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Abstract: A new algorithm for divisive hierarchical clustering of chemical compounds 
based on 2D structural fragments is suggested. The algorithm is deterministic, and given a 
random ordering of the input, will always give the same clustering and can process a 
database up to 2 million records on a standard PC. The algorithm was used for classification 
of 1,183 antibiotics mixed with 999,994 random chemical structures. Similarity threshold, at 
which best separation of active and non active compounds took place, was estimated as 0.6. 
85.7% of the antibiotics were successfully classified at this threshold with 0.4% of 
inaccurate compounds. A .sdf file was created with the probe molecules for clustering of 
external databases. 

Keywords: Molecular structure, hierarchical clustering, algorithm, classification of 
antibiotics 

 
 

1. Introduction 

The problem of clustering can be defined as follows. The given N data points in a D-dimensional 
space should be organized into K clusters. Data points from one cluster should have more similarities 
than those from different clusters. Clustering algorithms can be classified as partition algorithms and 
hierarchical ones [1]. Partition algorithms are fast and require small memory. K-mean clustering is an 
example of a partition algorithm [2,3]. Hierarchical algorithms combine agglomerative and divisive 
algorithms. Generally, hierarchical algorithms are quite demonstrative. Agglomerative algorithms are 
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deterministic: identical cluster trees are generated for randomly sorted datasets. Agglomerative 
clustering works bottom-up, collecting compounds and clusters to form larger clusters [4,5]. Divisive 
clustering works top-down, splitting clusters into smaller ones down to individual structures [6,7]. 
Hierarchical methods typically yield binary trees (Figure 1), which usually represent the results. 
Clustering algorithms are widely discussed in literature [8,9,10]. 

 
Figure 1. A typical dendrogram, generated by hierarchical clustering algorithms. 

 
 
Clustering of chemical databases requires much time and resources. Modern large chemical 

databases can be of 107-108 records in size and, even after filtering, the number of compounds of 
interest may be more than 106. Therefore, the basic trend in literature on new algorithms development 
lies in finding new ways of clustering large databases. The NIPALSTREE system with hierarchical k-
mean algorithms was suggested for clustering a 400K records database in less than 40 minutes [11,12]. 
The divisive k-mean algorithm was used for clustering a 1.1M records database [7]. A dataset of 5.1M 
chemical structures was clustered in 24 hours using a fingerprint sorting algorithm [13]. Random 
sorting of initial dataset has shown the used algorithm to be deterministic. The algorithm [13] is not 
hierarchical. This article describes a new method for divisive hierarchical clustering of chemical 
structures based on the topological information only. Model databases of up to 2M records were used 
to evaluate algorithm performance and clusters validity. Methods for obtaining deterministic clusters 
are also discussed. 

2. Results and Discussion 

2.1 Methods 

2.1.1 Algorithm 

Algorithm basics are described in [14]. At the first stage the set of highly diverse “probe” molecules 
is defined. This set is formed by selecting the most diverse compounds, their number being determined 
by pre-defined similarity. These structures are used as cluster space. The number of clusters in cluster 
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space is dynamically calculated and depends on initial dataset diversity. Thus, the main disadvantage 
of k-mean algorithms - predetermined number of clusters, is avoided. The remaining structures are 
added to the clusters with maximal similarity to the probe molecule. 2D topological descriptors are 
used for similarity calculations. 

The algorithm suggested in this work uses divisive (top-down) hierarchical clustering. It has an 
advantage of an accurate data representation. Moreover, divisive hierarchical clustering requires less 
time and resources compared to traditional hierarchical clustering (bottom-up). Additionally, divisive 
hierarchical clustering may be regarded as a step in multi-step algorithms suggested for clustering of 
very large databases [15,16]. 

The initial dataset of diverse probe-molecules described in literature [14] is formed using an 
original algorithm based on random selection of diverse compounds. This is a fast processing 
algorithm. However, random selection of molecules results in non-deterministic clustering. The same 
dataset generates different clusters. The number of clusters may also differ with every procedure. We 
used a modified Maximum Dissimilarity Selection algorithm [17] instead of that published in [14]. It 
was successfully implemented to clustering of chemical databases [18]. This algorithm allows 
selecting the L most diverse structures from an N dataset. The Maximum Dissimilarity Selection 
cannot be regarded as a deterministic algorithm. Various L datasets may be generated, depending on 
the order of structures in the N database. Non-deterministic clustering is explained by the discrete 
number of structural fragments in a molecule. It also results in inaccuracies in the process of diversity 
sorting, which is demonstrated by Figure 2. The first compound L is selected as a probe molecule. 
There exists another pair of compounds (A and B) with identical diversity to probe molecule. They 
contain the same number of fragments – both new and the existing ones. Thus, any of the two 
compounds with the same diversity can be selected as the second probe by diversity sorting. The 
remaining molecule is placed in the end of diversity sorted set and cannot be selected as a probe 
molecule. Such ambiguity may be extended by the third, fourth compound, and so on. If dataset L 
contains few aromatic fragments and no halogens, it makes no difference, which compound A or B, is 
selected (Figure2). This problem was described as ties in proximity [19]. 

