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Abstract: We prove that there exists a randomized online algorithm for the 2-server 3-point
problem whose expected competitive ratio is at most 1.5897. This is the first nontrivial upper
bound for randomized k-server algorithms in a general metric space whose competitive ratio
is well below the corresponding deterministic lower bound (= 2 in the 2-server case).
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1. Introduction

The k-server problem, introduced by Manasse, McGeoch and Sleator [1], is one of the most funda-
mental online problems. In this problem the input is given as k initial server positions and a sequence
p1, p2, · · · of requests in the Euclidean space, or more generally in any metric space. For each request pi,
the online player has to select, without any knowledge of future requests, one of the k servers and move
it to pi. The goal is to minimize the total moving distance of the servers.

The k-server problem is widely considered instructive to the understanding of online problems in
general, yet, there are only scattered results. The most notable open problem is perhaps the k-server
conjecture, which states that the k-server problem is k-competitive. The conjecture remains open for
k ≥ 3, despite years of effort by many researchers; it is solved for a very few special cases, and remains
open even for 3 servers when the metric space has more than 6-points. The current best upper bound is
2k − 1 given by Koutsoupias and Papadimitriou in 1994 [2]. The conjecture is true for k = 2, for the
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line [3], trees [4], and on fixed k + 1 or k + 2 points [5]. It is still open for the 3-server problem on more
than six points and also on the circle [6]. The lower bound is k which is shown in the original paper [1].

In the randomized case, even less is known. Indeed, one of hardest problems in the area of online
algorithms is to determine the exact randomized competitiveness of the k-server problem, that is, the
minimum competitiveness of any randomized online algorithm for the server problem. (As is customary,
we mean by “competitive ratio” of a randomized algorithm its expected compete ratio.) Very little is
known for general k. Bartal et al. [7] have an asymptotic lower bound, namely that the competitiveness
of any randomized online algorithm for an arbitrary metric space is Ω(log k/ log2 log k).

Even the case k = 2 is open for the randomized 2-server problem, and, despite much effort, no
randomized algorithm for general metric spaces with competitiveness strictly lower than 2 has been
found. Surprisingly, the classic algorithm RANDOM SLACK [8], a very simple trackless algorithm, has
been the algorithm with best competitive ratio for almost two decades now. Karlin et al. [9] gave a lower
bound of e

e−1
, which is the bound for the classical “ski rental problem”. This bound is derived in a space

with three points, where two points are located closely together and the third point is far from both of
these. The best known lower bound is 1 + e−

1
2 ≈ 1.6065, but this lower bound requires a space with at

least four points, see [10]. (A lower bound very slightly larger than 1 + e−
1
2 is stated in [10], but without

proof.)
It is indeed surprising that no randomized algorithm with competitive ratio better than 2 has been

found, since it seems intuitive that randomization should help. It should be noted that generally ran-
domization is quite powerful for online problems, since it obviously reduces the power of the adversary.
Such seems to be the case for the 2-server problem as well.

To give intuition, consider a simple 2-server problem on the three equally spaced points a, b and c on
a line (See Fig. 1). It is easy to prove a lower bound of 2 for the competitive ratio of any deterministic
algorithm: The adversary always gives a request on the point the server is missing. Thus for any online
algorithm,A, its total cost is at least n – the number of requests. But it turns out by a simple case analysis
that the offline cost is n/2.

Suppose instead that A is randomized. Now if the request comes on b (with missing server), then A
can decide by a coin flip which server (a or c) to move. An (oblivious) adversary knows A’s algorithm
completely but does not know the result of the coin flip and hence cannot determine which point (a or c)
has the server missing in the next step. The adversary would make the next request on a but this time a

has a server with probability 1/2 andA can reduce its cost. Without giving details, it is not hard to show
that this algorithm A – with the randomized action for a request to b and a greedy action one for others
– has a competitive ratio of 1.5.

