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Abstract: Recently, a new high-pressure semiconductor phase of Ca2C (space group Pnma) was
successfully synthesized, it has a low-pressure metallic phase (space group C2/m). In this paper,
a systematic investigation of the pressure-induced phase transition of Ca2C is studied on the basis
of first-principles calculations. The calculated enthalpy reveals that the phase transition which
transforms from C2/m-Ca2C to Pnma-Ca2C occurs at 7.8 GPa, and it is a first-order phase transition
with a volume drop of 26.7%. The calculated elastic constants show that C2/m-Ca2C is mechanically
unstable above 6.4 GPa, indicating that the structural phase transition is due to mechanical instability.
Both of the two phases exhibit the elastic anisotropy. The semiconductivity of Pnma-Ca2C and the
metallicity of C2/m-Ca2C have been demonstrated by the electronic band structure calculations.
The quasi-direct band gap of Pnma-Ca2C at 0 GPa is 0.86 eV. Furthermore, the detailed analysis of the
total and partial density of states is performed to show the specific contribution to the Fermi level.
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1. Introduction

Hitherto, the pressure-composition (P-x) phases of binary systems have gained increasing interest
and been extensively researched. Among these predicted compounds, some of them have been
successfully synthesized [1,2], but the others still need further experiments to confirm their theoretical
predictions [3,4]. For the Ca-C system, there are many works that have been done and obtained
remarkable achievements [5–16]. Gauzzi et al. [5] found the superconductivity will be enhanced in
the intercalated graphite CaC6 at high pressure. It performs the structural instability and leads to a
structural transition with pressure. Nylen et al. [6] studied the structural behavior of CaC2 at high
pressure via the first-principles calculations. Their results suggest an irreversible amorphization,
corroborating the structural peculiarities of acetylide carbides, which persists at high pressure
conditions. Li et al. analyzed the pressure-induced superconductivity of CaC2 [7]. They uncovered that
it is calcium that contributes to the superconducting behavior, and it is capable of stabilizing carbon
sp2 hybridization at a larger range of pressure. Nourbakhsh et al. [8] investigated the magnetism in
CaC ionic compound and observed a perfect Fermi level spin polarization and a half-metallic behavior.

Recently, Li et al. [9] systematically explored all the stable calcium carbides at pressures from 0
to 100 GPa. This resulted in five newly predicted stable stoichiometries (Ca5C2, Ca2C, Ca3C2, CaC
and Ca2C3). Using in situ synchrotron powder X-ray diffraction measurements, they successfully
synthesized the Ca2C and Ca2C3. The Ca2C has two phases: the semiconducting phase Pnma-Ca2C at
high pressure and the metallic metastable phase C2/m-Ca2C at low pressure. The Pnma-Ca2C exists in
the pressure range of 7.5–100 GPa and possesses the isolated C anions. Carbon atoms polymerize to
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isolated dumbbells, occurring a unique metallic metastable C2/m-Ca2C which provides an example of
2D metal. The metal calcium atom of C2/m-Ca2C develops a negative Bader charge, confronting a
more electronegative carbon atom. Due to these intriguing properties, in this paper, we will focus on
the Ca2C, presenting its structural, elastic and electronic properties, and systematically investigating
the pressure-induced phase transition mechanism. The enthalpy is calculated to reveal the phase
transition pressure. In addition, the elastic constants, modulus and anisotropy are calculated to study
the elastic properties. Meanwhile, the electronic band structures and the total and partial density of
states are analyzed.