Figure 2.  Ambiguities in Maximum Dissimilarity Selection algorithm. 
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However, this is is important for subsequent calculations. If structure A is selected as a probe 
molecule, the cluster will mainly be formed by chloroaromatic compounds, while fluoroaromatic 
compounds may be assigned to a different cluster. Thus, there exist several methods of screening 
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datasets to select L structures. However, if datasets with identical order of compounds are used, the 
algorithm returns the same structures L. This results in deterministic clustering. To make initial 
datasets identical, 12-byte hash codes [20] are generated for chemical structures. The fixed-length 
chemical structure encoding has advantage compared with variable-length (InChI[21], SMILES[22]), 
because of calculations with fixed-length variables are simplest and consuming less time.  Then hash 
values are sorted in a decreasing order. Such sorting of datasets leads to deterministic results in most 
cases. The mistakes, which arise due to rounding error and measures on discrete data, are compensated 
for identically ordered datasets. There is small, but nonzero probability, that different structures have 
identical 12-byte hash code, which is used for sorting. Such event was never observed by us for 
databases, which contain some millions of available compounds. 

The suggested algorithm involves the following steps: 
1. Generating hash codes for all chemical structures in the initial dataset. At this stage all 

topological duplicates are removed automatically - they have identical hash codes. 
2. Setting the initial number of clusters (K=1) and starting the similarity threshold (R=0.0). 
3. Requesting the number of steps (Nst) for further calculation of the difference between similarity 

thresholds (Rd=1/Nst). The Nst value equals the number of levels in the resultant hierarchy. 
4. Diversity sorting in each cluster C for similarity threshold R. Forming the set of probe molecules 

[14] S, namely: 
a. Selecting the compound most dissimilar to all molecules in the cluster and putting it into set S. 
b. Selecting compound M which is the most dissimilar to structures in set S (MinMax diverse 

selection). At first step, the compound M is most dissimilar to single compound, selected in step a). At 
next steps M has maximal average distance to all compounds in set S. 

c. Calculating similarity of compound M to all compounds in set S. If maximal similarity ratio is 
greater than R+Rd, set S remains unchanged. Otherwise, compound M is added to set S. The algorithm 
then proceeds to Point b for selecting the next compound. 

The number of compounds in probe set S is equal to the number of clusters plus the number of 
singletons. Thus, the number of resultant clusters is not determined beforehand-it is calculated from 
diversity of dataset. 

5. Calculating similarity of each remaining compound to compounds in set S. Assigning compounds 
to the cluster with maximal similarity. 

6. Setting similarity threshold (R=R+Rd). Assigning this value to all clusters generated from cluster 
C. The algorithm then proceeds to Step 4. It is repeated until similarity threshold reaches value 1 
(Figure 3). 

Figure 3 shows a part of the tree generated by proposed algorithm (compare with Figure 1). Many 
clusters are generated at each step, while traditional divisive hierarchical clustering algorithms divide a 
cluster into two at each step [23] or combine two clusters into one in agglomerative algorithms. 
Information about exact value of similarity of a pair of clusters is lost, but performance is increasing, 
since one step is used instead of several steps to divide a cluster. 
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Figure 3. Divisive clustering with Rd=0.1 (10-step clustering).  
 

