSMMA/AgNPs nanocomposites were
red-shifted to higher wavelength compared with the PMMA/AgNPs and PS/AgNPs nanocomposites,
respectively. This finding indicates the restoration of the electronic conjugation within the polymer
matrix and the formation of AgNPs [31]. A very weak peak characterized the absorption peak of the
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The compositions of the polymer/AgNPs nanocomposites were further examined using Raman
spectroscopy (Figure 5). Raman spectroscopy is a powerful tool that provides essential information for
evaluating the covalent modification of composites. The Raman spectra of the neat polymers (Figure S2)
reveal the major scattering peaks of PS and PMMA. The PS spectrum contains peaks at 1602 and
1585 cm´1 due to stretching of benzene rings. The PMMA spectrum (Figure S2) shows characteristic
peaks at 600 and 812 cm´1 due to stretching of C–C–O and C–COO as well as C–O–C, respectively, at
1450 cm´1 due to in-plane bending of C–H and at 1728 cm´1 due to stretching of C=O [43]. The most
prominent peak appearing at 2951 cm´1 is due to the C–H stretching vibration. Notably, the locations
of the characteristics peaks of all the polymer/Ag nanocomposites (Figure 5) were blue-shifted, which
might indicate interfacial interaction between the AgNPs and the polymer matrix.
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The morphology of the polymer/Ag nanocomposites was studied using SEM and HRTEM, and
the results are presented in Figures 6–8. Various reports have shown that the incorporation of NPs
into polymer resins can improve the mechanical and rheological properties or even introduce novel
functionalities [44–48]. The important factors involved in improving these properties are the type, size,
shape, and aspect ratio of the NPs; particle dispersion in polymer resins; and interfacial interaction
between organic polymer resins and inorganic NPs. Figure 6a presents an SEM image of AgNPs
of polyhedral shape with agglomerated morphology, indicating the high surface energy of these
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particles. The SEM micrograph of PS/AgNPs (Figure 6b) clearly reveals that very small sizes of Ag are
dispersed at the surface and embedded within the PS matrix. The SEM micrograph of the PMMA/Ag
nanocomposites (Figure 6c) shows that the polyhedral shaped AgNPs are dispersed within the PMMA
matrix and are well separated from each other. For the PS–PMMA/Ag nanocomposites (Figure 6d),
the AgNPs (white spots) are anchored and dispersed within the PSMMA matrix. According to
the MARTINI force field, different values of the strength of interaction of ε represent levels of
hydrophilicity/hydrophobicity [49]. A larger value of ε provides a more attractive interaction among
highly polar groups, whereas a smaller one reflects a lower degree of hydrophobic repulsion between
polar and nonpolar phases. The size and shape of the NPs can play an important role in changing
the properties of nanocomposites. It has been experimentally determined that nanocomposites with
smaller-sized NPs exhibit better performance than those containing larger-sized NPs [50–52]. In the
present work, the NPs in the PSMMA/AgNPs nanocomposites were smaller compared with those of
the other polymer composites, thus increasing the density at the polymer–NP interface. These results
clearly suggest that the AgNPs were successfully embedded in the polymer matrix and modified the
functional properties of the polymer.
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The morphology of the nanocomposites and formation of AgNPs were further studied using
HRTEM, and the results are displayed in Figure 7. The HRTEM images of all the polymer/Ag
nanocomposites (Figure 7b–d) reveal good dispersion of AgNPs within the polymer matrices, with
better homogeneity for PSMMA/Ag (Figure 7d) compared with the other nanocomposites (Figure 8b,c).
The good dispersion and poor aggregation resulted from the van der Waals attraction between the
particles, indicating the stabilization of AgNPs, which may be due to the electron transfer interaction
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between polymers and AgNPs. This finding is consistent with the XPS results and our previous
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TGA as used to investigate the thermal stability and interfacial interaction between the AgNPs
and polymer matrices. Figure 9a present the TGA curves for the polymer/AgNPs composites using
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MWI and in situ reduction, respectively; with the inclusion of AgNPs, onset degradation temperature
modification was observed. The temperature at which 5% of mass loss has occurred was used for
measuring the degradation temperature. TGA results show that PS/AgNPs and PS-PMMA/AgNPs
nanocomposites using in-situ method showed good thermal stability than that of MWI technique.
Only in the case of PMMA/AgNPs composites, those prepared using MWI have slightly better thermal
stability than those prepared in situ. We attributed this result to the presence and dispersion of
AgNPs within the polymer matrix. In MWI, dielectric heating energy is transferred directly to the
reactants, and the energy is supplied to the molecules faster than they are able to relax, creating high
instantaneous temperatures that increase the yield and quality of the product, which is consistent with
the results from our study. Among all the polymer/AgNPs nanocomposites, PS/AgNPs prepared by
the in situ method showed the highest thermal stability. The values of degradation are summarized in
Table 1. On the basis of these results, one disadvantage of MWI method is that the composites usually
have lower thermal stability.