2. Results and Discussion

The 2 ˆ 1 ˆ 2 supercell structures of Ca2C are illustrated in Figure 1. The black and blue
spheres represent C and Ca atoms, respectively. At zero pressure, the optimized lattice parameters
of Pnma-Ca2C are a = 6.677 Å, b = 4.384 Å, c = 7.979 Å with two inequivalent Ca atoms occupying 4c
(0.0119, 0.2500, 0.8302), 4c (0.1476, 0.2500, 0.4109) and C atoms occupying 4c (0.2521, 0.2500, 0.0918)
Wyckoff positions. For C2/m-Ca2C, the optimized lattice parameters are a = 7.166 Å, b = 3.775 Å,
c = 15.490 Å, and β = 122.9˝. The Wyckoff positions of C2/m-Ca2C are Ca1: 4i (0.2715, 0.0000, ´0.1120),
Ca2: 4i (´0.2440, 0.0000, ´0.3781) and C: 4i (´1.0479, 0.0000, ´0.9705). For Pnma-Ca2C (see Figure 1a),
carbon atoms are isolated anions, whereas the carbon dimers are observed in C2/m-Ca2C (Figure 1b).
The interatomic distance of Ca-C for C2/m-Ca2C is 2.44 Å in length, and the C-C bond length is 1.29 Å.
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Figure 1. Crystal structures of Ca2C. (a) Pnma-Ca2C; (b) C2/m-Ca2C. The black and blue spheres 
represent C and Ca atoms, respectively. 

To determine the phase transition pressure of Ca2C, the enthalpy differences between two 
structures are plotted as a function of pressure up to 100 GPa in Figure 2a. There is an intersection 
between the two enthalpy curves, indicating that the C2/m-Ca2C phase transforms to the Pnma-Ca2C 
phase at 7.8 GPa and the Pnma-Ca2C is more stable than the C2/m-Ca2C above this pressure point. 
The known transition pressure data is 7.5 GPa [9], and it is in a good agreement with our result. 
Meanwhile, the dependence of volume on pressure is presented in Figure 2b. The C2/m-Ca2C is larger 
than the Pnma-Ca2C in volume. The change of volume at 7.8 GPa shows that the phase transition is 
first-order with a volume drop of 26.7%. To interpret this large volume collapse, we estimated the 
ionic radii of the C and Ca within these two structures at 7.8 GPa through Bader charge analysis. The 
obtained results are listed in Table 1. The calculated charges of the two Ca2C phase show increasing 
trends from C2/m-Ca20.928C−0.928 to Pnma-Ca22.348C−2.348 at phase transition pressure point. Compared to 

Figure 1. Crystal structures of Ca2C. (a) Pnma-Ca2C; (b) C2/m-Ca2C. The black and blue spheres
represent C and Ca atoms, respectively.

To determine the phase transition pressure of Ca2C, the enthalpy differences between two
structures are plotted as a function of pressure up to 100 GPa in Figure 2a. There is an intersection
between the two enthalpy curves, indicating that the C2/m-Ca2C phase transforms to the Pnma-Ca2C
phase at 7.8 GPa and the Pnma-Ca2C is more stable than the C2/m-Ca2C above this pressure point.
The known transition pressure data is 7.5 GPa [9], and it is in a good agreement with our result.
Meanwhile, the dependence of volume on pressure is presented in Figure 2b. The C2/m-Ca2C is
larger than the Pnma-Ca2C in volume. The change of volume at 7.8 GPa shows that the phase
transition is first-order with a volume drop of 26.7%. To interpret this large volume collapse, we
estimated the ionic radii of the C and Ca within these two structures at 7.8 GPa through Bader charge
analysis. The obtained results are listed in Table 1. The calculated charges of the two Ca2C phase show
increasing trends from C2/m-Ca2

0.928C´0.928 to Pnma-Ca2
2.348C´2.348 at phase transition pressure point.

Compared to C2/m-Ca2C phase (rCa = 1.871 Å, rC = 1.534 Å), the ionic radius of Ca in the Pnma-Ca2C
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phase is much shorter (1.485 Å), whereas the ionic radius of C (1.788 Å) in Pnma-Ca2C is relatively
longer. Since the contribution from Ca atom is much more than that of C atom to the volume of Ca2C,
the volume collapse from C2/m to Pnma phase is very large.

Materials 2016, 9, 570  3 of 13 

 

C2/m-Ca2C phase (rCa = 1.871 Å, rC = 1.534 Å), the ionic radius of Ca in the Pnma-Ca2C phase is much 
shorter (1.485 Å), whereas the ionic radius of C (1.788 Å) in Pnma-Ca2C is relatively longer. Since the 
contribution from Ca atom is much more than that of C atom to the volume of Ca2C, the volume 
collapse from C2/m to Pnma phase is very large. 