Indeed, one would imagine that it might be quite straightforward to design randomized algorithms
which perform significantly better than deterministic ones for the 2-server problem. As mentioned above
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this has not been the case. Only few special cases have yielded success. Bartal, Chrobak, and Larmore
gave a randomized algorithm for the 2-server problem on the line, whose competitive ratio is slightly
better than 2 (155

78
≈ 1.987) [11]. One other result by Bein et. al. [12] uses a novel technique, the

knowledge state method, to derive a 19
12

competitive randomized algorithm for the special case of Cross
Polytope Spaces. Using similar techniques a new result for paging (the k-server problem in uniform
spaces) was recently obtained. Bein et al. [13] gave an Hk-competitive randomized algorithm which
requires only O(k) memory for k-paging. (Though the techniques in the current paper are inspired by
this work, the knowledge state method is not used here.) Lund and Reingold showed that if specific three
positions are given, then an optimal randomized algorithm for the 2-server problem over those three
points can be derived in principle by using linear programming [14]. However, they do not give actual
values of its competitive ratio and to this date the problem is still open even for the 2-server 3-points
case.

Finally, we mention other somewhat related work in the realm of online computation: see the work of
Karlin et al. [15] for ski-rental problems, Reingold et al. [16] for list access problems, and Fiat et al. [17]
for paging.

Our Contribution. In this paper, we prove that the randomized competitive ratio of the 2-server
3-point problem in a general metric space is at most 1.5897 and also we conjecture that it is at most
e/(e− 1) ≈ 1.5819. Thus we give an upper bound that matches the lower bound within a small ε.

The underlying idea is to find a finite set S of triangles (i.e. three points) such that if the competitive
ratio for each triangle in S is at most c, then the competitive ratio for all triangles in any metric space is at
most c·δ(S) where δ(S) ≥ 1 is a value determined by S. To bound the competitive ratio for each triangle
in S, we apply linear programming. As we consider larger sets, the value of δ(S) becomes smaller and
approaches 1. Thus the upper bound of the general competitive ratio also approaches the maximum
competitive ratio of triangles in S and we can obtain arbitrarily close upper bounds by increasing the
size of the computation.

Our result in this paper strongly depends on computer simulations similar to earlier work based on
knowledge states. Indeed, there are several successful examples of such an approach, which usually
consists of two stages; (i) reducing infinitely many cases of a mathematical proof to finitely many cases
(where this number is still too large for a “standard proof”) and (ii) using computer programs to analyze
the finitely many cases. See the work in [18–22] for design and analysis of such algorithms. In particular,
for online competitive analysis, Seiden proved the currently best upper bound, 1.5889, for online bin-
packing [23]. Also with this approach, Horiyama et al. [24] obtained an optimal competitive ratio for the
online knapsack problem with resource augmentation by buffer bins.

2. Our Approach

Since we consider only three fixed points, we can assume without loss of generality that they are
given in the two-dimensional Euclidean space. The three points are denoted by L, C and R, furthermore
let d(C, L) = 1, d(C, R) = d1, and d(L,R) = d2 (see Fig. 2). Without loss of generality we assume
that 1 ≤ d1 ≤ d2 ≤ d1 + 1, since the actual lengths of the triangle’s sides are irrelevant and only their
ratios matter. The 2-server problem on L, C and R is denoted by ∆(1, d1, d2), where the two servers are
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on L and R initially and the input is given as a sequence σ of points ∈ {L,C, R}. ∆(1, d1, d2) is also
used to denote the triangle itself. The cost of an online algorithm A for the input sequence σ is denoted
by ALGA(σ) and the cost of the offline algorithm by OPT (σ). Suppose that for some constant α ≥ 0,
E[ALGA(σ)] ≤ r ·OPT (σ)+α, holds for any input sequence σ. Then we say that the competitive ratio
of A is at most r.

We first consider the case that the three points are on a line and both d1 and d2 are integers. In this
case, we can design a general online algorithm as follows. The proof is given in the next section.

Lemma 1 Let n be a positive integer. Then there exists an online algorithm for ∆(1, n, n + 1) whose

competitive ratio is at most Cn =
(1+ 1

n
)n− 1

n+1

(1+ 1
n

)n−1
.

Note that if triangles ∆1 and ∆2 are different, then “good” algorithms for ∆1 and ∆2 are also different.
However, the next lemma says that if ∆1 and ∆2 do not differ too much, then one can use an algorithm
for ∆1 as an algorithm for ∆2 with small sacrifice on the competitive ratio.

Lemma 2 Suppose that there are two triangles ∆1 = ∆(1, a1, b1) and ∆2 = ∆(1, a2, b2) such that a1 ≥
a2 and b1 ≥ b2 and that the competitive ratio of algorithm A for ∆1 is at most r. Let α = max(a1

a2
, b1

b2
).

