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Abstract: In this study we propose a unified multi-scale chemo-mechanical description of the BCT
(Body-Centered Tetragonal) to BCC (Body-Centered Cubic) order-disorder transition in martensitic
steel by adding the mechanical degrees of freedom to the standard CALPHAD (CALculation of
PHAse Diagrams) type Gibbs energy description. The model takes into account external strain, the
effect of carbon composition on the lattice parameter and elastic moduli. The carbon composition
effect on the lattice parameters and elastic constants is described by a sublattice model with properties
obtained from DFT (Density Functional Theory) calculations; the temperature dependence of the
elasticity parameters is estimated from available experimental data. This formalism is crucial for
studying the kinetics of martensite tempering in realistic microstructures. The obtained extended
Gibbs energy description opens the way to phase-field simulations of tempering of martensitic
steel comprising microstructure evolution, carbon diffusion and lattice symmetry change due to the
ordering/disordering of carbon atoms under multiaxial load.
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1. Introduction

The strong dependence of mechanical properties of martensitic steel on the heat treatment is
well established and widely used to tune the materials properties during processing. The formation
of martensite is a diffusionless phase transformation, where the chemical degrees of freedom are
static and almost inactive during the transformation. As the result of such a transformation the
quenched martensitic steel has limited toughness. The situation changes if martensite is subjected to
heat treatment at temperatures below the austenitization temperature, a process which is typically
called tempering. In such a case, carbon, as the most mobile alloy component in carbon steel, starts
to rearrange on the interstitial sublattice to minimize its energy. This has significant effect on the
material’s final properties. There are several phenomena which contribute to the tempering effect,
e.g., carbide formation, recovery, carbon redistribution and corresponding lattice parameter change,
leading to an increased toughness of the heat treated martensitic steel.

Since all these phenomena appear in the solid material, significant mechanical relaxations are
expected due to the change of the lattice parameter stemming from the phase transformation and
carbon redistribution. This makes the coupling of chemical and mechanical degrees of freedom an
important contribution to the thermodynamic phase stability in the solid state. We integrate this by
an atomistically informed multi-scale approach where elastic deformations of the crystal lattice are
derived from a phase-field simulation of the martensitic transformation. A CALPHAD type sublattice
model is used to describe the carbon activity in the distorted lattice and its effect on the transformation
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kinetics. Figure 1 shows an example of such a phase-field simulation of the tempering of martensite
using the coupled chemo-mechanical approach [1]. For details on how to integrate a sublattice model
into the phase-field framework see [2]. For the phase-field framework in general see [3,4].

(a) (b)

Figure 1. Typical microstructures of as-quenched (a) and tempered (b) martensite in carbon steel
obtained using the phase-field method with chemo-mechanical coupling. The as quenched martensite
microstructure considers all 24 symmetry related martensite variants following the Kurdjumov-Sachs
orientation relationship. The tempered martensite microstructure shows only the interface regions
filled with the carbides particles. For further details see [1].

In order to incorporate the mechanical energy contribution to the thermodynamic stability analysis
of the martensite we start from the standard CALPHAD type description of alloy thermodynamics.
The CALPHAD method is a well established approach providing Gibbs energies of the thermodynamic
phase in the form of databases, where the composition and temperature dependence of Gibbs energies
is modeled using the compound energy formalism [5]. The contribution of the mechanical degrees of
freedom is modeled through the hydrostatic pressure dependence in the CALPHAD type description.
While such an approach is well justified for the modeling of bulk phases at normal conditions,
the modeling of solid phases within the microstructure of real materials requires consideration
of the multiaxial load, the full set of elasticity parameters of solid phases including their lattice
symmetry due to the non-negligible stresses from the different orientations and lattice symmetries
in the microstructure. This information will be provided locally within each reference volume of the
phase-field simulation domain.

In order to account for the mechanical degrees of freedom and their dependence on the alloy
composition, we introduce the elastic energy contribution to the Gibbs energy using the composition
dependent crystal lattice parameter and elasticity moduli following the approach proposed in [6].