 
Figure 2. Enthalpy (a) and volume (b) as a function of pressure. The black and red solid lines represent 
Pnma-Ca2C and C2/m-Ca2C, respectively. 

Table 1. Bader charge analysis for C2/m- and Pnma-Ca2C at 7.8 GPa. 

Phase 
Ionic Radius (Å) Charge Transfers (e)

C Ca Ca → C
C2/m 1.534 1.871 0.928 
Pnma 1.788 1.485 2.348 

The lattice parameters of Ca2C at different pressures are listed in Table 2. In Table 2, an excellent 
agreement with the previous theoretical and experimental values is shown [9]. The calculated lattice 
parameters decrease with pressure. To get more details, the variations of lattice parameters X/X0 of 
the two Ca2C phases with pressure are shown in Figure 3. For Pnma-Ca2C (see Figure 3a), along the 
b- and c-axis, the degrees of anti-compression along these two directions are almost the same. At low 
pressure range (P < 23 GPa), the incompressibility along a-axis is larger than that along b- and c-axis, 
which is contrary to the case at high pressure range (P > 23 GPa). In Figure 3b, the changes of lattice 
parameters along the a-, b- and c-axis are similar for C2/m-Ca2C when below 6 GPa, suggesting the 
same incompressibility along these three directions. 

Table 2. Lattice parameters of Ca2C at various pressures. 

Phase Pressure 
(GPa) 

a (Å) b (Å) c (Å) β (deg) V (Å3) 

Pnma 

0 6.677 6.689 a 4.384 4.389 a 7.979 7.981 a   233.58 234.32 a 

10 6.404 6.415 a 4.150 4.154 a 7.513 7.518 a   199.68 200.35 a 

 6.449 b 4.157 b 7.523 b  201.7 b 

30 5.919 5.929 a 3.931 3.933 a 7.195 7.204 a   167.41 168.04 a 

C2/m 
0 7.166  3.775  15.490  122.9  351.59  
5 6.743 6.701 a 3.594 3.587 a 14.65 14.68 a 122.8 122 a 298.32  

6.4 6.674  3.554  14.45  122.6  288.87  
a Calculated data in Ref. [9]; b Experimental results in Ref. [9]. 

0 4 8 12 16 20
40

50

60

70

80

90

0 20 40 60 80 100
-720

-718

-716

-714

-712

-710

V/V=26.7%

Pressure (GPa)

 

V
ol

um
e 
(Å

3 /f
.u

.)
 

Pressure (GPa)

 Pnma
 C2/m

 

(a) (b)

 

E
nt

ha
lp

y 
(e

V
/a

to
m

)

7.8 GPa

Figure 2. Enthalpy (a) and volume (b) as a function of pressure. The black and red solid lines represent
Pnma-Ca2C and C2/m-Ca2C, respectively.

Table 1. Bader charge analysis for C2/m- and Pnma-Ca2C at 7.8 GPa.

Phase
Ionic Radius (Å) Charge Transfers (e)

C Ca CaÑ C

C2/m 1.534 1.871 0.928
Pnma 1.788 1.485 2.348

The lattice parameters of Ca2C at different pressures are listed in Table 2. In Table 2, an excellent
agreement with the previous theoretical and experimental values is shown [9]. The calculated lattice
parameters decrease with pressure. To get more details, the variations of lattice parameters X/X0 of
the two Ca2C phases with pressure are shown in Figure 3. For Pnma-Ca2C (see Figure 3a), along the
b- and c-axis, the degrees of anti-compression along these two directions are almost the same. At low
pressure range (P < 23 GPa), the incompressibility along a-axis is larger than that along b- and c-axis,
which is contrary to the case at high pressure range (P > 23 GPa). In Figure 3b, the changes of lattice
parameters along the a-, b- and c-axis are similar for C2/m-Ca2C when below 6 GPa, suggesting the
same incompressibility along these three directions.

