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Abstract: The enhancement of the photocatalytic activity of TiO, nanoparticles (NPs), synthesized
in the presence of a very small amount of magnetite (Fe30O4) nanoparticles, is here presented
and discussed. From X-ray diffraction (XRD) and differential scanning calorimetry (DSC)
analyses, the crystallinity of TiO, nanoparticles (NPs) seems to be affected by Fe;O4, acting as
nano-seeds to improve the tetragonal TiO, anatase structure with respect to the amorphous one.
Photocatalytic activity data, i.e., the degradation of methylene blue and the Ofloxacin fluoroquinolone
emerging pollutant, give evidence that the increased crystalline structure of the NPs, even if correlated
to a reduced surface to mass ratio (with respect to commercial TiO, NPs), enhances the performance of
this type of catalyst. The achievement of a relatively well-defined crystal structure at low temperatures
(Tmax = 150 °C), preventing the sintering of the TiO, NPs and, thus, preserving the high density of
active sites, seems to be the keystone to understand the obtained results.
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1. Introduction

Nowadays, titanium dioxide is one of the most studied photocatalysts due to its low cost,
versatility of synthesis, high chemical stability and, finally, high efficiency [1,2]. The fields in which
TiO, is applicable are widely diffuse, ranging from self-cleaning surfaces [3] to sterilization [4],
photoelectrochemical conversion [5], clean energy production [6], and also air and water purification
systems. In this last field, water treatment for the removal of organic (potentially) toxic substances [7,8],
included pharmaceutically-active emerging pollutants [9,10], is currently a priority task. In fact, the
material is able to produce, under ultraviolet (UV) excitation, electron-hole pairs that induce the
formation of highly reactive species able to oxidize the organic matter [11]. Unfortunately, the UV
component of the natural solar light irradiation spectrum (the highest and cheapest illumination
source) is quite small; moreover, titanium dioxide is not able to absorb the solar radiation in the visible
region. Therefore, the scientific and technological research in this field is strongly involved in find
new possibilities to enhance the overall efficiency. Two different strategies can be generically followed.
The first approach implies the use of opportunely doped ions able to shift the absorbed band gap from
the UV to the visible: in this model some transition metals, such as Fe, V, and Zn, have been widely
tested and adopted [12]. The second method is related to the increase of the intrinsic efficiency of the
material through the control of the synthesis process; in this way it is possible to govern the surface area,
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the dimensions, and morphology, and, consequently, the photocatalytic activity. Further innovative
systems have been recently developed, e.g., supporting the photocatalyst on the surface of luminescent
materials, allowing an excellent increase in the degrading power [13].

In this work, we have studied the synthesis of nanoparticles (NPs) of titanium dioxide in the
presence of magnetite nanoparticles. Fe3O4 NPs, presenting a superparamagnetic behavior below
a typical critical dimension [14], have been evaluated as potential magnetic cores for Fe30,@TiO,
hybrid material in order to facilitate the recovery (and recycling) of the catalyst applying an external
magnetic field [15-21]. Generally, a thick SiO; layer is inserted between the internal core (Fe3Oy)
and the external catalyst (TiO;) to prevent the Fe304-TiO, direct contact that would decrease the
photodegradation activity [22-25]. Indeed, it has been demonstrated that the TiO, surface area
decreased if supported on a magnetic substrate [26]. Consequently, our attention was focused to
the possibility of using, in the titania sol-gel synthesis route, very small amounts of magnetite,
exploited as germination seeds affecting the nucleation, formation, and morphology of the TiO,
NPs. Different syntheses have been carried out, varying the TiO, /Fe3O; ratio. The photocatalytic
performance has been tested in the framework of a standard ISO 10678:2010 protocol, i.e., the
degradation of methylene blue (MB) solution of known concentration [27]. The results, hereafter
reported, showed a strict correlation between the amount of Fe304 added during the TiO; synthetic
process and the observed titania photocatalytic activity; moreover, other properties, such as surface
area and crystallinity, have been widely affected. Furthermore, a comparison of the photocatalytic
activity of our NPs with a commercial product (TiO, NPs P25 from Sigma-Aldrich, St. Louis, MO, USA),
demonstrated the higher activity possessed by our materials. Consequently, the best material was also
tested for the degradation of Ofloxacin (OFL), an important emerging water pollutant, belonging to
the class of fluoroquinolone (FQ) antibiotics.