Then the competitive ratio of A for ∆2 is at most r · α.

Proof. For α let ∆α = ∆(1/α, a1/α, b1/α). Fix an arbitrary input sequence σ and let the optimal
offline cost against σ be OPT1, OPT2 and OPTα for ∆1, ∆2 and ∆α, respectively. Since ∆α is similar
to ∆1 and the length of each side is 1/α, OPTα is obviously (1/α)OPT1. Since every side of ∆2 is at
least as long as the corresponding side of ∆α, OPT2 ≥ OPTα = (1/α)OPT1.

Let the expected cost of A against σ for ∆1 and ∆2 be ALG1 and ALG2, respectively. Note that
A moves the servers exactly in the same (randomized) way for ∆1 and ∆2. Since each side of ∆2

is at most as long as the corresponding side of ∆1, ALG2 ≤ ALG1. We have ALG2

OPT2
≤ ALG1

(1/α)OPT1
=

max(a1

a2
, b1

b2
) · ALG1

OPT1
. 2

Thus we can “approximate” all triangles, whose α-value is at most within some constant, by a finite
set S of triangles. More precisely we introduce the notion of an approximation set as follows: Suppose
that a target competitive ratio, i.e. a competitive ratio one wishes to achieve, is r0. Then we first calculate
the minimum integer n0 such that r0 ≥ n0+2

n0
· Cn0+1, where Cn0+1 is the value given in the statement

of Lemma 1. Next we construct a set S such that for any two numbers a and b with 1 ≤ a ≤ n0 and
b ≤ a+1, there exist two triangles ∆1 = ∆(1, a1, b1) and ∆2 = ∆(1, a2, b2) in S such that the following
conditions are met:

(i) a2 < a ≤ a1 and b2 < b ≤ b1,
(ii) there exists an algorithm for ∆1 whose competitive ratio is r1, and
(iii) r1 ·max(a1

a2
, b1

b2
) ≤ r0.

We call such a set an r0-approx set.

Lemma 3 If one can construct an r0-approx set S, then there is an online algorithm for the 2-server
problem on three points, whose competitive ratio is at most r0.

Proof. Consider the following algorithm A(a, b) which takes the values a and b of the triangle
∆(1, a, b). Note that A(a, b) is an infinite set of different algorithms from which we select one due
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to the values of a and b. If a ≥ n0, then we select the maximum integer n such that a ≥ n. Then A(a, b)

uses the algorithm for ∆(1, n + 1, n + 2) of Lemma 1. Clearly we have a ≤ n + 1 and b ≤ n + 2.
Therefore, by Lemma 2, the competitive ratio of this algorithm for ∆(1, a, b) is at most (recall that Cn+1

is the competitive ratio of this algorithm for ∆(1, n + 1, n + 2) given in Lemma 1)

max
(

n + 1

a
,
n + 2

b

)
· Cn+1 ≤ n + 2

n
· Cn+1 ≤ n0 + 2

n0

· Cn0+1 ≤ r0.

By a simple calculation we have that n+2
n
· Cn+1 = n+2

n
· (1+ 1

n)
n− 1

n+1

(1+ 1
n)

n−1
monotonically decreases, which

implies the inequality second to last.
If a < n0, then we have the two triangles ∆1 and ∆2 satisfying the conditions (i) to (iii) above. Then

we use the algorithm for ∆1 guaranteed by condition (ii). Its competitive ratio for ∆(1, a, b) is obviously
at most r0 by Lemma 2. 2

3. Three Points on a Line

We now prove Lemma 1. To this end we make use of a state diagram, called the offset graph, which
indicates the value of the work function W (s, σ) [25]. Recall that W (s, σ) gives the optimal offline cost
under the assumption that all requests given by σ have been served and the final state after σ must be s,
where s is one of (L,C), (L, R) and (C, R) in our situation.

Fig. 3 shows the offset graph, GOPT
n for ∆(1, n, n + 1). Each state contains a triple (x, y, z), which

represents three values for the work function; the first for when (C, R) are covered (leaving L blank), the
next for when (L,R) are covered, and the last for when (L,C) are covered. For instance, in the figure the
top middle state is the initial state, which is denoted by VLR. Recall that the initial server configuration
is (L,R). This state contains (n, 0, 1), which means that W ((L,C), φ) = n, W ((L,R), φ) = 0, and
W ((C,R), φ) = 1. For example, to see that W ((L,C), φ) = n, consider that initially the request
sequence is empty – denoted by φ. The initial server configuration is (L,R); thus in order to change
this configuration into (L,C), one can optimally move a server from R to C at cost n. Therefore,
W ((L,C), φ) = n. Consider now state V3 – the fourth state from the top. Its triple gives the value of
the work function for the request sequence CLC, namely , W ((L,C), CLC), W ((L,R), CLC) and
W ((C,R), CLC). Note that this request sequence – CLC – is obtained by concatenating the labels of
arrows from the initial state VLR to V3.