 

2.1.2 Details of the algorithm creation  

2D molecular structural fragments are used for calculating a bit vector required for molecular 
similarity calculations. The described algorithm uses circular, not linear, fragments with a variable 
sphere radius around the selected atom [24-26]. The sphere radius is a topological distance between 
the central atom and the maximally remote one. Value 1 is assigned to the length of each bond. Central 
atoms are selected one after another to split a molecule into spherical fragments. Then fragments with 
sphere radius 1, 2, etc. are sorted in succession. The suggested algorithm makes it possible to use 
information on the cycle size. To do this, an additional cycle size attribute was assigned to a chemical 
bond in addition to the bond order. This is a distinguishing feature of the algorithm. The single bond in 
the aliphatic chain differs from the single bond in cyclopropane, which, in turn, differs from that in 
cyclopentane. If a bond belongs to two rings, a smaller size descriptor is used. Such distinctions are 
not made for cycles of size 6 and higher. This splitting method is also rational from the point of 
chemistry – it accounts for reactivity of small cycles. The suggested algorithm distinguishes bonds in 5 
and 6-membered aromatic rings [20]. Each compound is checked for the presence of a fragment to 
form a bit vector. If the fragment is present, 1 is assigned to the corresponding component of the bit 
vector, otherwise the value is 0.  

In earlier studies [27], we found that a sphere with radius 2 is sufficient for molecular similarity and 
diversity calculations. On average, each compound in the studied databases has 35 unique fragments 
[20].  A fragment is hashed into the 12-byte variable [20] to form key values. These values are sorted 
and stored in memory to form dictionary of all fragments. One cannot get any connection matrix from 
hashed value, but, optionally, connection matrix can be stored at hard drive with corresponding hashed 
value. It was experimentally found, that large, diverse databases contain several hundreds of thousands 
of unique fragments. So, the dictionary never exceeds 12M RAM and this value does not affect the 
calculation performance. The use of the dictionary of a large size (some hundred thousands of 
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fragments) instead of fixed-length fingerprint is the main difference from circular SciTegic fingerprints 
[28] which has fixed restricted length.  

The dictionary is formed during run-time when reading the database. Indexes of fragments in the 
dictionary are calculated and stored for each compound. To define similarity between two compounds, 
the numbers of identical and number of different indexes in the glossary are calculated. It allows 
considerable increasing of computer memory usage efficiency. Thus, 140 bytes of RAM are required 
on average to store screens for a single compound. Using this type of storing information allows PC 
RAM to upload the dataset of some millions of compounds.  

To find indexes of fragments for new compound quickly, the dictionary is sorted and bisection 
search algorithm is used. If a fragment is not found, it is added to dictionary. In this case re-sorting is 
required to use bisection search algorithm, which decreases performance. To improve the performance 
it was suggested [29] to re-sort dictionary after several fragments addition. Non-sorted fragments in 
dictionary are compared with probe value step-by-step. Optimal productivity is achieved by sorting 
after addition of 128 fragments approximately [29]  

The cosine measure was used to calculate similarities between compounds I and J:  
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where MI and MJ are bit vectors for compounds I and J, F is the number of components in the bit 
vector. Cosine coefficient allows the diversity sorting with fast centroid algorithm [30], but it is more 
rarely used than the commonly applied Tanimoto [31] metric. 

Cosine similarity coefficient can vary from 0 (totally dissimilar compounds) to 1 (identical 
compounds). This variability range is divided into several steps, the number of steps being user-
defined parameter. For example, if the number of steps equals 10, then the similarity thresholds are 
0.0, 0.1, 0.2…0.8, 0.9, 1.0. Several clusters are generated for each level. The similarity of each 
compound to a probe molecule in the cluster equals or exceeds the predefined similarity threshold. 

With the increasing similarity value, the cluster splits into several clusters forming a cluster tree. 
Diversity sorting is repeatedly performed in each cluster to select a set of probe molecules. One-time 
sorting of the input database may not be sufficient because of the order of compounds in the sorted set 
is changed after removal of selected compounds. Diversity sorting is a reiterated procedure. 

As a result of splitting clusters in building hierarchical tree, some compounds’ similarity to the 
probe molecules may be below the predefined similarity threshold. Such compounds are joined with 
the set of probe molecules to form a new cluster; therefore the probe set can be expanded dynamically. 
Expanding of the probe molecules set is regarded as an additional source of non-deterministic 
clustering.  

Probe molecules that have no neighbors form singletons. Each singleton may form a new cluster if 
similar structures are added to the database under study. Singletons may be treated individually or as 
assigned to nearest clusters. 
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2.1.3 Memory usage and scaling  

The results of clustering for every similarity threshold are stored in memory as an integer number 
for each chemical structure. Structures with identical numbers belong to the same cluster. Estimated 
memory requirements to run clustering are: 

1. Dictionary of fragments: 12*F bytes, where F is the number of different structural fragments in 
the database. The number of fragments depends upon diversity of database. For 2M database the 
typical value of F is about of 700,000 

2. The centroid vectors of weights and sorted dictionary: 16*F bytes. 
3. Molecular screens as indexes in glossary: 4*N*AvgFrag+4*N bytes. Here N – the number of 

chemical structures, AvgFrag-average number of fragments per compound, which is equal to 35 for 
databases under study. Screens are stored in linear array; the number of screens for each chemical 
structure is also stored. 