2. Results

2.1. Structural and Morphological Investigations

In Figure 1 the X-ray diffraction patterns of samples A and B are reported. The two compounds
showed the characteristic peaks of the TiO, tetragonal anatase structure, presented as a line pattern
in the same figure. On the contrary, sample C and D (not reported in the figure) resulted completely
amorphous and no identifiable peaks were detected. It is noteworthy that magnetite is well below the
detection limit of the XRD technique due to its very low amount respect to the TiO, matrix. It should
be pointed out that sample A resulted more crystalline than sample B: this fact is underlined by the
presence, in sample A, of higher intensity peaks and by a diffraction pattern better discernable from
the baseline, especially at 20 > 60°.

These diffraction data are consistent with the DSC investigations, reported in Figure 2. The thermal
behavior of all the samples is characterized by a broad endothermic peak below 100 °C, characteristic of
the dehydration caused by a small quantity of water adsorbed. A second exothermic peak is observed
at 215 °C for samples A and B and 240 °C for C and D, respectively.

In this step the oxidation of the 2-propanol adsorbed on the surface occurred [28]. The drastic
difference in the intensity signals indicates a different amount of solvent that increased from sample A
to D. Indeed, this result agree well with the surface area analysis from BET isotherms (Table 1), where
the increased value of the surface to mass ratio from A to D, implies an increment of the possibility
to adsorb the solvent. Samples A and B had no supplementary signals, demonstrating a complete
crystallization already at 150 °C, a temperature notably lower with respect to the literature data [1,26].
On the contrary, samples C and D possessed weak exothermic peaks at 385 °C, correlated with the phase
transition of the particles from amorphous to the tetragonal anatase structure. Consequently, the DSC
investigation confirmed the data obtained from the XRD analysis, demonstrating the crystallization in
the tetragonal anatase phase only for samples A and B.
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Figure 1. XRD patterns of Samples A (green curve), sample B (red curve), and crystallographic peaks
of anatase phase (black line pattern). (Color figure online).
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Figure 2. DSC analyses of sample A (green), sample B (red), sample C (blue) and sample D (black).
In the inset the peaks at 215 °C for samples A and B are enlarged. (Color figure online).

Table 1. Surface areas determined for the different samples.

Sample BET Surface Area (m?/g)
A 174.83
B 286.73
C 302.39
D 341.86

Figure 3 reports FE-SEM images of the three different magnetite-TiO, samples. Apparently, no
macroscopic differences were detected: all of the materials presented a very similar, roughly spherical,
morphology with large aggregates in which the TiO, NPs have dimensions of about 10 nm.
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Figure 3. FE-SEM images of the three samples respectively prepared with (A) 0.71 mL; (B) 0.35 mL and
(C) 0.18 mL of Fe3O4 NPs.

Finally, the surface area analysis, reported in Table 1, showed an evident increase in the surface to
mass ratio, from 174.83-302.39 m? /g from sample A to sample C respectively. All of these values were
lower than the pure TiO, NPs surface area (D system with 341.86 m?/g). The increase in the surface
area is strictly correlated to the decrease of the crystallinity grade, as the aforementioned XRD analysis
revealed. Since the adopted synthesis protocol in all of the samples is the same, except the concentration
of magnetite NPs, a clear dependence between the amount of Fe;O, and the morphological and
crystalline properties of the materials was observed. Decreasing the amount of magnetite, from sample
A to D, a contemporary decrease in crystallinity and increase in surface area is clearly demonstrated.
This general behavior can be correlated to the role of Fe304 nanoparticles that act, in the whole synthesis
process, only as germination seeds for the growing and crystallization of TiO; in the anatase phase.

2.2. Photocatalytic Activity

Figure 4 reports the efficiency of the methylene blue degradation using the hybrid TiO, /Fe;04
samples (A, B, C) in comparison with pure TiO; NPs (D), synthesized under the same conditions,
but without the presence of magnetite, and commercial P25, i.e., TiO, powders from Sigma Aldrich.
Magnetite NPs, tested under the same conditions, do not show photocatalytic activity towards MB.
Sample D results the less active even if presenting the best surface area; this fact is clearly related
to the low crystallinity that drastically affects the catalytic performance [29]. Even if from the XRD
result of sample C was also amorphous, its degradation efficiency is similar to sample A; apparently,
the synergic effect between surface area and crystallinity played an important role. Consequently,
sample A possessed a larger number of particles in the anatase structure, but suffered for the lack in
surface area; on the contrary, for sample C the high surface area compensated the low crystalline grade.
However, the two samples reach a degradation of about 70% after 120 min of light exposure, value
lower of only 10% respect to P25. The best catalytic performance is reached by sample B, which shows
a conversion up to 95% after 120 min. It is noteworthy that, already after 60 min, sample B degrades
more than 60% of MB.