For the work function value of W ((L,R), CLC) we have W ((L,R), CLC) = 4. This is calculated
from the previous state V2 in the following way: Server position (L,R) can be reached from previous
configuration (L,R) (= 2) plus 2 (= the cost of moving a server on L to C and back to L) or from
previous configuration (C, R) (= 3) plus 1 (= the cost of moving a server on C to L), i.e. in both cases
a value of 4. From state V3, there is an arrow to VCR as a result of request R. Carrying out a similar
calculation, one can see that the triple should change from (n, 4, 3) to (n + 4, 4, 3) in this transition.
However, the triple in VCR is (n + 1, 1, 0). This is because of an offset value of 3 on the arrow from
V3 to VCR. Namely, (n + 1, 1, 0) in VCR is obtained from (n + 4, 4, 3) by reducing each value by 3.
Because of the use of offset values a finite graph can be used to represent the potentially infinitely many
values of the work function. Thus one can conclude that (n, 0, 1) in the initial state VLR also means
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Figure 4. State diagram of the algorithm

(n+4, 4, 5), (n+8, 8, 9), · · · by traversing the cycle VLRV1V2V3VCR repeatedly. We leave it to the reader
to formally verify that Fig. 3 is a valid offset graph for ∆(1, n, n + 1).

We introduce another state graph, called the algorithm graph. Fig. 4 shows the algorithm graph,
GALG

n , for ∆(1, n, n + 1). Notice that GALG
n is similar to GOPT

n . Each state includes a triple (q1, q2, q3)

such that q1 ≥ 0, q2 ≥ 0, q3 ≥ 0 and q1+q2+q3 = 1, which means that the probabilities of configurations
(C, L), (L, R) and (C,R) are q1, q2 and q3, respectively. (Since the most recent request must be served,
one of the three values is zero. In the figure, therefore, only two probabilities are given. For example,
in S1, the probabilities for (L,C)(= p1) and for (C,R)(= 1 − p1) are given. In our specific algorithm
GALG

n , we define those values as follows:

SLC = (1, 0, 0), SLR = (0, 1, 0), SCR = (0, 0, 1),

S2i−1 = (pi, 0, 1− pi) (i = 1, . . . , n), S2i = (pi, 1− pi, 0) (i = 1, . . . , n− 1)

where pi is n
n+1

· (1+ 1
n

)i−1

(1+ 1
n

)n−1
.

We describe how to transform an algorithm graph into the actual algorithm. Suppose for example that
the request sequence is CL. Assume the algorithm is in state S2, and suppose that the next request is C.
The state transition from S2 to S3 occurs. Suppose that S2 has configuration-probability pairs (C1, q1),
(C2, q2), and (C3, q3) (C1 = (L,C), C2 = (L,R) and C3 = (C, R)) and S3 has (C1, r1), (C2, r2), and
(C3, r3). We introduce variables xij (i, j = 1, 2, 3) such that xij is equal to the probability that the
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configuration before the transition is Ci and the configuration after the transition is Cj . Indeed, by a
slight abuse of notation the xij values can be considered to be the algorithm itself. The xij values also
allow us to calculate the cost of the algorithm as described next.

The average cost for a transition is given by cost =
∑3

i=1

∑3
j=1 xijd(Ci, Cj), where d(Ci, Cj) is the

cost to change the configuration from Ci to Cj . We can select the values of xij in such a way that they
minimize the above cost under the condition that

∑3
j=1 xij = qi,

∑3
i=1 xij = rj. In the case of three

points on the line, it is straightforward to solve this linear program in general. If the servers are on L and
C and the request is R, then a greedy move (C → R) is optimal. If the servers are on L and R and the
request is C, then the optimal probability is just a proportional distribution due to d(L, C) and d(C, R).
The xij values also show the actual moves of the servers. For example, if the servers are on L and R in
S2, we move a server in L to C with probability x23/q2 and R to C with probability x21/q2.