Table 2. Lattice parameters of Ca2C at various pressures.

Phase Pressure
(GPa) a (Å) b (Å) c (Å) β (deg) V (Å3)

Pnma

0 6.677 6.689 a 4.384 4.389 a 7.979 7.981 a 233.58 234.32 a

10 6.404 6.415 a 4.150 4.154 a 7.513 7.518 a 199.68 200.35 a

6.449 b 4.157 b 7.523 b 201.7 b

30 5.919 5.929 a 3.931 3.933 a 7.195 7.204 a 167.41 168.04 a

C2/m
0 7.166 3.775 15.490 122.9 351.59
5 6.743 6.701 a 3.594 3.587 a 14.65 14.68 a 122.8 122 a 298.32

6.4 6.674 3.554 14.45 122.6 288.87
a Calculated data in Ref. [9]; b Experimental results in Ref. [9].
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Figure 3. Lattice parameters X/X0 as a function of pressure. (a) Pnma-Ca2C; (b) C2/m-Ca2C.

The calculated elastic constants and moduli of Ca2C at 0 GPa and high pressures are shown in
Table 3. The strain-stress method was used to calculate the single crystal elastic constants. A small
finite strain was applied on the optimized structure and the atomic position was fully optimized. Then,
the elastic constants were obtained from the stress of the strained structure. The generalized Born’s
mechanical stability criteria of orthorhombic phase at 0 GPa are given by [17,18]:

Cii ą 0, i “ 1 . . . 6, (1)

rC11 ` C22 ` C33 ` 2pC12 ` C13 ` C23qs ą 0, (2)

pC11 ` C22 ´ 2C12q ą 0, (3)

pC11 ` C33 ´ 2C13q ą 0, (4)

pC22 ` C33 ´ 2C23q ą 0 (5)

The stability criteria of monoclinic phase at 0 GPa are given by [17,18]:

Cii ą 0, i “ 1 . . . 6, (6)

rC11 ` C22 ` C33 ` 2pC12 ` C13 ` C23qs ą 0, (7)

pC33C55 ´ C2
35q ą 0, (8)

pC44C66 ´ C2
46q ą 0, (9)

pC22 ` C33 ´ 2C23q ą 0, (10)

rC22pC33C55 ´ C2
35q ` 2C23C25C35 ´ C2

23C55 ´ C2
25C33s ą 0, (11)

2rC15C25pC33C12 ´ C13C23q ` C15C35pC22C13 ´ C12C23q ` C25C35pC11C23 ´ C12C13qs

´rC2
15pC22C33 ´ C2

23q ` C2
25pC11C33 ´ C2

13q ` C2
35pC11C22 ´ C2

12qs ` C55g ą 0,
(12)

g “ C11C22C33 ´ C11C2
23 ´ C22C2

13 ´ C33C2
12 ` 2C12C13C23 (13)
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Table 3. Calculated elastic constants Cij (GPa), bulk modulus B (GPa), shear modulus G (GPa), Young’s
modulus E (GPa), Poisson’s ratio υ, and B/G ratio of Ca2C at various pressures.

Pressure (GPa)
Pnma-Ca2C C2/m-Ca2C

0 50 100 0 6 6.4

C11 92 212 454 32 78 71
C22 87 329 551 62 86 84
C33 67 331 523 56 80 86
C44 40 79 114 8 13 14
C55 26 97 137 19 23 20
C66 38 101 135 13 17 15
C12 23 158 250 11 26 28
C13 35 170 248 16 27 29
C23 27 185 347 7 18 23
C15 ´1 0.75 4
C25 ´1.4 ´0.06 3
C35 0.3 0.44 ´1.31
C46 0.04 2.65 2.67
B 46 203 353 24 43 45
G 30 75 122 15 21 19
E 74 200 328 37 54 50
υ 0.23 0.34 0.35 0.24 0.29 0.31

B/G 1.53 2.71 2.89 1.60 2.05 2.37

The mechanical stability in crystals under isotropic pressure is provided by Ref. [19]. This requires
the symmetric matrix

Ĝ “

»

