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Abstract:



This paper focuses on the recursive identification problems for a multivariate output-error system. By decomposing the system into several subsystems and by forming a coupled relationship between the parameter estimation vectors of the subsystems, two coupled auxiliary model based recursive least squares (RLS) algorithms are presented. Moreover, in contrast to the auxiliary model based recursive least squares algorithm, the proposed algorithms provide a reference to improve the identification accuracy of the multivariate output-error system. The simulation results confirm the effectiveness of the proposed algorithms.
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1. Introduction


Multivariable systems are popular in industrial processes [1,2,3] and a number of successful methods have been developed to solve the identification and control problems of multivariable systems [4,5,6,7]. For example, Zhang and Hoagg used a candidate-pool approach to identify the feedback and feedforward transfer function matrices and presented a frequency-domain technique for identifying multivariable feedback and feedforward systems [8]; Salhi and Kamoun proposed a recursive algorithm to estimate the parameters of the dynamic linear part and the static nonlinear part of multivariable Hammerstein systems [9].



The idea of the auxiliary model is to use the measurable information to construct a dynamical model and to replace the unknown variables in the information vector with the output of the auxiliary model [10,11]. There are two typical identification methods for multivariate output-error systems: stochastic gradient (SG) algorithms [12,13] and the recursive least squares (RLS) algorithms [14,15]. The SG algorithm requires lower computational cost, but the RLS algorithm has a faster convergence rate than the SG algorithm [16]. The RLS algorithm has been applied to the identification of various systems [17,18]. For example, on the basis of the work in [19], Jin et al. proposed an auxiliary model based recursive least squares algorithm for autoregressive output-error autoregressive systems [20]; and Wang and Tang presented an auxiliary model based recursive least squares algorithm for a class of linear-in-parameter output-error moving average systems [21].



Although the RLS algorithm can be applied to identify the parameter of the multivariate output-error systems, it requires computing the matrix inversion (see Remark 1 in the following section), resulting in a large computational burden [22]. This motivates us to study a new coupled least squares algorithm without involving matrix inversion. The coupling identification concept is useful for simplifying the parameter estimation of the coupled parameter multivariable systems [23]. It is based on the coupled relationship of the parameter estimates between the subsystems of a multivariable system [24,25,26]. The purpose of the coupling identification is to reduce the redundant estimation of the subsystem parameter vectors and to avoid computing the matrix inversion of the RLS algorithm. Recently, a coupled least squares algorithm has been proposed for multiple linear regression systems [22].



This paper focuses on the parameter estimation of multivariate output-error systems, and the main contributions of this paper are the following:

	
for multivariate output-error systems, this paper derives two coupled least squares parameter estimation algorithms by using the auxiliary model identification idea and the coupling identification concept;



	
the proposed algorithms can generate more accurate parameter estimates, and avoid computing the matrix inversion in the multivariable RLS algorithm, for the purpose of reducing computational load.








The rest of this paper is organized as follows: Section 2 gives some definitions and the identification model of multivariate output-error systems. Section 3 presents two new coupled auxiliary model identification algorithms. Section 4 gives two simulation examples to validate the effectiveness of the proposed methods. Finally, some concluding remarks are offered in Section 5.




2. System Description and Identification Model


Let us introduce some notation. The symbol [image: there is no content] is an [image: there is no content] identity matrix; [image: there is no content] is an n-dimensional column vector whose elements are 1; the superscript T denotes the matrix transpose; the norm of the matrix X is defined as [image: there is no content]; the symbol ⊗ denotes the Kronecker product or the direct product: if [image: there is no content], [image: there is no content], then [image: there is no content]; [image: there is no content] denotes the vector formed by the column of the matrix X, that is, if [image: there is no content], then [image: there is no content]. [image: there is no content] denotes the estimate of X at time t and [image: there is no content] denotes the estimation error.



Consider the following multivariate output-error system:


[image: there is no content]



(1)






[image: there is no content]



(2)






[image: there is no content]



(3)




where [image: there is no content] is the system output vector and the noisy measurement of [image: there is no content], [image: there is no content] is the information matrix consisting of the input–output data, [image: there is no content] is the parameter vector, and [image: there is no content] is the observation noise vector with zero mean, and [image: there is no content] is a unit backward shift operator with [image: there is no content].



Assume that the degrees m, n, [image: there is no content] are known and when [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content]. {[image: there is no content], [image: there is no content]} is the available measurement data.