From the values xij , one can also obtain the expected cost of an algorithm for each transition, as
follows:
cost(SLC , SLR) = n, cost(SCR, SLR) = 1, cost(SLR, S1) = np1 + 1− p1,

cost(S2i−1, S2i) = 1− pi (i = 1, . . . , n− 1),

cost(S2i, S2i+1) = n(pi+1 − pi) + 1− pi+1 (i = 1, . . . , n− 1),

cost(S2i−1, SCR) = (n + 1)pi (i = 1, . . . , n),

cost(S2i, SLR) = npi (i = 1, . . . , n− 1),

cost(S2n−1, SLC) = (n + 1)(1− pn).

We are now ready to prove Lemma 1. Recall that GOPT
n and GALG

n are the same graph. With a request
sequence σ, we can thus associate the same sequence, λ(σ), of transitions in GOPT

n and GALG
n . The

offline cost for λ(σ) can be calculated from GOPT
n and the online cost from GALG

n . Considering these
two costs, we obtain the competitive ratio for σ.

We need only consider the cycles of the type considered below, as other cycles can be obtained as
disjoint unions.

(1) S1, S2, . . . , S2h−1, SCR, SLR (h = 1, . . . , n− 1)

(2) S1, S2, . . . , S2h, SLR (h = 1, . . . , n− 1)

(3) S1, S2, . . . , S2n−1, SLC , SLR.

For sequence (1), the OPT cost is 2h and ALG cost is 2nph + 2h − 2
∑h−1

j=1 pj = 2hCn. Similarly,
for sequence (2), OPT = 2h and ALG < 2hCn and for sequence (3) OPT = 2n and ALG =

4n − 2
∑n

j=1 pj = 2nCn. Thus the competitive ratio is at most Cn for any of these sequences, which
proves the lemma. 2

4. Construction of a Finite Set of Triangles

For triangle ∆1 = ∆(1, a, b) and d > 0, let ∆2 = ∆(1, a′, b′) be any triangle such that a− d ≤ a′ ≤ a

and b − d ≤ b′ ≤ b. Then as shown in Sec. 2 the competitive ratio for ∆2, denoted by f(∆2), can be
written as

f(∆2) ≤ max

(
a

a′
,
b

b′

)
f(∆1) ≤ max

(
a

a− d
,

b

b− d

)
f(∆1) ≤ a

a− d
f(∆1).



Algorithms 2008, 1 37

1

2

0 a

b

finite set of
squares

(triangles)

X i d i

(a ,b ); CR = ri i i

g(X ) =
a

a  -  di
i i

i
ri

X0

g(X ) =
n

n  -  20
0

0
Cn0

Figure 5. Covering Ω

a

b

0

[3, 4; 2]

[2, 3; 1]

[2, 2; 1]

Figure 6. Division of a square

(The last inequality comes from the fact that a ≤ b.) Recall that triangle ∆(1, a, b) always satisfies 1 ≤
a ≤ b ≤ a + 1, which means that (a, b) is in the shaded area of Fig. 5, which we denote by Ω. Consider
point (ai, bi) in this area and the square Xi of size di, whose right upper corner is (ai, bi) (Fig. 5). Such
a square is also denoted by [ai, bi; di]. Then for any triangle whose (ai, bi)-values are within this square
(some portion of it may be outside Ω), its competitive ratio can be bounded by ai

ai−di
f(∆(1, ai, bi)),

which we call the competitive ratio of the square Xi and denote by g(Xi) or g([ai, bi; di]). Additionally,
for i = 0 the value g(X0) is bounded by n0

n0−2
Cn0 .

Consider a finite set of squares X0, X1, . . . , Xk = [ak, bk; dk], . . . , Xm with the following properties
(see also Fig. 5):

(1) The right-upper corners of all the squares are in Ω.

(2) X0 is the rightmost square, which must be [i, i + 1; 2] for some i.

(3) The area of Ω between a = 1 and i must be covered by those squares, or any point (a, b) in Ω such
that 1 ≤ a ≤ i must be in some square.