2. Crystallography of Ordered BCT and Disordered BCC Phases in Fe-C System

The initial appearance of the ordered BCT martensite crystal lattice is due to the fast transformation
from the austenite to the martensite which traps the carbon atoms on the particular subset of interstitial
sites. Thus, the initial arrangement of carbon atoms and the corresponding lattice symmetry of
martensite is determined by the austenite-martensite transformation path. Zener [7] proposed that
such a structure is not only the result of the trapping of carbon atoms but that it also corresponds
to a stable crystal structure. Recently, an alternative ordered BCT structure, the α′′-phase with
Fe16C2 stoichiometry, was proposed [8]. The motivation for the newly proposed α′′ BCT ordered
structure is the absence of evidence of Zener-ordering in experiments which otherwise would be
identified as local clusters with carbon concentration of around 50 at.%. In contrast, experiments show
much lower concentrations for carbon-rich sites of the order of 11 at.% which is close to the Fe16C2

stoichiometry [9]. The thermodynamic stability analysis [8] shows two competing tendencies at room



Materials 2016, 9, 669 3 of 9

temperature: order-disorder transition from the ordered BCT phase to the disordered BCC phase and
the phase separation within the ordered structure itself. The same tendency holds for both the classical
Zener-ordered α′-phase and the newly proposed α′′-phase. While both, the α′-phase and α′′-phase,
show the same tendency, the order-disorder transition temperatures are significantly different with the
α′′-phase being stable up to higher temperatures than the α′-phase. In technological systems where the
tempering of martensite is a key process to tailor the materials properties, such a difference is of key
importance because it will directly affect the tempering kinetics.

The order-disorder transformation path is illustrated in Figure 2. It indicates the set of crystal
structures involved in the transformation from ordered BCT α′- or α′′-phase to disordered BCC
α-phase in plain carbon steel. There are multiple ways which lead from ordered to disordered carbon
distribution as shown in the middle structure in Figure 2. The arrows indicate the ways in which
the carbon atom can change its position and the corresponding symmetry of its lattice site. If an
uncorrelated motion on the nearest neighbor distances of the large number of carbon atoms takes
place, the resulting crystal structure becomes disordered. In case of a correlated motion of carbon
atoms, the entire crystal can change its symmetry from one ordered arrangement to another. Both
tendencies can be mediated by the local lattice distortions in real martensitic microstructures subjected
to heat treatment.

(a) (b) (c)

Figure 2. Crystal structure of ordered BCT α′′-phase (a); disordered BCC α-phase (c); and the transition
path between them (b) in the Fe-C system with vacancies (Va). The transition from ordered to disordered
carbon atoms can be accomplished by moving the carbon atoms to nearest neighbor sites.

3. Atomistic Modeling of Elastic Properties

The CALPHAD type approach to a chemo-mechanical description requires knowledge
of the lattice parameters and elastic moduli of the considered phases. Due to the lack of
experimental data, we determined these data for the α′′-phase by density-functional theory (DFT)
calculations. The calculations were performed with the VASP package [10,11] in combination
with a high-throughput environment [12]. We used the projector augmented wave (PAW)
pseudopotentials [13] and the Perdew-Burke-Ernzerhof (PBE) functional [14] within the generalized
gradient approximation to the exchange-correlation functional. All calculations were spin-polarized
with a plane-wave cutoff of 500 eV and a Monkhorst-Pack k-point mesh [15] with a density of 0.02 Å3.
The structures were fully relaxed (i.e., atomic positions and unit cells) until the maximum force was
below 0.01 eV/Å. The elastic constants were determined by applying a strain tensor to the simulation
cells as described in previous works on interstitial H in BCC-Fe [16] and substitutional B in BCC-Fe [17].

The α′′-phase corresponds to a chemical composition of Fe16C2 with carbon in interstitial positions
of a BCC Fe lattice. The distribution of carbon atoms in the sublattice of interstitial sites can vary
with temperature and processing history. In order to mimic the limiting cases, we considered
a representative set of simulation cells with different carbon distribution as shown in Figure 3.
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The considered carbon distributions cover the smallest and largest possible distance of two carbon
atoms as well as configurations with and without an iron atom in between two carbon atoms.

(a) (b) (c) (d)

Figure 3. Simulation cells of α′′-Fe16C2 with different arrangements of carbon atoms (black) in the BCC
lattice of Fe atoms (brown) used in the density-functional theory (DFT) calculations. The ordering of
configuration I (a) to configuration IV (d) reflects the energetic ordering of most stable to least stable
(cf. Table 1).

Table 1. Lattice constants a, b, c and elastic moduli Cij of α′′-Fe16C2 with carbon distributions I–IV
(cf. Figure 3) as obtained from DFT calculations. The corresponding values for α-Fe and α-FeC3 are
given for comparison. The carbon distributions I-IV are ordered by relative energetic stability ∆E with
respect to the most stable configuration I.

