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Abstract: In this paper, we propose an algorithm to estimate the radius of convergence for the
Picard iteration in the setting of a real Hilbert space. Numerical experiments show that the proposed
algorithm provides convergence balls close to or even identical to the best ones. As the algorithm
does not require to evaluate the norm of derivatives, the computing effort is relatively low.
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1. Introduction

The well known Ostrowski theorem [1] gives a sufficient condition (the spectral radius of the
Jacobian of the iteration mapping in the fixed point to be less than 1) for the local convergence of Picard
iteration. “However, no estimate for the size of an attraction ball is known” [2] (2009). The problem
of estimating the local radius of convergence for different iterative methods was considered by
numerous authors and several results were obtained particularly for Newton method and its variants.
Nevertheless “... effective, computable estimates for convergence radii are rarely available” [3] (1975).
A similar remark was made in a more recent paper [4] (2015): “The location of starting approximations,
from which the iterative methods converge to a solution of the equation, is a difficult problem to solve”.
It is worth noticing that the shape of the attraction basins is an unpredictable and sophisticated set,
especially for high order methods, and therefore finding a good ball of convergence for these methods
is indeed a difficult task. Among the oldest known results on this topic we could mention those
given by Vertgeim, Rall, Rheinboldt, Traub and Wozniakowski, Deuflhard and Potra, Smale [3,5–9].
Relatively recent results were communicated by Argyros [10–12], Ferreira [13], Hernandez-Veron and
Romero [4], Ren [14], Wang [15].

Deuflhard and Potra [5] proposed the following estimation for Newton method. Let F : D ⊂ X →
Y be a nonlinear mapping, where X, Y are Banach spaces. Suppose that F is Fréchet differentiable on
D, that F′(x) is invertible for each x ∈ D, and that

‖F′(x)−1(F′(x + s(y− x))− F′(x))(y− x)‖ ≤ sω‖y− x‖2,

for all x, y ∈ D, s ∈ [0, 1]. Under these conditions the equation F(x) = 0 has a solution y∗ ∈ D.
Let y0 ∈ D such that

B(y∗, ‖y0 − y∗‖) = {x : ‖x− y∗‖ ≤ ‖y0 − y∗‖} ⊂ D

and y0 ∈ B(y∗, 2/ω). Then the Newton method remains in B(y∗, ‖y0 − y∗‖) and converges to y∗.
In [2] the authors propose a simple and elegant formula to estimate the radius of convergence

for Picaed iteration and the algorithm presumptively gives a sharp value. More precisely, let G : D ⊂

Algorithms 2017, 10, 10; doi:10.3390/a10010010 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
http://www.mdpi.com/journal/algorithms


Algorithms 2017, 10, 10 2 of 11

Rm → D be a nonlinear mapping and x∗ a fixed point of G. Suppose that G is differentiable on some
ball centred in x∗, Br1 = {x : ‖x− x∗‖ ≤ r1}, and the derivative of G satisfies

‖G′(x∗)‖ ≤ q < 1,
‖G′(x)− G′(y)‖ ≤ k‖x− y‖p, ∀x ∈ Br1 .

Define

r2 =

(
(1 + p)(1− q)

k

) 1
p

,

then r = min{r1, r2} is an estimation of local convergence radius.
Hernandez and Romero [4] gave the following algorithm for a third-order multi-point method for

solving nonlinear equations F(x) = 0 in Banach spaces [16]. Suppose that p is a solution of the equation,
there exists F′(p)−1, ‖F′(p)−1‖ ≤ β and F′ is k-Lipschitz continuous on some Br0 = {x : ‖x− p‖ ≤ r0}.
Let r̃ = min{r0, r}, where r = ζ0/[(1 + ζ0)βk] and ζ0 is the positive real root of a certain algebraic
equation of degree three. Then r̃ is a local convergence radius. A particular method of this class,
which will be investigated in the present study, obtained for a particular value of a numerical parameter
of the general class, is the following one point method

xn+1 = xn − F′(xn)
−1[F(xn) + F(xn − F′(xn)

−1F(xn))]. (1)

In fact this is a modified Newton method in which the derivative is re-evaluated periodically after
two steps. Note that, in this particular case, the equation giving the value of ζ0, is x3 + 4x2 − 8 = 0.
We will call (1) the One point Ezquerro-Hernandez method.