Finally, the photocatalytic efficiency of the best material was tested for the degradation of OFL,
a real emerging contaminant, in natural water samples. Among FQs, this compound was selected due
to its wide presence in environmental matrices [30], and also because it is characterized by a slower
photolytic decay in water matrices compared to other drugs [31].

Before irradiation, spiked samples (10 mg/L OFL, 0.5 g/L catalyst) were stirred in the dark, for
20 min to achieve sorption equilibrium. Under these conditions, a significant percentage of OFL was
adsorbed onto the catalyst, namely 17%. As shown in Figure 5, a quantitative abatement (>96%) of
OFL was gained under simulated solar light in just 10 min, with good reproducibility (RSD < 5%,
n = 3). On the contrary, under the same experimental conditions, about 60 min were required to
obtain a comparable degradation efficiency under direct photolysis. A non-exponential data decay
was observed in both cases and the kinetic constants were 0.27(1) and 0.052(2) min~!, respectively.
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Figure 4. Percent degradation of MB versus time. The experimental points (Table S1) are averaged over
three replicates. (Color figure online).
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Figure 5. Photolytic (M) and photocatalytic (e) degradation profiles of OFL under simulated
solar light. The experimental points (Table S2) are averaged over three replicates (RSDs < 5%, n = 3).
(Color figure online).

3. Materials and Methods

3.1. Materials

FeCl3-6H,O (98%) and FeCl,-4H,0 (98%), sodium hydroxide (97%), titanium isopropoxide
(TISOP, 97%), 2-propanol (99.9%), and analytical grade Oflaxacin were all purchased from
Sigma-Aldrich (St. Louis, MO, USA) and used as received.

HPLC grade acetonitrile (ACN) was from VWR (Radnor, PA, USA) and H3POy (85%, w/w) from
Carlo Erba Reagents (Milano, Italy).
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3.2. Preparation of Magnetite NPs

Magnetite nanoparticles were obtained by a coprecipitation method from an aqueous solution
of stoichiometric amounts of FeCl,-4H,O and FeCl;-6H,O under basic conditions. Details in the
preparation and the physicochemical properties of the sample are reported elsewhere [14]. Briefly,
FeCl,-4H,0 (2.5 mmol) and FeCl;-6H,O (5 mmol) were dissolved in Milli-Q water at pH 2 under N,
atmosphere and vigorous mechanical stirring. Once the solution reached 75 °C, a proper amount of
NaOH aqueous solution (2 M) was quickly added, causing a sudden appearance of a black color in the
solution. The reaction was continued for 30 min, after which the particles were washed several times
with boiling water and magnetically collected after each wash, in order to reach neutral pH. Finally,
a known volume of water was added to disperse ultrafine magnetic particles to a final concentration
of 17 g/L.

3.3. Preparation of Magnetic Photocatalysts

Different amounts of Fe;04 NPs were used in this step (Table 2). At first, a given volume of the
Fe304 suspension was diluted in 10 mL of 2-propanol and sonicated for 5 min at 30% power with
an OMNI Sonic Ruptor Ultrasonic Homogenizer (Omni International, Atlanta, GA, USA). Then the
dispersion was transferred to 200 mL of propanol and a given amount of TISOP was added. Next,
30 mL of water, as reported in Table 2, were added, producing the immediate formation of TiO,
nanoparticles. The reaction proceeds at room temperature for 4 h after which the dispersion undergoes
a hydrothermal process at 150 °C for 3 h.

Table 2. Reagents ratios (v/v) for the different samples.

Sample Fe304 NPs (mL) TISOP (mL) 2-Propanol (mL) H,0 (mL)
A 0.71 6 200 30
B 0.35 6 200 30
C 0.18 6 200 30
D 0 6 200 30

For each A, B, C, and D system, two different samples were prepared and fully characterized.
3.4. Characterization Techniques

3.4.1. XRD

X-ray diffraction patterns on dried NPs were performed on a Philips PW1830 diffractometer
(Philips, Amsterdam, The Netherlands) using the Bragg-Brentano geometry, with Cu K« radiation
(A = 0.15406 nm), Ni filtered. The data were collected in the 20°-80° 20 range, with a step of 0.025° and
a counting time for each step of 5 s.