α-Fe α-FeC3 α′′-Fe16C2-I α′′-Fe16C2-II α′′-Fe16C2-III α′′-Fe16C2-IV

a (Å) 5.67 7.86 5.66 5.62 5.63 5.07
b (Å) 5.66
c (Å) 6.25 6.33 6.27 7.50

C11 (GPa) 278.2 251.7 269.3 276.7 265.3 215.7
C22 (GPa) 278.1
C33 (GPa) 297.5 289.9 288.4 238.5
C12 (GPa) 147.8 204.1 144.3 143.3 128.5 171.1
C13 (GPa) 149.4 151.9 153.5 148.2
C23 (GPa) 137.1
C44 (GPa) 95.1 30.6 94.5 95.1 93.5 14.8
C55 (GPa) 80.1
C66 (GPa) 123.1 123.1 99.0 –131.3

∆E (meV/atom) 0 8 17 77

The results of our DFT calculations for the carbon distributions I–IV are compiled in Table 1,
together with the results for carbon-free α-Fe. Our results show that the configuration with a
tetragonal unit cell and the largest carbon-carbon separation (configuration I) is energetically most
favorable. The tetragonal unit cell with an iron atom between two carbon atoms in [110] direction
(configuration II) corresponds to a chain of carbon atoms perpendicular to the tetragonal distortion
in [001]. This configuration is predicted to be only 8 meV/atom higher in energy. The orthorhombic
unit cell without an iron atom between two carbon atoms (configuration III) corresponds to a
carbon chain along the [100] direction and is 17 meV/atom higher in energy than configuration I.
The tetragonal unit cell with an Fe atom between two carbon atoms in [001] direction (configuration IV)
is the least stable configuration with 77 meV/atom above configuration I. The tetragonal distortion of
the relaxed unit cells in [001] is similar for the configurations I–III. The configuration with a carbon
chain along [001], however, leads to a significantly increased tetragonal distortion and to mechanical
instability (C66 < 0). The computed formation energies indicate that the carbon configurations I–III
of α′′-Fe16C2 can be expected at room temperature. For the purpose of this work we consider only
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configuration I in the chemo-mechanical description as the energetically competing configurations II
and III have comparable lattice constants and elastic moduli.

4. Elastic Energy Contribution to the Gibbs Energy

In order to include the elastic energy in the standard Gibbs energy description, we start from the
standard Gibbs energy models of α-Fe and α′′-Fe phases and add the elastic energy terms

GBCC = chGBCC + elGBCC

GBCT = chGBCT + elGBCT (1)

to the standard Gibbs energy models chGBCC [18] and chGBCT [8]. The elastic energy terms, elGBCC and elGBCT,
are given by

elGBCC =
νBCC

2
εCBCCε

elGBCT =
νBCT

2
εCBCTε (2)

where νBCC and νBCT are the equilibrium molar volumes of the phases and CBCC and CBCT are the
composition and temperature dependent elasticity tensors of the BCC and BCT phases, ε is the
elastic strain tensor representing the lattice distortion resulting from the mechanical relaxation as
given from the external phase-field simulation (one-way coupling). The minimized sublattice model
defines the driving forces of the transformation and diffusion in the phase-field simulation (two-way
coupling). The description of the elastic moduli of the BCC α-Fe and BCT α′′-Fe phases follows [6]

CBCC = yI
Fey

II
VaCFe:Va + yI

Fey
II
CCFe:C

CBCT = yI
Fey

II
Vay

III
VaCFe:Va:Va + yI

Fey
II
CyIII

VaCFe:C:Va + yI
Fey

II
CyIII

C CFe:C:C (3)

where the yN
A are the site fractions of the elements (A = Fe, C and vacancy Va) on the sublattices

(N = I, I I and I I I). The temperature dependence of the elasticity parameters of end members, CFe:Va,
CFe:C:C, CFe:Va:Va, CFe:C:Va and CFe:C:C is assumed to be linear. A more detailed discussion of this choice is
presented in Section 5. The lattice parameters of the BCC and BCT phases are given by

aBCC = yI
Fey

II
Vaa

Fe:Va + yI
Fey

II
CaFe:C

aBCT = yI
Fey

II
Vay

III
Vaa

Fe:Va:Va + yI
Fey

II
CyIII

Vaa
Fe:C:Va + yI

Fey
II
CyIII

C aFe:C:C (4)

cBCT = yI
Fey

II
Vay

III
Vac

Fe:Va:Va + yI
Fey

II
CyIII

Vac
Fe:C:Va + yI

Fey
II
CyIII

C cFe:C:C

where aFe:Va, aFe:Va:Va and cFe:Va:Va are identical lattice parameters of pure α-Fe, aFe:C, aFe:C:C and cFe:C:C are
identical and equal to the lattice parameter of the BCC Fe-C structure in which all interstitial sites are
filled by carbon atoms. The lattice parameters aFe:C:Va and cFe:C:Va correspond to the lowest energy BCT
crystal structure with Fe16C2 stoichiometry (cf. Section 3). For the lattice parameters in Equation (4),
we consider a linear temperature expansion as discussed in Section 5.