Equations (1) and (2) can be expressed as


[image: there is no content]



(4)






y(t)=Φ(t)ϑ+v(t),Φx(t):=[−x(t−1),−x(t−2),⋯,−x(t−na)]∈Rm×na,Φ(t):=[Φx(t),Φs(t)]∈Rm×n0,a:=[a1,a2,⋯,ana]T∈Rna,ϑ:=aθ∈Rn0,n0:=na+n.



(5)







Let [image: there is no content] be the estimate of [image: there is no content] at time t.



For the identification model in (5), [image: there is no content] is the information matrix that consists of the unknown inner variables [image: there is no content]’s, so we construct an auxiliary model [image: there is no content], and define the estimate of [image: there is no content] as


[image: there is no content]











Then, we use [image: there is no content] and [image: there is no content] to construct the estimate of [image: there is no content] as


[image: there is no content]











Thus, according to (4), we can obtain the auxiliary model,


xa(t)=Φ^x(t)a^(t)+Φs(t)θ^(t)=Φ^(t)ϑ^(t).











The objective of this paper is to use the auxiliary model identification idea and the coupling identification concept to derive new methods for estimating the system parameters [image: there is no content] from the observation data [image: there is no content] and to confirm the theoretical results with simulation examples.




3. The Multivariate Auxiliary Model Coupled Identification Algorithm


3.1. The Auxiliary Model Based Recursive Least Squares Algorithm


According to the identification model in (5), define a cost function:


[image: there is no content]











Based on the auxiliary model identification idea and on the derivation of the RLS algorithm [27,28], we use the output [image: there is no content] as the unknown inner vector [image: there is no content] and replace the unknown information matrix [image: there is no content] with its estimate [image: there is no content], and obtain the following auxiliary model based recursive least squares (AM-RLS) algorithm:


[image: there is no content]



(6)






[image: there is no content]



(7)






[image: there is no content]



(8)






[image: there is no content]



(9)






[image: there is no content]



(10)






[image: there is no content]



(11)







The steps of computing the parameter estimation vector [image: there is no content] by the AM-RLS algorithm are listed in the following:

	
Set the initial values: [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], 2, ⋯, [image: there is no content], [image: there is no content]. Set the data length L.



	
Collect the observation data {[image: there is no content], [image: there is no content]} and form the information matrix [image: there is no content] by (10).



	
Form [image: there is no content] by (9), and compute [image: there is no content] by (7) and [image: there is no content] by (8).



	
Update the parameter estimation vector [image: there is no content] by (6).



	
Compute the output [image: there is no content] of the auxiliary model using (11).



	
If [image: there is no content], stop the recursive computation and obtain the parameter estimates; otherwise, increase t by 1 and go to Step 2.








Remark 1.

For the multivariable RLS algorithm in (6)–(10), we can see from (7) that it requires computing the matrix inversion [image: there is no content] at each step, resulting in heavy computational load, especially for large m (the number of outputs). This is the drawback of the multivariable RLS algorithm in (6)–(10). This motivates us to study new coupled parameter identification methods.






3.2. The Coupled Subsystem Auxiliary Model Based Recursive Least Squares Algorithm


The coupling identification is usually used to reduce the redundant estimates of the system parameter vectors, based on the coupled relationship of the parameter estimates between subsystems [22].



Let [image: there is no content] be the ith row of the information matrix [image: there is no content], i.e.,


[image: there is no content]



(12)







From (5), we obtain m identification models (subsystems)


yi(t)=ϕiT(t)ϑ+vi(t),i=1,2,⋯,m.



(13)







From here, all subsystems contain a common parameter vector [image: there is no content]. In general, one of the subsystems can be used to identify the parameter vector [image: there is no content]; however, in order to improve the parameter estimation precision, we should make full use of the information in all subsystems for identifying [image: there is no content].



Based on the RLS algorithm in (6)–(11), and applying the auxiliary model idea, we replace the unknown variables [image: there is no content] in the identification algorithm with their estimates [image: there is no content], and obtain m RLS algorithms from (13), namely, the subsystem recursive least squares (S-RLS) algorithm,


ϑ^i(t)=ϑ^i(t−1)+Li(t)[yi(t)−ϕ^iT(t)ϑ^i(t−1)],ϑ^i(0)=1n0/p0,



(14)






[image: there is no content]



(15)






Pi(t)=[In0−Li(t)ϕ^iT(t)]Pi(t−1),Pi(0)=p0In0,i=1,2,⋯,m.



(16)







From here, we can see that there is no coupled relationship between the subsystem parameter estimation vector [image: there is no content].



Remark 2.