3.4.2. FE-SEM

FE-SEM (Field Emission-Scanning Electron Microscopy) analyses were performed using a ZEISS
SUPRA 40VP microscope (Carl Zeiss AG, Oberkochen, Germany) equipped with an energy dispersive
X-ray spectrometer (EDXS OXFORD “INCA Energie 450x3”, Oxford Instrument, Abingdon, UK) for
microanalysis, using the low voltage (5 kV) mode. The analyses were performed collecting the signal
by means of the In-Lens detector.

3.4.3. DSC

Differential scanning calorimetry (DSC) measurements were carried out through a Mettler Toledo
821e calorimeter (Mettler Toledo, Columbus, OH, USA) in O, atmosphere (20 mL/min), using
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aluminum crucibles. The data were collected in the 40-500 °C temperature range with a heating
rate of 10 °C/min.

3.4.4. BET

BET surface areas of the samples were obtained from nitrogen adsorption isotherms acquired
using an ASAP 2010 physisorption analyzer (Micromeritics Instrument Corp., Norcross, GA, USA).
Before the measurement each sample was pre-treated at 200 °C in vacuum for 12 h.

3.5. Photocatalytic Experiments

The photocatalytic activity was tested using, for each sample, 12.5 mg in 25 mL of an aqueous
methylene blue (MB) solution (0.04 g/L). Before the irradiation, the suspensions were kept in the dark
under magnetic stirring for 20 min to establish the adsorption-desorption equilibrium between the
particles and the dye. The suspensions were then exposed to a solar spectrum lamp 300W Ultra-Vitalux
(Osram, Munich, Germany) maintained at 20 cm distance for 2 h at room temperature. Aliquots of
samples (1.5 mL) were taken before irradiation (fp) and every 20 min until the end of the experiment.
The collected samples were centrifuged by a Centrifuge 5410 (Eppendorf, Hamburg, Germany) at
13,200 rpm for 5 min to separate the NPs and the solution that was analyzed by means of a UV-VIS
spectrometer (Lambda 35, Perkin Elmer, Waltham, MA, USA). The MB concentration was calculated
monitoring the absorbance at 664 nm [11].

Irradiation of OFL aqueous solutions was performed by using a solar simulator Solar box 1500e
(CO.FO.ME.GRA, Bologna, Italy) set at a power factor of 500 W/m?, equipped with a UV outdoor
filter of soda lime glass, IR treated. A 100 mL tap water sample from the municipal waterworks of
Pavia (pH 7.7, conductivity at 20 °C 271 pS-cm ') spiked with 10 mg/L OFL was irradiated in a closed
glass container (40 mm depth, exposed surface 9500 mm?). The catalyst suspension (0.5 g/L) was
magnetically stirred in the dark for 20 min to promote the antibiotic adsorption on the catalyst surface.
During irradiation, aliquots (1 mL) of each sample were withdrawn at the specific times (see Figure 5),
filtered (0.2 pm) and promptly injected in the HPLC-UV system (LC-20AT solvent delivery module
equipped with a DGU-20A3 degasser and interfaced with a SPD-20A UV detector (Shimadzu, Milano,
Italy). The analysis wavelength selected was 275 nm. Twenty microlitres of each sample was injected
into a 250 x 4.6 mm, 5 um Analytical Ascentis C18 (Supelco, Sigma Aldrich Corporation, Milano, Italy)
coupled with a similar guard column. The mobile phase was 25 mM H3PO,~ ACN (85:15), at a flow
rate of 1 mL/min. The instrumental quantification limit was 0.06 mg/L.

The percentage of degradation (D%) was determined using the relation [32,33]:

D% = (CO *Ct/Co) x 100

4. Conclusions

In this study, a simple and facile sol-gel process approach was developed for the preparation of
Fe304—TiO, nanopowders. Different molar ratios have been studied to test their photocatalytic activity
in the degradation of MB dye and OFL antibiotic, an emerging water pollutant, in the UV-visible
light range.

Fe304 NPs can improve the photocatalytic activity of titania due to the promotion of crystallization
of the anatase structure at a lower temperature than that reported in the literature, since they can
act as germination seeds. The combination of higher crystallinity grade and surface area provides
an enhancement in the photocatalytic activity for sample B: the efficiency of our NPs in the MB and
OFL degradation is even higher than the P25 commercial titania powders. Indeed, the percentage
degradation reached, with the same exposure time, is 15% greater compared to commercial P25 TiO,.

Supplementary Materials: The following are available online at www.mdpi.com/1996-1944/9/9/771/s1.
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