5. Results

In order to include the temperature dependence of the elastic moduli we compare our data given
in Section 4 and the pure iron elastic constants from [19]. For simplicity we assume a linear temperature
dependence of the elasticity moduli

CA(T) = CA
T=0K ◦ (I + ΓTT) (5)
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where (◦) indicates the Hadamard product, I is the tensor with all components equal to unity, ΓT is the
tensor of linear temperature dependence coefficients and CA

T=0K are the DFT calculated elastic tensors
of the end member structures of the sublattice model (see Table 1). For consistency we scale down
our elasticity data by 11% to match the experimentally observed values and applied the same scaling
factor to all end members assuming that the relative elastic behavior of the phases follows the same
trend. In this paper we assume the same temperature dependence of elasticity moduli of both α-Fe
and α′′-Fe phases. The components of the linear temperature dependence tensor, ∆CT, evaluated using
the data from [19], are given in Table 2.

Table 2. The components of the elastic moduli linear temperature dependence tensor ΓT, [K−1].

γ11 γ33 γ12 γ23 γ44 γ66

–0.000267 –0.000267 –0.000274 –0.000274 –0.000192 –0.000192

Due to the lack of experimental data on the thermal expansion coefficients of the α′′-Fe phase,
we assume them to be the same as the thermal expansion coefficients of the α-Fe phase. Since only
ratios of the lattice parameters enter the elastic energy calculations, the identical linear temperature
dependence terms cancel out. Thus, it is sufficient to consider the relative differences of the lattice
parameters of both phases at T = 0K which are given in Equation (4) as it is done in further analysis in
this study.

Employing the elastic data in the Gibbs energy model (Equation (1)) we obtain the coupled
atomistically-informed chemo-mechanical model of the α-Fe and α′′-Fe phases suitable for tempering
kinetics simulations using the phase-field method.

In order to analyze the influence of carbon composition of the α′′-Fe phase on the α′′-Fe – α-Fe
order-disorder transition, we determine the Gibbs energies of the ordered α′′-Fe and disordered α-Fe
phase in composition and lattice parameter space at T = 550 K which is typically the lowest martensite
tempering temperature. In Figure 4 we keep the lattice parameter of the parent martensite α′′-Fe phase
at its equilibrium value (see Equation (4)) and subject the α-Fe lattice to the elastic strain ranging from
zero to the maximum lattice misfit strain between the α′′-Fe and α-Fe phases:

εmax = (aBCT − aBCC)/aBCC (6)

Since the value of εmax is a function of composition due to composition dependence of the lattice
parameters aBCC and aBCT it is presented in % for each composition in Figure 4.

Figure 4. Intersection between the Gibbs energies of α′′-Fe (blue) and α-Fe (yellow) at T = 550 K
while gradually distorting the α-Fe lattice from its equilibrium state (0% α-Fe lattice distortion) to the
maximum distortion given by Equation (6) (100% α-Fe lattice distortion). The lattice parameter of the
α′′-Fe phase is kept constant at its equilibrium value for every composition (see Equation (4)).
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Analyzing such an energy landscape allows us to illustrate the transformation path from the
ordered α′′-Fe phase to the disordered α-Fe phase which takes into account not only the chemical
energy difference but also considers the elastic strain effect. According to Eshelby’s elliptic inclusion
analysis [20] if a small inclusion with different lattice parameter is introduced into the infinite matrix
material, the most of the misfit strain and thus the elastic energy will be concentrated inside the
inclusion. This means that if a nucleus of the disordered α-Fe phase would nucleate inside of the
ordered α′′-Fe matrix phase it would initially have the lattice parameters close to the lattice parameter
of the α′′-Fe matrix phase. Thus, the approximate transition path from the ordered α′′-Fe to the
disordered α-Fe phase can be read from Figure 4 by taking the Gibbs energy value of the ordered α′′-Fe
matrix phase in its equilibrium lattice and the Gibbs energy of the emerging α-Fe phase subjected to
the maximum elastic strain given by Equation (6) (indicated as 100% α-Fe lattice distortion in Figure 4).

Figure 5 shows the comparison between the Gibbs energies of α-Fe and α′′-Fe phases at two
extremes: in their equilibrium lattices which corresponds to zero elastic energy contribution to the
Gibbs energy of both phases (0% α-Fe lattice distortion in Figure 4), and considering the maximum
lattice distortion of the α-Fe phase while keeping the lattice parameter of the α′′-Fe at its equilibrium
value which corresponds to the nucleation condition of the α-Fe phase and results in the maximum
elastic energy contribution to the Gibbs energy of the α-Fe phase (100% α-Fe lattice distortion in
Figure 4).