Table 1. Thermal behavior data of polymer/AgNP nanocomposites obtained from TGA and
DSC measurements.

Sample Tdeg
a (MWI, ˝C) Tdeg

a (in situ, ˝C) Tg
b (MWI, ˝C)

PS/AgNPs 191 334 107
PMMA/AgNPs 232 202 130

PS-PMMA/AgNPs 159 198 110
a: Tdeg from TGA; b: Tg from DSC.

Figure 9b shows the TGA plot of the neat polymers. The degradation of the neat polymers started
at over 333, 176, and 300 for PS, PMMA, PSMMA, respectively (see Table S1). However, the PS/AgNPs
(MWI) composite is less stable than pure PS; also, the composite PS-PMMA/AgNPs is less stable than
pure PS-PMMA. Only in the case of PMMA/AgNPs (MWI) are the nanocomposites more stable than
pure PMMA, and the thermal stability has been improved.
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Therefore, our approach is promising for the development of a new class of polymer/metal NP
composites. This result demonstrates that the thermal stability of the PMMA is improved because of
the presence of AgNPs using the MWI method, which is consistent with the results obtained by [53].

To understand the effect of MWI on the thermal behavior and dispersion of AgNPs within the
polymer matrix, DSC of the polymer/Ag composites was performed, and the results are presented in
Figure 9c and summarized in Table 1. In order to get a clear picture of the degradation and the effect of
AgNPs on the degradation temperature, DSC of the neat polymers was also performed and compared,
as shown in Figure 9c. For the neat polymers, the Tg values are 118 ˝C, 127 ˝C, and 79 ˝C for PS,
PMMA, and PS-PMMA, respectively (see Table S1). For the PS/Ag nanocomposites, the thermogram
shows that the Tg value of the nanocomposites (Tg = 107 ˝C) decreased by 11 ˝C compared with that of
neat PS (Tg = 118 ˝C), as indicated in Table S1 also [54]. For the PMMA/AgNPs composite, the curve
shows an improved thermal stability, with a Tg of 130 ˝C, which is 3 ˝C higher than that of the neat
PMMA (Tg = 127 ˝C). For the PSMMA/AgNP composite, the curve shows a significantly improved
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thermal stability, with a Tg of 110 ˝C, which is 31 ˝C higher than that of the neat PSMMA (Tg = 79 ˝C).
This result suggests a very strong interaction between the PSMMA chains and AgNPs. Previous work
has demonstrated that the interfacial strength between nanofillers and polymers and, consequently,
the thermal properties of nanocomposites can be altered by varying the sample preparation method. In
this work, the Tg shift may be attributed to the presence of so-called “interphase” polymer networking,
which arises because of the interaction of the chains with the AgNPs surface, which may restrict the
mobility, creating an enormous volume of matrix polymer. Percolation of this network of interphase
polymer could then manifest as a large Tg shift of the polymer composite. Therefore, good dispersion
without agglomeration of AgNPs may result from the fast thermal reduction process that is offered by
MWI for PMMA/AgNPs and PSMMA/AgNPs nanocomposites, while the in situ method produced
more stable nanocomposites.