Suppose that all the values of g(Xi) for 0 ≤ i ≤ m are at most r0. Then one can easily see that the
set S =

⋃
i=0,m {∆(1, ai, bi), ∆(1, ai − di, bi − di)} of triangles satisfies conditions (i) to (iii) given in

Sec. 2, i.e., we have obtained the algorithm whose competitive ratio is at most r0.
The issue is how to generate those squares efficiently. Note that g(X) decreases if the size d of the

square X decreases. Specifically, we can subdivide each square into squares of smaller size to obtain
an improved competitive ratio. However, it is not the best policy to subdivide all squares evenly since
g(X) for a square X of the same size substantially differs in different positions within Ω. Note this
phenomenon especially between positions close to the origin (i.e., both a and b are small) and those far
from the origin (the former is larger). Thus our approach is to subdivide squares X dynamically, or to
divide the one with the largest g(X) value in each step. Also observe that as squares move to the right
in Fig. 5 then the g value decreases due to Lemma 1.
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We give now an informal description of the procedure for generating the squares, the formal de-
scription is given in Procedures 1 and 2. Broadly speaking one starts with square near the origin, then
subdivides this square, and continues by creating a new square to the right. Due to Lemma 1 this
process is bounded. The procedure begins with a single square [2, 3; 2]. Note that its g-value is poor
(in fact, not bounded). Next, square [2, 3; 2] is split into four squares of size 1 as shown in Fig. 6:
[1, 3; 1], [1, 2; 1], [2, 2; 1] and [2, 3; 1]. For each of these squares, the g-value is then calculated in the
following way: If the square is of the form [i, i + 1; `] for some i, `, the g-value can be calculated imme-
diately by Lemma 1. Otherwise, we use the linear program described in [14] to determine the competitive
ratio of triangle ∆(1, a, b). Note that this linear program makes use of state graphs similar to those in
Fig. 3 and Fig. 4. Next, square [3, 4; 2] of size 2 is added. In general, if the procedure divides [i, i + 1; 2]

of size 2 and [i + 1, i + 2; 2] of size 2 does not exist, then square [i + 1, i + 2; 2] is added. Thus at this
stage there are four squares of size 1 (two of these are, in fact, outside Ω) and one square of size 2. The
procedure further divides that square (inside Ω) whose g value is the worst. One continues in this way
and takes the worst g-value as an upper bound of the competitive ratio.

An issue regarding the efficiency of the procedure is that the number of states of the state diagram
used by the algorithm for a small square (or for the corresponding triangle) becomes large. This leads
to potentially excessive computation times for the LP involved. Consider, for example, the triangle
(1, 170

128
, 213

128
) (or the square [170

128
, 213

128
; 1

128
]). It turns out that one needs 514 states for the diagram and

substantial computation time in solving the LP is required. However, note that there is a slightly larger
triangle, (1, 4

3
, 5

3
) (or the square [4

3
, 5

3
; 5

384
]), which needs only 12 states to solve the LP (Fig. 7). Thus one

can shorten computation time by using [4
3
, 5

3
; 5

384
] instead of [170

128
, 213

128
; 1

128
], thereby trading off the g-value

of the former (= 1.5606), for that of the latter (= 1.5549). Although we do not have an exact relation
between the triangle and the number of states, we have observed that if the ratio of the three sides of
the triangle can be represented by three small integers then the number of states is also small. In the
procedure, therefore, we do not simply calculate g(X) for a square X , but we attempt to find X ′ which
contains X and has such desirable properties.

Procedure 1 and 2 give a formal description of our method. Each square X = [a, b; d] is represented
by p = (a, b, d, r), where r is an upper bound of g(X). The main procedure SQUAREGENERATION

divides the square, whose g value is the worst, into four half-sized squares and, if necessary, also creates
a new rightmost square of size 2. Then the g-values of those new squares are calculated by procedure
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(a, b)  

d

d

(a2, b2)

(a4, b4)
(a3, b3)

2
d’ =

= (a1, b1)

Figure 8. Lines 9-13

(a, b)

d

(a0, b0)
d + e0

d + e0

e0

Figure 9. Line 27

(a, b)

, 
x
i

y

i

- ax

i

- b
y

i

Figure 10. Lines 40-47

CALCULATECR. As discussed above, our method attempts to find a more suitable square, such that
the number of states can be kept manageable. More formally, let the current square be X = [a, b; d].
Then one seeks to find X̃ = [ã, b̃; d̃] which contains X and where ã can be represented by β

α
, such that

both α and β are integers and α is at most 31. (Similarly for b̃.) We have confirmed that the number
of states and LP computation time are reasonably small if α is at most this size; for details, see also
FINDAPPROXPOINT in Procedure 2. We note that we scan the value of α only in the range from 17 to
31. This is sufficient; for example, α = 10 can be covered by α = 20. The value α = 16 is not needed
either since it should have been calculated previously in the subdivision process. If g(X̃) is smaller than
the g-value of the original square (of double size), then we use that value as the g-value of X . Otherwise
we abandon such an approximation and calculate g(X) directly.