(a) (b)

Figure 5. Gibbs energies of α-Fe and α′′-Fe at T = 550 K considering their equilibrium lattices (a) and
considering maximum lattice distortion of the α-Fe phase (b).

The conventional Gibbs energies considering equilibrium lattice parameters of the α-Fe and α′′-Fe
phases (Figure 5a) show that the disordered α-Fe phase is stable at all compositions of carbon at
T = 550 K, while considering the α-Fe lattice distortion (Figure 5b) indicates that α-Fe is only stable
below approximately 0.7 wt % due to the misfit strain effect. In addition, the intersection between
the Gibbs energies with elastic energy contribution (red line in Figure 4, and red arrow in Figure 5b)
indicates the degree of local deformation of the α′′-Fe matrix necessary to stabilize the disordered
α-Fe phase. It is clear that at certain carbon composition the elastic deformation limit of α′′-Fe will be
exceeded during the transition to α-Fe leading to the plastic deformation. Since we can not address
the plastic deformation in a generic way in this study we limited our consideration to the elastic
deformation only. Thus our results represent the maximum value of the elastic energy contribution
which would typically be lower at higher carbon concentrations due to plastic relaxation.

In order to overcome the elastic energy barrier, the system should be heated to higher temperatures
to provide enough chemical driving force to compensate for the elastic strain effect. Figure 6 shows,
that considering elastic energy contribution, the order-disorder transition temperature between α-Fe
and α′′-Fe phases gradually rises by almost 150 K with the increasing carbon content compared to the
case without the chemo-mechanical coupling. Note, that the result presented in Figure 6 represents
the maximum order-disorder transiton temperature deviation due to elastic energy contribution
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because it assumes maximum deformation of the α-Fe phase compared to α′′-Fe phase. In the real
microstructure the non-uniform distortion of the parent α′′-Fe phase will result in lower order-disorder
transition temperature than indicated by the line I in Figure 6. Thus, in order to investigate in detail the
order-disorder transition kinetics during martensite tempering a realistic microstructure simulation
should be perfomed considering carbon diffusion and mechanical relaxation of the crystal lattice. This
can be done by means of phase-field method as presented in [1].

Figure 6. Comparison of the order-disorder transition temperature between α-Fe and α′′-Fe phases
considering the deformed state of the α-Fe phase (I) and considering both phases in their equilibrium
lattices (II).

6. Conclusions

We introduce a unified multi-scale chemo-mechanical model that includes the mechanical degrees
of freedom to the standard CALPHAD type Gibbs energy description. The proposed model takes into
account the effect of carbon composition on the lattice parameter and elasticity moduli of α-Fe and
α′′-Fe phases by a sublattice model that is parameterized on the basis of DFT calculations. The variation
of elastic parameters with temperature are estimated from available experimental data.

The DFT calculations for the α′′-Fe16C2 phase indicate three competing carbon distributions with
comparable lattice constants and elastic moduli. The energetically most favorable arrangement of
carbon atoms is observed for a tetragonal unit cell with the largest considered separation of two
carbons atoms. The two competing configurations correspond to chains of carbon atoms along
the [110] and [100] direction, i.e., to directions perpendicular to the tetragonal distortion. A fourth
configuration with a chain of carbon atoms parallel to the direction of the tetragonal distortion is
considerably higher in energy and mechanically unstable. Preliminary analysis of the thermodynamic
stability of α-Fe and α′′-Fe phases using the proposed model shows the significant effect of elasticity
on the order-disorder transition temperature. The increase of the transition temperature due to
elastic energy effect is in accordance with experimental observations where tempering starts at higher
temperatures than it is predicted by the phase stability analysis if elastic energy effect is not considered.
Moreover, in order to reveal the stability of phases comprising the real microstructures, two-way
chemo-mechanical coupling is required. Such a coupling provides the mutual influence between the
chemical and mechanical degrees of freedom and allows us to take into account the effect of elasticity
on the diffusion kinetics as well as the effect of composition on the elastic properties, which directly
affect the phase transformation kinetics. The two-way coupling is realized using the phase-field
framework which seamlessly considers microstructure evolution, diffusion and mechanical relaxation
of the system in one simulation. This enables us to study the kinetics of martensite tempering while
considering realistic microstructures in a wide range of processing conditions. For application of the
proposed model in phase-field simulation of martensite tempering see [1].
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