—

—

—

—

—

—

—

—

–

rC11 rC12 rC13 2C14 2C15 2C16
rC21 rC22 rC23 2C24 2C25 2C26
rC31 rC32 rC33 2C34 2C35 2C36

2C41 2C42 2C43 4 rC44 4C45 4C46

2C51 2C52 2C53 4C54 4 rC55 4C56

2C61 2C62 2C63 4C64 4C65 4 rC66

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(14)

has a positive determinant. In Ĝ matrix,

rCαα “ Cαα ´ P, α “ 1, 2, . . . , 6
rC12 “ C12 ` P, rC13 “ C13 ` P, rC23 “ C23 ` P

(15)

where P is the isotropic pressure.
If the elastic constants satisfy these stability criteria, it means the structure is mechanically

stable. From Table 3, one can see that orthorhombic Pnma-Ca2C is mechanical stable up to at least
100 GPa. For monoclinic C2/m-Ca2C, the criteria rC44 rC66´C2

46 ą 0, which is similar to the Equation (9),
is obeyed only up to 6.4 GPa, as seen in Figure 4, showing that it has mechanical stability below
6.4 GPa. Furthermore, the phonon spectra are presented in Figure 5 to ensure the dynamical stability.
As observed, there is no imaginary frequency in the whole Brillouin zone, indicating that Pnma-Ca2C is
dynamically stable up to at least 100 GPa and that the C2/m-Ca2C is dynamically stable below 6.4 GPa.
The elastic constants as a function of pressure are displayed in Figure 6 with an approximately upward
tendency. We noticed that, for Pnma-Ca2C, C11 is larger than C22 or C33 at 0 GPa, whereas it is less than
C22 or C33 at high pressures, which is in consistent with our previous analyses on the incompressibility
along the a-, b-, and c-axis.
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Figure 6. Elastic constants as a function of pressure. (a) Pnma-Ca2C; (b) C2/m-Ca2C.

In Table 3, the bulk modulus B and shear modulus G are calculated by Voigt-Reuss-Hill
approximations [20–22]. The Young’s modulus E and Poisson’s ratio, υ are given by the following
equations [22]:

E “
9BG

3B` G
, υ “

3B´ 2G
2 p3B` Gq

(16)

The Pnma-Ca2C is larger than C2/m-Ca2C in bulk modulus, shear modulus and Young’s modulus
at 0 GPa, as listed in Table 3. All the elastic modulus increase with pressure for Pnma-Ca2C. According
to Pugh [23], the brittle material has a small B/G ratio (B/G < 1.75), whereas, the ductile material has a
larger ratio (B/G > 1.75). It is interesting that Pnma-Ca2C and C2/m-Ca2C show the brittle manner at
0 GPa and transform to ductile manner at 9.3 GPa and 2.0 GPa, respectively.

Calculating the elastic anisotropy of crystal is of great importance to further study the physical
and chemical properties. The calculated universal elastic anisotropy index (AU), shear anisotropic
factors (A1, A2 and A3) and percentage of anisotropy in compressibility and shear (AB and AG) are listed
in Table 4. For arbitrary symmetry, the universal elastic anisotropy index AU is obtained by [24,25]:

AU “ 5
GV
GR

`
BV
BR
´ 6 (17)

Table 4. Calculated universal elastic anisotropy index AU, shear anisotropic factors A1, A2 and A3,
and percentage of anisotropy in compressibility and shear AB and AG (in %) of Ca2C.

Phase Pressure (GPa) AU A1 A2 A3 AB AG

Pnma
0 0.37 1.79 1.06 1.14 0.6 3.5

50 0.62 1.56 1.34 1.81 3.8 5.1
100 0.15 0.95 1.44 1.06 1.3 1.2

C2/m
0 0.95 0.58 0.72 0.69 2.7 8.2
6 0.54 0.53 0.70 0.62 0.06 5.1

When AU is 0, it means the solid is isotropic, otherwise the solid is anisotropic. The results of
Pnma-Ca2C are 0.37 at 0 GPa, 0.62 at 50 GPa and 0.15 at 100 GPa, respectively. And the results of
C2/m-CaC2 are 0.95 at 0 GPa and 0.54 at 6 GPa, respectively. All of them are larger than 0, indicating
an elastic anisotropy. The shear anisotropic factors provide a measure of the degree of anisotropy in
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the bonding between atoms in different planes. The shear anisotropic factor for the {100} shear plane
between the <011> and <010> directions is [26,27]:

A1 “
4C44

C11 ` C33 ´ 2C13
(18)

For the {010} shear plane between the <101> and <001> directions, it is:

A2 “
4C55

C22 ` C33 ´ 2C23
(19)

For the {001} shear plane between the <110> and <010> directions, it is:

A3 “
4C66

C11 ` C22 ´ 2C12
(20)

The factors A1, A2 and A3 are 1.0 for any isotropic crystals. As observed in Table 3, all the
calculated shear anisotropic factors are not 1.0, presenting the elastic anisotropy. The percentage
anisotropy in compressibility and shear are defined as [26]:

AB “
BV ´ BR
BV ` BR

, (21)

AG “
GV ´ GR
GV ` GR

, (22)

where B and G are the bulk and shear modulus, and the subscripts V and R represent the Voigt and
Reuss bounds. The values of isotropic crystal are 0.0. In Table 3, the values of AB and AG suggest that
these two structures of Ca2C are anisotropic in compressibility and shear.

To intuitively illustrate the elastic anisotropy, the directional dependence of elastic anisotropy
was calculated by the ELAM code [28], which shows the 2D figures of the differences in each direction.
The calculated Young’s modulus along different directions as well as the projections in different
planes are demonstrated in Figure 7. The ratios of Emax/Emin are 1.76 (1.19) and 2.32 (1.85) for
Pnma-Ca2C at 0 (100) GPa and C2/m-Ca2C at 0 (6.0) GPa, respectively, which means C2/m-Ca2C has
greater anisotropy. The anisotropy in yz plane is the greatest for Pnma-Ca2C at both 0 and 100 GPa
(see Figure 7a,b). In Figure 7c,d, the C2/m-Ca2C also has the largest anisotropy in yz plane at both 0
and 6 GPa. The 2D representations of Poisson’s ratio are revealed in Figure 8. All of them show the
elastic anisotropy. From Figure 8a,b, it can be found that the Pnma-Ca2C has the greatest anisotropy in
yz plane at 0 GPa and in xz plane at 100 GPa. However, the greatest anisotropy of C2/m-Ca2C is in yz
plane at both 0 and 6 GPa (see Figure 8c,d). The C2/m-Ca2C is more anisotropic than the Pnma-Ca2C
in Poisson’s ratio. As far as the 2D projections of shear modulus in xy, yz, and xz planes shown in
Figure 9, both C2/m-Ca2C and Pnma-Ca2C exhibit the obvious elastic anisotropy. From Figure 9a,b,
it is seen that the 2D projections of shear modulus in xz plane at 0 GPa and in yz plane at 100 GPa are
almost a perfect circle, showing a slight anisotropy character in these two cases. The anisotropy of
Pnma-Ca2C at high pressure is smaller than that at 0 GPa. The same case occurred for C2/m-Ca2C,
as seen in Figure 9c,d. Similar to the anisotropy of Poisson’s ratio, the shear modulus of Pnma-Ca2C
has the greatest anisotropy in yz plane at 0 GPa and in xz plane at 100 GPa, and that of C2/m-Ca2C is
the most anisotropic in yz plane at both 0 and 6 GPa.
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Figure 7. 2D representations of the Young’s modulus. (a) Pnma-Ca2C at 0 GPa; (b) Pnma-Ca2C at
100 GPa; (c) C2/m-Ca2C at 0 and 6 GPa; (d) C2/m-Ca2C at 6 GPa. The black, red and green lines
represent the xy, xz and yz planes, respectively.
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Figure 8. 2D representations of Poisson’s ratio. (a) Pnma-Ca2C at 0 GPa; (b) Pnma-Ca2C at 100 GPa;
(c) C2/m-Ca2C at 0 GPa; (d) C2/m-Ca2C at 6 GPa. The solid and dash lines represent the maximal
and minimal positive values, respectively. The black, red and green lines represent the xy, xz and
yz planes, respectively.
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Figure 9. 2D representations of shear modulus. (a) Pnma-Ca2C at 0 GPa; (b) Pnma-Ca2C at 100 GPa;
(c) C2/m-Ca2C at 0 GPa; (d) C2/m-Ca2C at 6 GPa. The solid and dash lines represent the maximal
and minimal positive values, respectively. The black, red and green lines represent the xy, xz and yz
planes, respectively.