Pure Ag is a good conductor; it is metallic, and its conductivity on the Pauling scale is 15.87 nΩ¨m
at 25 ˝C [54] and in SI units is ~6 ˆ 105 S cm´1. As shown in Figure 10a, the Ps/Ag nanocomposites
film exhibits a resistance of ~1.45997 Ω and a conductivity of ~103 S/cm, which is significantly lower
than that of pure Ag (~6ˆ 105 S cm´1). In addition, the Ps/Ag nanocomposites film exhibits an Ohmic
behavior, which is clearly observed in the plot. By comparing our results with the reported work on
Ps/Ag nanowires (see Table 2), we observed that the conductivity values in our work are far superior
to the reported ones. White et al. [55] reported that the conductivity of PS/Ag nanowire composites
was ~0.01 S/cm for a nanowire aspect ratio of 8, and the conductivity of Ps/Ag nanowire composites
with an aspect ratio of 16 was ~100 S/cm. Further increase of the aspect ratio of (31) resulted in a
conductivity of ~0.001 S/cm for PS/Ag nanowire composites.
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When a polymer matrix is filled with a conducting filler, the composite gains a conductivity value
of σ. When the loading of the filler is increased such that the volume filler fraction ϕ reaches a critical
value ϕc, an infinite cluster is formed, and the composite becomes conducting [54]. Because of the
presence of a conduction or percolation path across the entire sample, a change from an insulator
to a semiconductor occurs. As the filler concentration increases to the filling limit F, the value of r
increases rapidly over several orders of magnitude from the value rc at the percolation threshold to the
maximal value σm. Above the percolation threshold, the electrical conductivity is related to the content
of conducting filler. To produce a conducting AgNPs/PMMA nanocomposites, ~16 wt % loading of
AgNPs would be needed, as per the requirement of the percolation threshold. Therefore, in our case for
PMMA/Ag nanocomposites, as illustrated in Figure 10b, we used 20 wt % of AgNPs, which produced
conducting composites. For the percolation to occur, the volume occupied by the conducting phase in
the composite is most important, which explains why the PMMA/Ag nanocomposites produced were
conducting because of the percolation threshold.

Table 2. Resistance and conductivity of polymer/AgNP nanocomposites.

Nanocomposites Resistance (Ohm) Conductivity (S/cm) References

Ag 10´5´5 6 ˆ 105 [52]
PS 102–107 10´2 to 10´7 [53]

PMMA 1014–1016 10´14 to 10´16 [53]
PS/Ag nanowires (A.R = 8) 102 1 ˆ 10´2 [53]
PS/Ag nanowires (A.R = 31) 103 1 ˆ 10´3 [53]

PS/Ag 10´1 1.4 ˆ 10´1 [54]
PMMA/Ag 1014–107 10´14–10´7 [55]

PANI-PMMA/Ag 109–10´4 10´9–104 [55]
PS/Ag 1.46 1.03 ˆ 102 Our Work

PMMA/Ag 10´1 3.3 ˆ 10 Our Work
PS-PMMA/Ag 73.98 ˆ 103 40 ˆ 10´3 Our Work

For the PSMMA/Ag nanocomposites, we obtained a resistance of ~73.98347 kΩ and a conductivity
of ~40 mS/cm with non-ohmic behavior, as shown in Figure 10c. These resistance and conductivity
values indicate that the electrical properties of the nanocomposites were enhanced compared with that
of pure PS and PMMA (see Table 1). The resistance values for pure PS and PMMA are 102–107 Ω and
1014–1016 Ω, respectively. To the best of our knowledge, this paper is the first to report the electrical
properties of PSMMA/Ag nanocomposites. Lee et al. [31] reported on the effect of polyaniline on the
conductivity of a PMMA/Ag hybrid composite. These researchers demonstrated that the resistivity of
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PMMA/Ag varied from 1014 to 107 Ω-cm, whereas that of PMMA/PANI/Ag composites varied from
109 to 10´4 Ω-cm. Thus, the resistivity of the PMMA/PANI/Ag composites was much lower than that
of the PMMA/Ag composites, indicating that PANI strongly enhanced the conductivity. However, in
our case, the resistivity is much lower than that of this work, resulting in the higher conductivity value.