Remark 1. The common way to state that an algorithm (formula) gives the best radius of convergence is to
show that for a particular function, there exists a point on the border of the convergence ball for which the
conditions of convergence are not satisfied or the considered iteration fails to converge. Several authors who
propose an algorithm (formula) and claim that the proposed radius is the best possible, proceed in this way.
It would be more satisfactory if the proposed algorithm would be tested for some class of mappings or at least for
some test mappings.

Finding a good value for the local convergence radius is rather a difficult task and to find the best
one is far more difficult. We propose an algorithm to estimate the radius of convergence for the Picard
iteration. Numerical experiments show that the proposed algorithm provides convergence balls close
to or even identical to the best ones. It is analogous (but in some details different) with the algorithm
for Mann iteration proposed in [17].

From the computational point of view, most algorithms involve the evaluation of Hölder
(Lipschitz) constant k of the derivative of the iteration mapping, or of the equation mapping.
This evaluation entails solving a constraint optimization problem and the optimum must be global on
some ball. Usually, solving this problem is not an easy task, whatever norm of the linear mapping is
used. However, using a rough value for k diminishes to some extent the convergence radius estimation.
The computational effort of the proposed algorithm, using the vector norm and scalar product, is
presumptively lower.

The paper is organized as follows. Some preliminaries are presented in Section 2. Two theorems
are proved in Secton 3 concerning the local convergence of Picard iteration. The algorithm is described
in Section 4. A part of a large number of numerical experiments performed by the author showing
that the proposed algorithm gives radii close to the best possible values is presented in Section 5. The
computer programs for the main steps of the proposed algorithm are given in Appendix A.
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2. Preliminaries

LetH be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖ and let C be an open subset
ofH.

We recall the following two basic concepts which are essential for our development:
demicontractivity and quasi-expansivity.

A mapping T : C → H is said to be demicontractive if the set of fixed points of T is nonempty,
Fix(T) 6= ∅, and

‖T(x)− p‖2 ≤ ‖x− p‖2 + L‖x− T(x)‖2, ∀(x, p) ∈ C × Fix(T) (2)

where L > 0. This condition is equivalent to either of the following two:

〈x− T(x), x− p〉 ≥ λ‖x− T(x)‖2, ∀(x, p) ∈ C × Fix(T), (3)

‖T(x)− p‖ ≤ ‖x− p‖+
√

L‖T(x)− x‖, ∀(x, p) ∈ C × Fix(T), (4)

where λ = (1− L)/2. Note that (3) is often more suitable in Hilbert spaces, allowing easier handling
of the scalar products and norms. The condition (4) was considered in [18] to prove T-stability of
the Picard iteration for this class of mappings. Note that the set of fixed points of a demicontractive
mapping is closed and convex [19].

We say that the mapping T is quasi-expansive if

‖x− p‖ ≤ β‖x− T(x)‖, ∀x ∈ C, (5)

where β > 0. If β < 1 then ‖x− p‖ ≤ β
1−β‖T(x)− p‖which justifies the terminology. It is also obvious

that the set of fixed points of a mapping T which satisfies (5) consists of a unique element p in C.
Condition (5) is similar to the following condition:

‖x− T(x)‖ ≥ α inf
p∈Fix(T)

‖x− p‖, ∀x ∈ C,

where 0 < α < 1, which is considered in [20,21] as an additional condition to prove strong convergence
of the Mann iteration for nonexpansive (quasi-nonexpansive) mappings in Banach spaces.

3. Local Convergence

The following theorem is the basis of our approach in estimating local radius of convergence.
Its proof is similar to the proof of Theorem 1 [22], except in some details. We present the detailed proof
here for completeness.

Theorem 1. Let T : C → H be a (nonlinear) mapping with nonempty set of fixed points, where C is an open
set of a real Hilbert space H. Let p0 be a fixed point and let r0 be such that Br0 ⊂ C. We shall suppose that
Fix(T) ⊂ Br0 (if Fix(T) is bounded and C = H, then this condition is satisfied for any p0 ∈ Fix(T) and
suitable r0). Suppose further that

(i) I − T is demiclosed at zero on C,
(ii) T is demicontractive with λ > 0.5 on Br0 ,

then the sequence {xn} given by Picard iteration, xn+1 = T(xn), x0 ∈ Br0 remains in Br0 and converges
weakly to some fixed point of T. If, in addition,

(iii) T is quasi-expansive on Br0 ,

then p0 is the unique fixed point of T in Br0 and the sequence {xn} converges strongly to p0.
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Proof. Let p be a fixed point of T. If xn ∈ Br0 then, using (ii), we have

‖xn+1 − p‖2 = ‖(xn − p)− (xn − T(xn))‖2

= ‖xn − p‖2 − 2〈xn − T(xn), xn − p〉+ ‖xn − T(xn)‖2

≤ ‖xn − p‖2 − (2λ− 1)‖xn − T(xn)‖2.