4. Results of clustering: 4*N*Nst bytes. 
These memory requirements should be treated as minimal because of a lot of memory is used for 

auxiliary information (addresses of binary records with chemical structures, tree view graphical control 
etc.). One should note linear growth of resources used with the database size. 

To estimate the overall processing, we assume that each cluster is divided into k cluster uniformly at 
each similarity threshold. Single cluster exists at similarity threshold 0, while for last threshold (Nst 
threshold level, similarity=1) there exist N clusters. So, k=exp(ln(N)/Nst) and the number of clusters at 
each i-th level (i=0..Nst) is mi=ki=exp(ln(N)*i/Nst). The size of the i-th threshold is  
di=N/ki=exp(ln(N)*(Nst-i)/Nst). Both k and di depend not exponentially, but almost linearly on the 
dataset size N. 

The centroid vector is calculated for each cluster, which requires di*AvgFrag additions. The 
distance of each compound from centroid (scalar product) is calculated, it includes di*AvgFrag 
multiplications and di*AvgFrag additions. The advantage of non-zero components store should be 
pointed out.  The centroid vector (F) has large dimensions (hundreds of thousands of components), 
though, taking into considerations non-zero elements (AvgFrag) only, it amounts to some tens 
components. The calculation time is proportional to the i-th cluster size di and the average number of 
nonzero screens equals to di*AvgFrag. 

Subsequent operations are: quick sorting of distances (calculation time is proportional to di*ln(di)), 
putting the first compound in probe set S, and then selection of most diverse k-1 compounds. It should 
be noted, that modifications [29] were implemented for compounds selection, namely:  

Indexes in glossary (their number equals AvgFrag) are used for fast scalar product calculation 
For selection of the most diverse compounds from cluster to already selected ones in probe set S it 

is enough to calculate similarity of few first compounds at the beginning of sorted array only.  
The number of  structures, for which similarities are calculated, is proportional to ln(di), therefore 

the  total time for selecting first diverse k compounds is proportional to k*ln(di)*AvgFrag. 
To assign remaining compounds to k clusters, scalar products for each remaining (di-k) compounds 

are calculated with k probes. The calculation time is proportional to (di-k)*k*ln(di)*AvgFrag. This 
procedure is the most time-consuming. Assuming di>>k (large datasets), the time for single-cluster 
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processing is proportional to AvgFrag*k*di*ln(di). The time for building up all clusters for i-th 
similarity threshold is: 

time(i) =O(ln(N)*(Nst-i)*AvgFrag*exp(ln(N)*(Nst+1)/Nst)/Nst). 
Taking Nst>>1, one can evaluate overall processing time to construct clusters tree as:  
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Square dependence of calculation time on dataset size in divisive hierarchical clustering algorithms 
is given in [6]. Modern algorithms have time dependency better than O(N*ln(N))[32]. There are three 
improvements, which help to perform calculations faster in proposed algorithm: 

Division of a cluster into many clusters but not into two as in traditional divisive cluster algorithms. 
Storing and using non-zero components only for centroid and scalar products calculations 
Fast selection of most diverse compounds to make probe dataset. 
Memory requirements and overall processing should be compared with other algorithms applied to 

large databases (> 1M size) described in the literature [7,13]. Some databases were successfully 
clustered with a Xeon Intel 3 MHz processor with 2G RAM [13] running Linux, but the memory used 
and algorithm complexity were not reported. From the time required for clustering different size 
datasets, one may conclude the algorithm complexity to be O(N), and minimal memory requirement to 
be 124*N bytes (from 988-bit fingerprint length). This value is some smaller than that used in our 
work 140*N bytes (see above), required to store non-zero indexes in glossary. The complexity of 
algorithm [13] is better than that proposed in this work, but the calculation time normalized by 
processor frequency has the same order or, is even larger for small datasets. It should be pointed out 
that estimated complexity and calculation time in [13] are reported for single similarity threshold-
algorithm [13] without cluster tree building. 