For [image: there is no content] we can obtain m estimation vectors [image: there is no content] from (14)–(16), and they are all the estimates of the common parameter vector [image: there is no content] in all subsystems, resulting in a large amount of redundant parameter estimates. One way is to use their average as the estimate of [image: there is no content], that is


[image: there is no content]



(17)









If we regard the parameter estimate [image: there is no content] in (17) as the output parameter vector, then each S-RLS identification algorithm is still independent. According to the coupling identification concept, we use [image: there is no content] to replace [image: there is no content] in the S-RLS algorithm, and get the coupled subsystem AM-RLS (C-S-AM-RLS) algorithm:


[image: there is no content]



(18)






[image: there is no content]



(19)






Pi(t)=[In0−Li(t)ϕ^iT(t)]Pi(t−1),i=1,2,⋯,m,



(20)






[image: there is no content]



(21)






[image: there is no content]



(22)






[image: there is no content]



(23)






=[ϕ^1(t),ϕ^2(t),⋯,ϕ^m(t)]T,



(24)






[image: there is no content]



(25)







The steps of computing the parameter estimation vector [image: there is no content] by the C-S-AM-RLS algorithm in (18)–(25) are listed in the following:

	
Set the initial values: [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], 2, ⋯, [image: there is no content], [image: there is no content]. Set the data length L.



	
Collect the observation data {[image: there is no content], [image: there is no content]} and form the information matrix [image: there is no content] by (22).



	
Form [image: there is no content] by (23) and read [image: there is no content] from [image: there is no content] in (24).



	
For each i, [image: there is no content], compute [image: there is no content] by (19), and [image: there is no content] by (20), and update the parameter estimation vector [image: there is no content] by (18).



	
Compute [image: there is no content] by (21) and [image: there is no content] by (25).



	
If [image: there is no content], stop the recursive computation and obtain the parameter estimates; otherwise, increase t by 1 and go to Step 2.








Remark 3.

The C-S-AM-RLS algorithm in (18)–(25) uses the estimate [image: there is no content] on the right-hand side of (18) instead of [image: there is no content] on the right-hand side of (14) for [image: there is no content]. Thus, the C-S-AM-RLS algorithm is different from the S-RLS algorithm.






3.3. The Coupled Auxiliary Model Based Recursive Least Squares Algorithm


In order to avoid the redundant parameter estimates, we use the coupling identification concept to derive a coupled AM-RLS algorithm based on the C-S-AM-RLS algorithm.



Referring to the partially coupled SG identification method [24], and with the help of the Jacobi or Gauss–Seidel iterative algorithm, replacing [image: there is no content] with [image: there is no content] for [image: there is no content], replacing [image: there is no content] with [image: there is no content] for [image: there is no content], we can obtain the following coupled auxiliary model based recursive least squares (C-AM-RLS) identification algorithm:


[image: there is no content]



(26)






[image: there is no content]



(27)






[image: there is no content]



(28)






[image: there is no content]



(29)






[image: there is no content]



(30)






Pi(t)=[In0−Li(t)ϕ^iT(t)]Pi−1(t),i=2,3,⋯,m,



(31)






[image: there is no content]



(32)






[image: there is no content]



(33)






=[ϕ^1(t),ϕ^2(t),⋯,ϕ^m(t)]T,



(34)






[image: there is no content]



(35)







In the above algorithm in (26)–(35), [image: there is no content] is the parameter estimation vector of the ith subsystem at time t, [image: there is no content] is the gain vector of the ith subsystem at time t, [image: there is no content] is the covariance matrix of the ith subsystem at time t. [image: there is no content] and [image: there is no content] are the parameter estimation vector and the covariance matrix of the [image: there is no content]th subsystem at time t, respectively; [image: there is no content] and [image: there is no content] are the parameter estimation vector and the covariance matrix of the mth subsystem at time [image: there is no content], respectively, the system parameter estimation vector is defined by the parameter estimation vector of the mth subsystem at time t: [image: there is no content].



The procedure of computing the parameter estimation vector [image: there is no content] in (26)–(35) is as follows.

	
Set the initial values: [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], 2, ⋯, [image: there is no content], [image: there is no content]. Set the data length L.



	
Collect the observation data [image: there is no content] and [image: there is no content], and construct [image: there is no content] and [image: there is no content] by (32) and (33).



	
Read [image: there is no content] from [image: there is no content] in (34), compute [image: there is no content] and [image: there is no content] by (27) and (28), and update the parameter estimation vector [image: there is no content] by (26).



	
For [image: there is no content], compute [image: there is no content] and [image: there is no content] by (30) and (31), and update the parameter estimation vector [image: there is no content] by (29).