3. Materials and Methods

3.1. Materials

Styrene (S) and methyl methacrylate (MMA) monomers (99%, Acros Chemical Co., One Reagent
Lane, Fair Lawn, NJ, USA) were stored in a refrigerator and used as received. Benzoyl peroxide (BP)
(BDH Chemicals Ltd., Dammam, Saudi Arabia) was used as an initiator, hydrazine hydrate (HH, 80%)
was obtained from LobaChemi. Pvt. Ltd., Mumbai, India and silver nitrate (AgNO3) was obtained
from Merck., Kenilworth, NJ, USA. The other solvents and chemicals were of analytical grade and
used without further purification.

3.2. MWI Preparation of PS/Ag, PMMA/Ag, and PS–PMMA/Ag Nanocomposites

A mixture of 2.0 g (S-MMA) monomers, 80 mg AgNO3, and 0.1 g BP was sonicated for 1 h, and
then, the mixture were maintained at 60 ˝C for 20 h to promote in situ free radical bulk polymerization.
After the polymerization was completed, the product was poured into an excess of methanol, stirred
for 15 min, and washed with methanol and hot water several times before being filtered and dried in an
oven at 80 ˝C overnight. Then, a mixture of 0.40 g (PS-PMMA) polymer/AgNO3 composites dissolved
into a solvent, 40 µL of HH, was sonicated for 1 h followed by reduction using MWI. The same
procedure was performed with PS and PMMA.

3.3. In Situ Preparation of PS/Ag, PMMA/Ag, and PS–PMMA/Ag Nanocomposites

A mixture of 2.0 g (S-MMA) monomers, 80 mg AgNPs (prepared via MWI reduction of AgNO3),
and 0.1 g BP was sonicated for 1 h, and then the mixture was maintained at 60 ˝C for 20 h to promote
in situ free radical bulk polymerization. After the polymerization was completed, the product was
poured into an excess of methanol, stirred for 15 min, and washed with methanol and hot water
several times before being filtered and dried in an oven at 80 ˝C overnight. The same procedure was
performed with PS and PMMA. The neat PS, PMMA, and PS-PMMA were prepared for comparison
using the same procedure but without the addition of AgNPs.

3.4. Characterization

The FTIR spectra (Thermo Scientific, Waltham, MA, USA, Nicolet-iS10) of the nanocomposites
were recorded in the range of 4000–500 cm´1. The UV-Vis spectra (Perkin-Elmer Lambda 35,
Waltham, MA, USA) of the nanocomposites were recorded in the range of 200–800 nm. XRD analysis
(Philips–Holland, Amsterdam, The Netherlands, PW 1729) of the nanocomposites was performed
using Cu radiation (30 kV, 40 mA, Kα radiation (λ = 1.54430 Å)) between 2θ of 5˝ and 100˝.
The XPS measurements were performed using a SPECS GmbH X-ray photoelectron spectrometer.
Before analysis, the samples were degassed under a vacuum inside the load lock for 16 h. The Raman
spectra of nanocomposites were measured using a Bruker Equinox 55 FT-IR spectrometer equipped
with an FRA106/S FT-Raman module and a liquid N2-cooled Ge detector using the 1064 nm line of
a Nd:yttrium aluminum garnet laser with an output laser power of 200 mW. SEM (FEI Quanta 200,
FEI, Hillsboro, OR, USA) was employed to examine the morphology of the nanocomposites after they
were mounted on the nanocomposite slabs and coated with Au via a sputtering system (Polaron E6100,
Bio-Rad, Herts HP2 7DX, Hemel Hempstead, UK). HRTEM (JEOL JSM-2100F, Tokyo, Japan) was
performed at 200 kV. A drop of the composite dispersed in ethanol was placed on copper grids and
dried for studies. TGA of the nanocomposites was performed under an N2 atmosphere at a heating
rate of 10 ˝C per minute from 25 ˝C to 800 ˝C using a NETZCH 209 F1 thermogravimetric analyzer.
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DSC (NETZCH 204 F1) measurements were employed to estimate the glass-transition temperature
(Tg) of each nanocomposite. The nanocomposites were heated from –25 ˝C to 100 ˝C at a heating
rate of 10 ˝C per min. Then, a double run was performed after cooling at a heating rate of 2 ˝C per
min from 25 ˝C to 350 ˝C. The Tg was taken as the midpoint of the transition. The resistances
of the nanocomposites were calculated using two point probe method in a two-electrode (Cu)
configuration by using a Keithley 4200 SCS-four-probe electrical current-voltage (I–V) measurements
system. The conductivities of the samples were calculated by fitting their I–V characteristics
(10 cycles). After the measurements were taken, the mass of the film consisting of each composite
was measured (for PS/AgNPs = 1 mg, PMMA/AgNPs = 2 mg, PS-PMMA/AgNPs = 4 mg), and the
effective thickness of each film was calculated (for PS/AgNPs = 0.1 mm, PMMA/AgNPs = 0.2 mm,
PS-PMMA/AgNPs = 0.4 mm)). This procedure yielded a value of the film conductivity from the
measured resistance.