Therefore, for any p ∈ Br0 , including p0, ‖xn+1 − p‖ ≤ ‖xn − p‖ and xn+1 ∈ Br0 , i.e., {xn} ⊂ Br0 .
Moreover, ‖xn − p‖ → $p, so that

‖xn − T(xn)‖2 ≤ 1
2λ− 1

(
‖xn − p‖2 − ‖xn+1 − p‖2

)
→ 0.

As Br0 is weakly compact and {xn} is bounded, there exists a subsequence {xnj} which converges
weakly to q. Then xnj − T(xnj) → 0 and (i) implies q ∈ Fix(T). Suppose now that there exist
two subsequences, say {uk} and {vk}, which converge weakly to u and v respectively. As above,
u, v ∈ Fix(T) and ‖xn − u‖ → $u, ‖xn − v‖ → $v. Therefore

‖uk − u‖ → $u, ‖vk − u‖ → $u,
‖uk − v‖ → $v, ‖vk − v‖ → $v.

Let ek defined by

ek = ‖uk − u‖2 − ‖vk − u‖2 − ‖uk − v‖2 + ‖vk − v‖2.

We have ek → 0 as n → ∞. On the other hand, 1
2 ek = −〈uk − vk, u− v〉 → −‖u− v‖2 which

entails u = v. Therefore xn ⇀ q.
Finally, from (iii) it results that p0 is the unique fixed point of T in Br0 and

‖xn − p0‖ ≤ β‖nn − T(xn)‖ → 0.

so that xn → p0.

A demicontractive mapping is weak contractive, and a quasi-expansive mapping is weak
expansive. The next theorem shows that the demicontractivity and the quasi-expansivity are not
contradictory, there exists a relatively large class of mappings which are both demicontractive
and quasi-expansive.

Theorem 2. Let T : C → C be a (nonlinear) mapping, where C is an open convex subset of H. Suppose
that Fix(T) 6= ∅, that T is differentiable on C and ‖T′(x)‖ ≤ η <

√
5 − 2, ∀x ∈ C. Then T is both

demicontractive and quasi-expansive on C.

Proof. (I) T is quasi-expansive on C (therefore Fix(T) consists of a unique element).

Let p be a fixed point of T. Using mean value theorem, for any x ∈ C, we have

x− T(x) = (x− p)− (T(x)− T(p)) = (x− p)−
(∫ 1

0
T′(p + t(x− p))dt

)
(x− p).

Using the notation Dx,p =
∫ 1

0 T′(p + t(x − p))dt, we have x − T(x) = (I − Dx,p)(x − p) and
‖Dx,p‖ ≤ η. From Banach lemma it results that there exists (I − Dx,p)−1 and ‖(I − Dx,p)−1‖ ≤
1/(1− η). Therefore

‖x− p‖ = ‖(I − Dx,p)
−1(x− T(x))‖ ≤ 1

1− η
‖x− T(x)‖,
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that is T is quasi-expansive with β = 1/(1− η).

(II) T is demicontractive on C with λ > 0.5.

Due to the condition 0 < η <
√

5− 2, we have 0.5 < (1− η)/(1 + η)2 < 1. Let λ be such that
0.5 < λ < (1− η)/(1 + η)2. Consider the quadratic polynomial

P(t, λ) = λt2 + (2λ + 1)t− 1 + λ.

The largest zero of P is

tm =
−2λ− 1 +

√
8λ + 1

2λ
,

and ‖Dx,p‖ < η < tm. As P(0, λ) = −1 + λ < 0 and P(tm, λ) = 0, we have P(‖Dx,p‖, λ) < 0,
which entails 1− ‖Dx,p‖ > λ(1 + ‖Dx,p‖)2. For any y, ‖y‖ = 1 we have

〈(I − Dx,p)y, y〉 = 1− 〈Dx,py, y〉 ≥ 1− ‖Dx,p‖
> λ(1 + ‖Dx,p‖)2 ≥ λ‖I − Dx,p‖2 ≥ λ‖(I − Dx,p)y‖2.

Taking y = (x − p)/‖x − p‖ and (I − Dx,p)(x − p) = x − T(x), we obtain the condition
of demicontracivity.