Minimal memory, estimated for [7] is 256*N bytes (2048-bit Daylight fingerprint). This value is 
greater than that used in our work (140*N). Estimated algorithm complexity is O(N*ln(N))[7], which is 
better than ours, but the calculation time was much larger - 16 days on a SGI Origin 300 single-
processor computer for a 1.1M dataset. High speed of scalar product calculation and generation of 
multiply clusters at each step might explain why the algorithm with the worst complexity has a lower 
calculation time.  In reality, 2048 multiplication and additions are required to calculate scalar product 
for a Daylight fingerprint [7]. In the proposed algorithm only AvgFrag(some tens) additions and 
multiplications are required. 

2.1.4 Program performance 

The Aurora Fine Chemical database [33] (AURORA) was used to evaluate clustering program 
performance. The database included 4,000,000 records of low-molecular compounds, including 
structures, which contain fragments of antibiotics (beta-lactams or quinolones). Datasets of different 
size were prepared by random selection of compounds from 4M Aurora database. The tests were 
performed using an ASUS laptop computer equipped with an Intel Core Duo, 1.83GHz processor and 
2Gb RAM. The main purpose of this section was to estimate the employment of real resources, time of 
calculation for datasets of different size and to check, whether the proposed algorithm is deterministic. 
For that input datasets were varied by size and sorting methods. If an algorithm is deterministic, 
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identical trees have to be generated from datasets, sorted by different fields. Sorting by supplied 
IDNUMBER can be treated as random. Calculation times required to complete clustering and the 
number of clusters for databases of different size and different sorting are displayed in Table 1. 

Table 1. The result of clustering for databases of different size (Nst=10, Minimal Cluster 
Size=2) and sorted by different way. 

Database size 

Ordered by 

Calc. 

time 

No. clusters for similarity threshold 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

1,000,000 

IDNUMBER 

4h 

00m 

103 2155 17943 65203 125147 167505 184483 178385 137138 

1,000,000 

Molweight 

4h 

13m 

101 2155 17943 65203 125147 167505 184483 178385 137138 

2,000,000 

IDNUMBER 

14h 

08m 

120 2779 25345 105025 224140 314893 361163 376966 317183 

2,000,000 

Molweight 

13h 

41m 

120 2779 25345 105025 224140 314893 361163 376966 317183 

2,500,000 

IDNUMBER 

Cannot cluster – out of resources 

 
The AURORA database contains unique structures. However, stereoisomers can occur in small 

amounts. Therefore, we used 999,756 and 1,999,335 records with topologically unique structures for 
the tests. The calculation time did not bypass acceptable limits even for the largest databases. It is 
important to note that hash codes sorting have generated the identical number of clusters for databases, 
formerly sorted by various methods. This proved that clustering algorithm was deterministic. 

Test calculations were performed for a 1,000,000 database, ordered by IDNUMBER, but with 
different number of steps: Nst=5 and Nst=20. The calculation times were 1 hours 52 minutes and 9 
hours 38 minutes, respectively. As it is expected (see Memory Usage and Scaling section), the 
calculation time grows approximately linearly with increasing  Nst.  

The described algorithm was created as a program for Windows 32 platform. The program is a part 
of CheD chemical database management system [34]. Clustering is finalized by displaying the tree 
view. Each tree node displays the number of compounds in the cluster. The number of clusters may be 
huge, for example, after clustering of database with 2,000,000 records 1,727,615 clusters were 
generated (Table 1). Therefore, the tree view is populated dynamically to minimize processing time 
and resources. Program has tools for singleton handling (export to file or addition to nearest cluster) 
and for fuzzy cluster analysis [35] (list of overlapped compounds can be obtained). 

Results of the antibiotics classifications cannot be compared with standard algorithms for the same  
size of dataset, because of they were designed for small chemical databases.  
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2.1.5 Validity of clusters and antibiotics classification  

Applicability of clustering results for chemical compounds classification is the best confirmation of 
clusters’ validity and the correct choice of a clustering algorithm [6,8]. Antibiotics were classified to 
evaluate the efficiency of clustering. 

Figure 4. Main classes of antibiotics under study. 
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A database of 3,249 compounds with anti-bacterial activity (ABIO) [36] was used for model 
calculations. After removing duplicate structures and stereoisomers, the ABIO database was reduced 
to 1,183 topologically unique structures. It contained 868 β-lactams, 325 quinolones (Figure 4), 
several compounds with both elements, and 37 other antibiotics (macrolides, etc.). The content of the 
ABIO database was clustered to produce six clusters at 0.1 similarity threshold and 78 clusters at 0.5 
threshold. Clusters at 0.1 threshold are mixed: each contains both quinolones and β-lactams. One 
should expect such results: antibiotics contain several substitutents which are bigger than a β-lactam 
ring and affect more bits in the screen vector. On the other hand, the non-informative rings (pyridine) 
produce structural screens, which are part of quinolones. 