4. Conclusions

In conclusion, the incorporation of AgNPs within PS, PMMA, and PSMMA co-polymer matrices
using in situ bulk polymerization and MWI was achieved, and the resulting functional properties were
compared. FTIR and XPS studies confirmed the formation of metallic AgNPs within the polymer
matrix. UV-Vis spectra of the PS/Ag and PMMA/Ag nanocomposites revealed a red shift with respect
to the PSMMA/Ag nanocomposites, confirming the size effect of AgNPs. Raman spectra indicated
that the characteristics peaks of all the polymer/Ag nanocomposites were blue-shifted with respect
to the neat polymer, which indicates interfacial interactions between the AgNPs and polymer matrix.
SEM and HRTEM micrographs of the polymer/AgNPs revealed that the AgNPs dispersed at the
surface and embedded within the polymer matrix. TGA and DSC results revealed a modification
in the thermal stability using AgNPs within the polymer matrix. These results indicate that the
nanocomposites obtained using in situ technique exhibited better thermal stability than MWI—except
PMMA/AgNPs (MWI), which showed better thermal stability than the in situ method. The electrical
conductivity of the nanocomposites significantly improved, and the PS/Ag nanocomposites exhibited
the highest conductivity, which is governed by the percolation model. These nanocomposites may
prove particularly effective for the design of fuel cell electrodes, which are often made with conductive
nanocomposites, or simply mats of conductive particles.

Supplementary Materials: The following are available online at www.mdpi.com/1996-1944/9/6/458/s1.
Figure S1: FTIR Spectra of Neat Polymers Polystyrene (PS), Poly methyl methacrylate (PMMA), and
Polystyrene-Poly(methyl methacrylate) (PS/PMMA); Figure S2: Raman spectra of polymers Polystyrene (PS),
Poly methyl methacrylate (PMMA), and Polystyrene-Poly(methyl methacrylate) (PS/PMMA); Table S1: Summary
of the thermal behavior data obtained from TGA and DSC measurements.
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and characterization of silver´polyvinyl alcohol nanocomposites. J. Chem. Mater. 2003, 15, 5019–5024.
[CrossRef]

54. Periodic Table of Elements and Chemistry. Available online: http://www.chemicool.com/elements/silver.
html (accessed on 1 March 2011).

55. Stauffer, D. Introduction to Percolation Theory; Taylor and Francis: London, UK, 1985.

© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1021/cm034505a
http://www.chemicool.com/elements/silver.html
http://www.chemicool.com/elements/silver.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction 
	Results and Discussion 
	Materials and Methods 
	Materials 
	MWI Preparation of PS/Ag, PMMA/Ag, and PS–PMMA/Ag Nanocomposites 
	In Situ Preparation of PS/Ag, PMMA/Ag, and PS–PMMA/Ag Nanocomposites 
	Characterization 

	Conclusions 