4. The Algorithm

In finite dimensional spaces the condition of quasi-expansivity is superfluous, since the first
two conditions of Theorem 1 are sufficient for the convergence of the Picard iteration. Therefore,
in finite dimensional spaces, supposing that the condition (i) of Theorem 1 is fulfilled, we can develop
the following algorithm to estimate the local radius of convergence:

Find the largest value for r0 such that

m = min
x∈Br0

〈x− T(x), x− p〉
‖x− T(x)‖2 , (6)

and m > 0.5.

This procedure involves the following main processing:

1. Apply a line search algorithm (for example of the type half-step algorithm) on the positive real
axis to find the largest value for r0;

2. At every step of 1 solve the constraint optimization problem (6) and verify the condition m > 0.5.

The main processing of this algorithm is the solution of the constraint optimization problem (6).
Therefore we need to use a global constrained optimization method which, generally, has a considerable
computational effort. In our experiences we used a population-based metaheuristic method in
combination with a local search method.

The algorithm involves an outer iteration (for line search procedure) and an inner iteration
(for solving the constrained optimization problem). In N-dimensional spaces, every step of the inner
iteration involves 2N evaluations of some functions of N variables each (the components of T), for the
computation of 〈x− T(x), x− p〉 and ‖x− T(x)‖2.

Remark 2. Most of the algorithms for estimation the radius of convergence involve the computation of the
optimal Hölder/Lipschitz constant of the derivative of T. This implies N2 evaluations of some functions in N
variable each (the components of the derivative of T). Therefore a step of inner iteration involves a polynomial
complexity of order 2 combined with the complexity of computing the components of T. The proposed algorithm
involves 2N evaluations of components of T, and, presumptively has a lower complexity. However this
estimation has only a relative worth, because the main influence on the computational effort is exerted by the
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global constrained optimization method, which, as it is well known, is a very expensive computation. A good
implementation of these algorithms have some positive impact on the computational process.

5. Numerical Experiments

This section is devoted to numerical experiments in order to evaluate the performance of the
proposed algorithm. The obtained radii are compared (numerically or graphically) with the maximum
radii of convergence. In our experiments the maximum radius was computed by directly checking the
convergence of the iteration process starting from all points of a given net of points. The attraction
basin (hence the maximum convergence radius) computed in this way has only relative precision.
Nevertheless, this method provides significant information about the attraction basins, and the
performance of the algorithm from this point of view can be accurately evaluated.

Several numerical experiments in one and several dimensions were performed to validate this
method. It is worthwhile to underline that the values obtained by the proposed algorithm are, to some
extent, larger than those given by other methods, and, in some cases, our procedure gives local radii of
convergence very close to the maximum ones.

5.1. Experiment 1

We have computed the local radius of convergence with the proposed algorithm for One point
Ezquerro-Hernandez method and for a number of real functions. In the most these examples the
estimated radii are close to (or even coincide with) the maximum radii. For example, in the case of the
function f (x) = x5 − 2x2 + x and p = 1 the estimate and the best radius (computed with 15 decimal
digits) are identical, r = 0.080959069788847.

5.2. Experiment 2

We applied the proposed algorithm to estimate the local radius of convergence for Picard iteration
and for a number of mappings in several variables. For the following three test mappings (we will
refer to them as Examples 1–3):

F1(x) =
(

x2
2 + 0.8x1 − cos(x1) + 1

x3
1 + 0.8x2

)
,

F2(x) =
(

0.3sin(x1) + x1x2
x3

1 − 0.5x2

)
, F3(x) =

(
0.7x1 − x1x2 + 0.2x2

x1x2 + 0.3x2

)
,

the results are given in Figure 1.

Figure 1. The estimates with the proposed algorithm for Picard iteration.

The black areas represent the domain of convergence corresponding to the fixed point p = (0, 0)T

(for all three examples) and the white circles the local convergence balls. It can be seen that the
estimates are satisfactorily close to the best possible ones.
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5.3. Experiment 3

The iteration (1) can be considered as a Picard iteration, xn+1 = T(xn), where

T(x) = x− F′(x)−1[F(x) + F(x− F′(x)−1F(x))]. (7)

Therefore we can apply our algorithm to estimate the local radius of convergence for this method.
The results are given in Figure 2.

Figure 2. The estimates with the proposed algorithm for One point Ezquerro-Hernandez method.

It can be seen that in this special case the estimates are close (very close) to the best possible radius.