To estimate possibilities of classification of antibiotics in large databases, the ABIO database was 
combined at random with 999,994 unique structures from the AURORA database. Thus, the input 
database (TESTDB) with 1,001,177 records was formed. The field Activity was created for TESTDB. 
Its value was set to 1 for all records from ABIO and to 0 otherwise. 

The number of steps was defined as 10 (Nst = 10) to create similarity thresholds of 0.1, 0.2, etc. The 
minimal cluster size was set to 2. The obtained cluster tree displayed information of 879,609 clusters 
and 8,672,957 chemical structures at different similarity thresholds! TESTDB database contained only 
0.12 of target compounds. The large size of the database and the low probability of discovering target 
compounds made manual analysis of the cluster tree absolutely inapplicable. Data preprocessing, 
filtering, and visualization tools were required for better assessment. 

Filtering could be performed by assigning a variable value for some parameters. For TESTDB 
database the field Activity value was used for visualization. Conditional colors were applied to display 
the values as described in [37]. The average value of the selected parameter was calculated for each 
cluster and displayed as an icon of appropriate color at tree view control.  

Two types of cluster filtering: minimal and representative, were created for cluster tree reduction. 
Both filters used external properties (Activity value for the described calculations). The range of target 
properties was defined by the user. Two types of filtering differ by applicability of a predefined range 
of target properties.  

Minimal. The cluster is displayed if one chemical structure has a property value in the specified 
range. 
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Representative. The cluster is displayed if more, than 50% of structures has property values in the 
specified range. Such criterion divides clusters into two groups: active and inactive. We do not use 
more complex statistical criteria [38], which divide clusters into several groups and are used for 
experiment optimization only.  

Both types of filtering visualized selected clusters as well as parent clusters, even if parent clusters 
did not satisfy filter conditions. The data obtained as a result of TESTDB clustering were summarized 
in Table 2. It also displays the results of filtration using Activity field in the range 0.9-1.0. Calculation 
time was 3 hr 59 min. The structures not assigned to clusters in the Unfiltered field form singletons. 

Table 2. Results of clustering TESTDB with Nst=10 and minimal cluster size=2. 

Similarity 
threshold 

No. of clusters (upper value) and number of compounds in clusters (lower value) 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Unfiltered 103 
1001174 

2186 
1001030 

18024 
998525 

65560 
980144 

125426 
924788 

167529 
833572 

184916 
715498 

178515 
567843 

137349 
649206 

Minimal  41 
938335 

133 
321443 

169 
25978 

173 
3636 

179 
1389 

203 
1171 

233 
1047 

265 
899 

204 
544 

Representative  34 
918634 

88 
136643 

118 
8359 

143 
1565 

163 
1238 

192 
1127 

228 
1030 

263 
893 

203 
541 

Figure 5 shows the clusters tree after Representative filtering. The chart is more compact compared 
to non-filtered clustering. Due to smaller number of tree nodes, run-time operations (expanding, 
collapsing) required less time, than for unfiltered data. 

Analyzing the cluster tree, one can conclude that the antibiotics have formed clusters, starting from 
similarity threshold equal to 0.2 and these clusters still exist at 0.9 similarity threshold. Clusters 
multiply with increasing the similarity threshold (with exception of similarity threshold 0.9). Clusters 
reduce in size and become more distinct in similarity of structures. 

Figure 5. Implementation of Representative filter for TESTDB clusters tree view. 
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To illustrate it, a tree, generating cluster, selected in Figure 5 (number of compounds=65) was 
investigated. A modified algorithm [39] was used to find a common independent substructure set for a 
cluster. An independent substructure set is a set of substructures of maximal size, which are common 
for selected dataset and none of them is a subgraph of another. 

Figure 6. Common fragments, found for clusters at different similarity threshold. Number of 
compounds in each cluster is displayed. Parents for structures F, G, H are shown with arrows. 
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A cluster with 65 structures at similarity threshold=0.3 (Figure 5) has the maximal common 
fragment A (Figure 6). It forms four clusters B-E at similarity threshold 0.4. Together they contain 64 
compounds, plus one compound forming a singleton at 0.4 threshold. A maximal common fragment is 
identical for clusters C and E. They are distinguished by presence of phenyl at different positions in C 
and by presence of nitrogen-oxygen bond in E. Cluster B is not specific and contains the same 
common fragment as cluster A.  