	
Obtain the parameter estimation vector [image: there is no content] and compute [image: there is no content] by (35).



	
If [image: there is no content], stop the recursive computation and obtain the parameter estimates; otherwise, increase t by 1 and go to Step 2.








Remark 4.

The C-AM-RLS algorithm in (26)–(35) uses the estimate [image: there is no content] on the right-hand side of (29) instead of [image: there is no content] on the right-hand side of (14) for [image: there is no content]. When computing [image: there is no content], the C-AM-RLS algorithm uses the estimate [image: there is no content] on the right-hand side of (26) instead of [image: there is no content] on the right-hand side of (14) with [image: there is no content]. Thus, the C-AM-RLS algorithm is different from the S-RLS algorithm.







4. Examples


Example 1.

Consider the following multivariate output-error system:


y(t)=Φs(t)θA(z)+v(t),Φs(t)=y1(t−2)u2(t−2)y1(t−2)sin(t/π)u1(t−1)+u2(t−2)u2(t−1)sin(u2(t−2))y1(t−2)sin(y2(t−2))y2(t−2)u1(t−2)u1(t−2)u2(t−2)u2(t−1)cos(t/π),θ=[θ1,θ2,θ3,θ4]T=[−0.25,0.47,−0.50,0.57]T∈R4,A(z)=1+a1z−1+a2z−2=1+0.30z−1+0.64z−2,ϑ=[a1,a2,θ1,θ2,θ3,θ4]T=[0.30,0.64,−0.25,0.47,−0.50,0.57]T∈R6.











In simulation, we generate two persistent excitation signal sequences with zero mean and unit variances as the inputs [image: there is no content] and [image: there is no content], and take [image: there is no content] and [image: there is no content] to be two white noise sequences with zero mean and variances [image: there is no content] for [image: there is no content], and [image: there is no content] for [image: there is no content]. Taking [image: there is no content], the data length L = 3000, and applying the AM-RLS, C-S-AM-RLS and C-AM-RLS algorithms to estimate the parameters of this system, respectively, the parameter estimates are shown in Table 1, Table 2 and Table 3, and the estimation errors [image: there is no content] versus t are shown in Figure 1 and Figure 2.

Figure 1. The AM-RLS and the C-S-AM-RLS estimation errors δ versus t for Example 1.



[image: Algorithms 10 00012 g001]





Figure 2. The AM-RLS and the C-AM-RLS estimation errors δ versus t for Example 1.



[image: Algorithms 10 00012 g002]






Table 1. The AM-RLS estimates and their errors for Example 1.







	
t

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
δ(%)






	
100

	
0.19169

	
0.46405

	
−0.29921

	
0.51505

	
−0.69003

	
0.56147

	
24.77137




	
200

	
0.24129

	
0.55426

	
−0.26362

	
0.52514

	
−0.61030

	
0.56009

	
13.91359




	
500

	
0.24361

	
0.55706

	
−0.24361

	
0.47651

	
−0.56945

	
0.53294

	
10.96959




	
1000

	
0.29857

	
0.61286

	
−0.24654

	
0.45360

	
−0.55928

	
0.57197

	
5.78088




	
2000

	
0.31147

	
0.64219

	
−0.23371

	
0.47639

	
−0.51822

	
0.57977

	
2.53112




	
3000

	
0.31743

	
0.65208

	
−0.23405

	
0.47050

	
−0.48951

	
0.55819

	
2.65000




	
True values

	
0.30000

	
0.64000

	
−0.25000

	
0.47000

	
−0.50000

	
0.57000

	










Table 2. The C-S-AM-RLS estimates and their errors for Example 1.







	
t

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
δ(%)






	
100

	
0.29097

	
0.63357

	
−0.27254

	
0.45781

	
−0.49700

	
0.52648

	
4.44497




	
200

	
0.29760

	
0.62737

	
−0.26354

	
0.45916

	
−0.50241

	
0.54735

	
2.69357




	
500

	
0.29689

	
0.63747

	
−0.25217

	
0.46685

	
−0.50539

	
0.55960

	
1.11229




	
1000

	
0.29887

	
0.63910

	
−0.25196

	
0.46698

	
−0.50283

	
0.55826

	
1.08848




	
2000

	
0.30151

	
0.63810

	
−0.24935

	
0.46850

	
−0.50098

	
0.55961

	
0.92996




	
3000

	
0.30313

	
0.63900

	
−0.24647

	
0.46872

	
−0.50302

	
0.56643

	
0.58689




	
True values

	
0.30000

	
0.64000

	
−0.25000

	
0.47000

	
−0.50000

	
0.57000

	