Now suppose that SQUAREGENERATION has terminated. Then for any p = (a, b, d, r) in P , it is
guaranteed that r ≤ R0. This means that the set of squares which satisfy the conditions (1) to (3) have
been created. As mentioned there, we have also created the set of triangles satisfying the conditions of
Sec. 2. Thus by Lemma 3, we can conclude:

Theorem 1 There is an online algorithm for the 2-server 3-point problem whose competitive ratio is at
most R0.

We now give results of our computer experiments: For the entire area Ω, the current upper bound is
1.5897 (recall that the conjecture is 1.5819). The number N of squares generated is 13285, in which the
size m of smallest squares is 1/256 and the size M of largest squares is 2. We also conducted experiments
for small subareas of Ω: (1) For [5/4, 7/4, 1/16]: The upper bound is 1.5784 (better than the conjecture
but this is not a contradiction since our triangles are restricted). (N, M,m) = (69, 1/64, 1/128). (2)
For [7/4, 9/4, 1/4]: The upper bound is 1.5825. (N,M, m) = (555, 1/64, 1/2048). (3) For [10, 11, 1]:
The upper bound is 1.5887. (N,M, m) = (135, 1/16, 1/32). We note that for our computations the LP
solver which is part of Mathematica was used for our computations and accuracy to within 5 digits is
guaranteed.

5. Concluding Remarks

There are at least two directions for future research: First one might prove that the competitive ratio
of the 2-server 3-point problem is analytically at most e/(e − 1) + ε. Secondly we wish to extend our
current approach (i.e., approximation of infinite point locations by finite ones) to four (or more) points.
We have a partial result for the 4-point case where two of the four points are close (obviously it is similar
to the 3-point case), but the generalization does not appear easy.
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Procedure 1 Procedure SquareGeneration
1: procedure SQUAREGENERATION(R0)
2: p ← (2, 3, 2, C2 · 2/(2− 2) = ∞)

3: Mark p.
4: P ← {p}
5: while ∃p = (a, b, d, r) such that r > R0 do
6: p ← the point in P whose r is maximum.
7: P ← P\{p}
8: Let p = (a, b, d, r)

9: d′ ← d/2

10: a1 ← a, b1 ← b

11: a2 ← a− d′, b2 ← b

12: a3 ← a, b3 ← b− d′

13: a4 ← a− d′, b4 ← b− d′ . See Fig. 8.
14: for i ← 1 to 4 do
15: if (ai, bi) ∈ Ω then
16: ri ← CALCULATECR(ai, bi, d

′, r)

17: P ← P ∪ {(ai, bi, d
′, ri)}

18: end if
19: end for
20: if p is marked then
21: p′ ← (a + 1, b + 1, 2, Ca+1 · a/(a− 2)).
22: Mark p′. Unmark p.
23: P ← P ∪ {p′}
24: end if
25: end while
26: end procedure
27: procedure CALCULATECR(a, b, d, r)
28: (a0, b0) ← FINDAPPROXPOINT(a, b) . See Fig. 9.
29: r0 ← GETCR FROMLP(a0, b0)

30: e0 ← max(a− a0, b− b0)

31: r̃0 ← r0 · a0/(a0 − d− e0)

32: if r̃0 < r0 then
33: return r̃0

34: else
35: r0 ← GETCR FROMLP(a, b)

36: r̃0 ← r0 · a0/(a0 − d)

37: return r̃0

38: end if
39: end procedure
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Procedure 2 Procedure FindApproxPoint
1: procedure FINDAPPROXPOINT(a, b)
2: emin ←∞
3: for i ← 31 to 17 do
4: x ← da · ie, y ← dy · ie, e ← max(x/i− a, y/i− b)

5: if e < emin then
6: emin ← e, imin ← i, xmin ← x, ymin ← y

7: end if
8: end for
9: return (xmin/imin, ymin/imin)

10: end procedure
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