As shown in Figure 10, a research of the electronic band structure and density of state (DOS)
of Ca2C at 0 GPa was also made. The dashed line represents the Fermi level (EF). From Figure 10a,
one can see that Pnma-Ca2C is a semiconductor characterized by a quasi-direct band gap of 0.86 eV
(the direct band gap at Γ point is 0.87 eV). The conduction band minimum (CBM) is just at Γ point,
and the valence band maximum (VBM) locates at (0, 0, 0.378) along the Γ-Z direction. The calculated
band gap of Pnma-Ca2C at 14 GPa is direct band gap with 0.65 eV, which is close to the previous
value of 0.64 eV [9]. It is known that the calculated band gap with DFT is usually underestimated
by 30%–50%, so the ideal band gap is larger than this calculated result. The DOS of Pnma-Ca2C near
Fermi level is mainly originated from the contributions of C-p orbital electrons. In Figure 10b, the
calculated electronic band structure crosses the Fermi level along many directions in the Brillouin zone,
showing the metallic character. And the DOS near Fermi level is mainly characterized by the Ca-d
orbital electrons.
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Figure 10. Electronic band structure and density of state of Pnma-Ca2C (a) and C2/m-Ca2C (b) at 0 GPa.



Materials 2016, 9, 570 11 of 13

3. Computational Methods

Our calculations are performed via the generalized gradient approximation (GGA) parameterized
by Perdew-Burke-Eruzerhof (PBE) [29] in the Cambridge Serial Total Energy Package (CASTEP)
code [30], which is based on the density functional theory (DFT) [31,32]. For the two Ca2C phases, the
ultrasoft pseudo-potential [33] which describes the interactions between the ionic core and valence
electrons is used with the cutoff energy of 420 eV. The k-points of Pnma-Ca2C (7 ˆ 11 ˆ 6) and
C2/m-Ca2C (6ˆ 9ˆ 3) in the first irreducible Brillouin zone are generated using Monkhorst-Pack mesh
scheme [34]. Furthermore, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) minimization scheme [35]
is used in geometry optimization. The convergence is within 1 meV/atom in the total energy
convergence tests for all calculation parameters. The self-consistent convergence of the total energy is
5 ˆ 10´6 eV/atom, the maximum force on the atom is 0.01 eV/Å, the maximum stress is 0.02 GPa and
the maximum ionic displacement is 5 ˆ 10´4 Å.

4. Conclusions

A systematic analysis of the pressure-induced phase transition of Ca2C is made by first-principles
calculations. The enthalpy and dependence of volume on pressure of Ca2C are performed. We found
that there is a phase transition which occurs at 7.8 GPa transforming from C2/m-Ca2C to Pnma-Ca2C
with a volume drop of 26.7%. The Pnma-Ca2C is larger than C2/m-Ca2C in the calculated bulk
modulus, shear modulus, Young’s modulus and Poisson’s ratio at 0 GPa. Both of them exhibit the
elastic anisotropy. The low-pressure phase C2/m-Ca2C, which is mechanically stable up to 6.4 GPa, has
the greater anisotropy over the Pnma-Ca2C. The electronic band structures reveal the semiconductivity
of Pnma-Ca2C and the metallicity of C2/m-Ca2C. The quasi-direct band gap of Pnma-Ca2C at 0 GPa is
0.86 eV. Furthermore, the total and partial density of states is provided to study the specific contribution
to Fermi level.
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