At threshold 0.5 cluster E remains unchanged. Cluster D forms two clusters – G and H (Figure 6). 
One of them (G) is distinct and does not change up to 0.8-similarity threshold. Cluster C produces a 
cluster with 13 structures (three singletons), the common fragments being the same as in C, but 
hydroxyphenyl is detected as a common fragment instead of phenyl. Finally, cluster D produces two 
clusters; one of them (F, Figure 6) is distinct. This cluster leaves singleton at similarity threshold 0.6 
and forms a cluster with 19 compounds, where atom A is equal to nitrogen (Figure 6). This cluster 
(A=N) remains unchanged up to threshold 0.8. The second cluster, formed from B at 0.5 threshold (the 
size was eight compounds), is not distinct and is divided into three small clusters and two singletons at 
0.6 threshold. 
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Thus, both distinct and non-distinct clusters are formed at similarity thresholds 0.5. The more the 
similarity threshold, the more distinct clusters are. But at high values of similarity threshold a lot of 
small-size clusters and singletons are generated. The more singletons (or small-sized clusters) in the 
final data, the greater the probability of incorrect classification of compounds in external databases is. 
In reality, a singleton can form a new cluster if a number of similar compounds are present in the 
external database. But, if this singleton would be absent in ABIO database, then compounds similar to 
the above singleton might be classified in other clusters with common, but non-informative structural 
fragments (phenyl, furyl, etc). If such clusters are marked as inactive, a wrong conclusion may be 
reached. Thus, the more the number of singletons, the more prediction possibilities are sensitive to 
initial ABIO content. Additionally, some compound may not be assigned to any cluster at high 
similarities thresholds, therefore no conclusion about their activity can be made. 

The number of singletons increases with increasing similarity threshold and the number of clusters 
are reduced at high similarity threshold (0.9). It is clear, that there is an optimal similarity threshold for 
classifying antibiotic from random structures. To select such a threshold, it is necessary to study two 
types of classification errors.  

1) Error1. Compound from ABIO database was not present in a Representative antibiotic cluster. 
Such compound might be a singleton. Alternatively, it was present in the cluster formed by compounds 
from AURORA database mainly. 

2) Error2. Compound from AURORA database with Activity=0 was included into the 
Representative cluster of antibiotics (Activity=1). 

After filtering two lists of compounds corresponding to both kinds of classification errors were 
formed automatically for the selected similarity threshold. Error 2 requires special consideration. All 
compounds from AURORA database were assumed to have 0 Activity value. However, it was not true. 
AURORA database combined all classes of compounds, antibiotics among them. Therefore, 
occurrence of such structures in the antibiotics clusters is not accidental. Since the bioactivity data for 
AURORA database were not available, the structures with β-lactam or quinolone fragments of 
antibiotics (Figure 4) cannot be treated as Error2. 

The number of representative clusters (Row 2 in Table 3) should not be compared with the results 
of representative filtering (Table 2). At low similarity thresholds Table 2 displays non-representative 
clusters. They are parent clusters for representative ones at high values of similarity threshold. Non- 
representative clusters are included to maintain the cluster tree integrity. 

Cluster overlapping data are displayed in rows 8 and 9 in Table 3. A quarter of AURORA structures 
are overlapped by ABIO clusters and all ABIO structures are overlapped by AURORA clusters at 
similarity threshold 0.2. Almost non-overlapped clusters occur when the similarity threshold is 0.7 and 
higher. One may conclude that the reason of such huge overlapping results from the nature of 
antibiotics. The β-lactam fragment is too small and gives a small number of non-zero components in 
bit vector, as well as another substituents of approximately equal size. A lot of non-informative 
substituents (pyridine, furyl, etc) satisfy these conditions. So, if a β-lactam antibiotic would have two 
or more substituents (this is true in the majority of cases), it might be assigned to a cluster which 
contains other chemical structures with the same substituents. Contrary to this, if a structure without a 
β-lactam ring has two or more substituents, identical with some antibiotics, it may have high similarity 
being in single or overlapped clusters. The quinolone fragment is larger, but it gives a lot of non-zero 



Algorithms 2008, 1                            
 

 

196

bit vector components, which are identical with non-informative phenyl and pyridyl substituents. This 
also results in overlapped clusters. To reduce overlapping, one can restrict fragments and leave 
informative ones only. But such approach reduces application of the clustering algorithm: non-
informative fragments may have great significance in other tasks. 