5.4. Experiment 4

In this experiment we estimate numerically the radii of convergence with the proposed
algorithm for Picard, Newton and One point Ezquerro-Hernandez methods and for the test
mappings. For comparison, we also estimate them by using several other algorithms. In the tables
below, we present the results by using the algorithms proposed by Catinas, Deuflhard-Potra and
Hernandez-Romero (these algorithms are specifically for considered methods). The last row of each
table contains the maximum radii of convergence.

Table 1 contains the results obtained by Catinas and proposed algoritms for the Picard iteration.

Table 1. Local radii of convergence for Picard method.

Method Example 1 Example 2 Example 3

Catinas algorithm 0.200000 0.430017 0.376876
Proposed algorithm 0.307939 0.896639 0.645209

Maximum radius 0.311608 1.240665 0.806039

The Catinas algorithm requires us to estimate the Hölder (Lipschitz) constant of the derivative
of the iteration mapping (7). Even for mappings in two dimensions (which is the case of our test
mappings) the computing effort is very high. Therefore, the values for Catinas algorithm in Table 2 are
only approximative (we use the sign ≈ to indicate these values). This experiment confirm the results
of Experiment 3, the proposed algorithm gives radii very close to the maximim radii for One point
Ezquerro-Hernandez method.
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Table 2. Local radii of convergence for One point Esquerro-Hernandez method.

Method Example 1 Example 2 Example 3

Catinas algorithm ≈0.194442 ≈0.114921 ≈0.081090
Hernandez-Romero algorithm 0.221114 0.146160 0.111906

Proposed algorithm 0.319185 0.191426 0.136057
Maximum radius 0.319217 0.197430 0.137130

Table 3 contains the results obtained by Deuflhard-Potra and proposed algoritms for the
Newton method.

Table 3. Local radii of convergence for Newton method.

Method Example 1 Example 2 Example 3

Deuflhard-Potra algorithm 0.346083 0.200051 0.162746
Proposed algorithm 0.363135 0.236905 0.163737

Maximum radius 0.446068 0.254446 0.244121

The Deuflhard-Potra algorithm gives satisfactory good estimates for Newton method. In the same
time this algorithm does not require the evaluation of Hölder (Lipschitz) constant of the derivative of
the equation mapping and therefore the computing effort is relatively low. Note that in our experiment
the parameter s of the algorithm was chosen s = 0.9, which seems to be most adequate (the algorithm
is not very sensitive on this parameter).

Table 2 contains the results obtained by Catinas, Hernandez-Romero and proposed algoritms for
the One point Ezquerro-Hernandez method.

6. Conclusions

The proposed algorithm provides radii of convergence close (or very close) to the best possible
ones and in some cases (like One point Ezquerro-Hernandez method for one dimension) it seems that
the estimates coincide with the maximum radii. As this remarkable characteristic of the proposed
algorithm is highlighted in our study only by numerical experiments, it would be a challenge to find
the cases in which the two radii are identical.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

Bellow are given the computer programs for the proposed algorithm, see Figures A1 and A2.
To validate the algorithm, numerous numerical experiments were implemented in several ways.
To facilitate understanding we present them in MathCad software, which can be easily translated in
any other mathematical software systems.
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Figure A1. Computer programs for inner/outer iterations.

Figure A2. Computer programs for attraction basin and convergence ball.
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Short Computer Programs Description

Min—implements the inner loop of the algorithm. It requires a positive number ro as input data
and provides the global minimum of the cost function (defined in (6) on the ball Bro, corresponding
to the iteration function T and to the mapping f . We use here a “brute” method: the cost function
is computed on the net of points inside the ball Bro and then the minimum value is chosen. In
Figure A1 T is the iteration function for One point Ezquerro-Hernandez method and f is the mapping
of Example 3. Note that this program works only for mappings in two variables. For several variables
a similar program can be easily developed.

Radius—implements the outer loop of the algorithm. Using a line search technique, it provides
the maximum radius of a ball centred in the fixed point, such that the cost function value will be
greater than 0.5. For the considered example, r = 0.136...

Basin—provides a vector containing the points from a given square and belonging to the
attraction basin.

Circle—draws a circle centred in the fixed point and with the radius computed by the
program Radius.

The mapping F, its derivative, the iteration function T and the cost function c, must be defined
outside of the programs. In Figure A1 these elements are defined in the top of the program Min and
they are: the mapping F, as in Example 3; the iteration function, as the One point Ezquerro-Hernandez
method; the cost function, as proposed in our algorithm. Using a specific graphic function of
mathematical software and the vectors b, c, the attraction basin and the estimated ball of convergence
can be plotted (Figure 2, Example 3 in our case).
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