Table 3. Classification errors at different similarity thresholds. The smaller are the values 
in Rows 3 and 6, the better classification is. The term “Representative clusters” stands for 
the number of clusters containing over 50% compounds from ABIO database. 

1 Similarity threshold 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
2 No. representative clusters 8 70 117 151 185 225 263 203 
3 No. non-clustered ABIO structures 

(Error1) 
734 222 144 147 169 199 304 645 

4 No. clustered AURORA structures 
(Error2) 

238 154 109 73 32 25 14 3 

5 AURORA structures, having β-lactam 
or quinolinone fragments 

27 94 85 66 27 22 13 3 

6 4 and 5 difference (“pure” Error2) 211 60 24 7 5 3 1 0 
7 % successfully classified ABIO 

compounds 
38.0 81.2 87.8 87.6 85.7 81.0 79.1 45.5 

8 No. of AURORA structures (top) and 
No. of AURORA structures without 
antibiotic fragment (bottom), 
overlapped with representative clusters 

24296
7 
23857
0 

15219
2 
14973
3 

475
71 
458
15 

748
3 
742
9 

609 
321 

153 
1 

45 
0 

8 
0 

9 No. of ABIO structures, overlapped 
with non-representative clusters 

1183 1158 106
2 

798 344 76 10 5 

 
There are different ways to select optimal similarity threshold, like penalty functions [40] or 

stopping rules [41]. In these approaches a substantial change in properties take place at optimal 
threshold. One may observe that the majority of antibiotics were assigned to representative clusters at 
similarity threshold 0.4. Only 144 antibiotics (12.2%) remain unassigned, but 24 compounds from 
AURORA database without antibiotic fragments (Table 3) were erroneously classified as active 
(Error2). Approximately 87% antibiotics were successfully classified at similarity thresholds 0.5 and 
0.6. The number of compounds in Error2 group at similarity threshold 0.5 (seven compounds) and 0.6 
(five compounds) was considerably less than at similarity threshold 0.4. This should be treated as 
stopping criteria [41]. Also, if one considers Error 1 as penalty function [40], clustering should be 
stopped at similarity threshold 0.4. On the other hand, the fuzzy clustering approach gives better 
values for 0.6 similarity threshold. 87.6% of the antibiotics were classified at 0.5 threshold, while a 
slightly lesser value (85.7%) was observed for 0.6. The 0.5 similarity threshold produces a lesser 
number of singletons and small-sized clusters, which, in turn, diminishes the prediction possibilities. 
On the other hand, a fuzzy clustering approach (rows 8 and 9, Table 3) gives a better value for 0.6 
threshold (0.03% overlapping), than for 0.5(0.74%). At 0.7 threshold clusters become almost distinct, 
but the small average cluster size (3) makes the data unsuitable for external database classification. 
Thus, a similarity threshold of 0.6 can be considered optimal for classification of antibiotics. There is 
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some ambiguity in selecting best the threshold among the two values 0.5 and 0.6. The data for 0.5 and 
0.6 thresholds are very similar, and it is impossible to determine an optimal threshold with precision 
better than 0.1 in the problem under consideration, so, it is no good to increase number of steps (Nst) 
for antibiotic classifications because of different criteria give different optimal similarity thresholds, 
the difference being greater 0.1.  

The program allows saving probe molecules for the selected similarity threshold in SD files for 
further clustering of external databases. SD files with probe molecules and singletons for similarity 
threshold 0.6 are available in this work. Singletons may form clusters in databases with other content. 
Saved data can be used for classification of antibiotics in large databases with random content, like 
PubChem [42]. 

The validity of the obtained set of clusters was confirmed. 85.7% of the studied compounds were 
successfully classified with 0.4% of error. Such result is remarkable as classification was performed at 
a very high noise level: TESTDB database contained 0.12% antibiotics only. 
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Supplementary Material 

Results of databases clustering are listed in Table 1 as text reports. 168,628 probe structures in a 
.sdf file for similarity threshold=0.6 with active/inactive clusters labels. SD file with singletons with 
active/inactive labels. These files can be used for antibiotic classification in external databases. SD file 
with non-informative cycles to reproduce filtering results in scaffold visualization is included also. 

Supplementary material can be downloaded from: http://www.mdpi.com/1999-4893/1/2/183 
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