Table 3. The C-AM-RLS estimates and their errors for Example 1.







	
t

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
δ(%)






	
100

	
0.29005

	
0.63637

	
−0.25615

	
0.45607

	
−0.49231

	
0.58483

	
2.14162




	
200

	
0.29623

	
0.64525

	
−0.25140

	
0.46821

	
−0.50367

	
0.57151

	
0.67931




	
500

	
0.29686

	
0.63477

	
−0.25512

	
0.47214

	
−0.50108

	
0.56153

	
1.01842




	
1000

	
0.30266

	
0.64036

	
−0.24782

	
0.46668

	
−0.50268

	
0.57115

	
0.48179




	
2000

	
0.30091

	
0.64021

	
−0.24740

	
0.46931

	
−0.50116

	
0.57056

	
0.26815




	
3000

	
0.30202

	
0.64160

	
−0.24831

	
0.46919

	
−0.49823

	
0.56821

	
0.34814




	
True values

	
0.30000

	
0.64000

	
−0.25000

	
0.47000

	
−0.50000

	
0.57000

	













From Table 1, Table 2 and Table 3 and Figure 1 and Figure 2, we can draw the following conclusions.

	
The parameter estimation errors by the presented algorithms become smaller and smaller and go to zero with the increasing of time t.



	
In contrast to the AM-RLS algorithm, the proposed C-S-AM-RLS and C-AM-RLS algorithms have faster convergence rates and more accurate parameter estimates with the same simulation conditions.








Example 2.

Consider the following 2-input 2-output system:


y(t)=Q(z)A(z)u(t)+v(t),A(z)=1+a1z−1+a2z−2=1−0.19z−1−0.15z−2,Q(z)=Q1z−1+Q2z−2=−0.310.250.28−0.23z−1+0.65−0.380.410.62z−2,a=[a1,a2]T=[−0.19,−0.15]T∈R2,θT=[Q1,Q2]=−0.310.250.65−0.380.28−0.230.410.62∈R2×4.











This example system can be transformed into the multivariate output-error system:


y(t)=Φs(t)θA(z)+v(t),φ(t)=[uT(t−1),uT(t−2)]T∈R4,Φs(t)=I2⊗φT(t)=u1(t−1)u2(t−1)u1(t−2)u2(t−2)00000000u1(t−1)u2(t−1)u1(t−2)u2(t−2)∈R2×8,Φ^(t)=x1(t−1)x1(t−2)u1(t−1)u2(t−1)u1(t−2)x2(t−1)x2(t−2)000u2(t−2)00000u1(t−1)u2(t−1)u1(t−2)u2(t−2)∈R2×10,ϑ=[aT,col[θ]T]T=[a1,a2,θ1,θ2,θ3,θ4,θ5,θ6,θ7,θ8]T=[−0.19,−0.15,−0.31,0.25,0.65,−0.38,0.28,−0.23,0.41,0.62]T∈R10.











The simulation conditions are similar to those of Example 1. Applying the AM-RLS algorithm, the C-S-AM-RLS algorithm and the C-AM-RLS algorithm with [image: there is no content] and [image: there is no content] to estimate the parameters of this system, respectively, the parameter estimates are shown in Table 4, Table 5 and Table 6, and the estimation errors δ versus t are shown in Figure 3, Figure 4, Figure 5, Figure 6 and Figure 7.

Figure 3. The AM-RLS estimation errors δ versus t with different [image: there is no content] for Example 2.



[image: Algorithms 10 00012 g003]





Figure 4. The C-S-AM-RLS estimation errors δ versus t with different [image: there is no content] for Example 2.



[image: Algorithms 10 00012 g004]





Figure 5. The C-AM-RLS estimation errors δ versus t with different [image: there is no content] for Example 2.



[image: Algorithms 10 00012 g005]





Figure 6. The AM-RLS, C-S-AM-RLS and C-AM-RLS estimation errors δ versus t for Example 2 ([image: there is no content]).



[image: Algorithms 10 00012 g006]





Figure 7. The AM-RLS, C-S-AM-RLS and C-AM-RLS estimation errors δ versus t for Example 2 ([image: there is no content]).



[image: Algorithms 10 00012 g007]






Table 4. The AM-RLS estimates and errors with different noise variances for Example 2.







	
σ

	
t

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
δ(%)






	
0.50

	
100

	
−0.07767

	
−0.05531

	
−0.36662

	
0.24956

	
0.48032

	
−0.31206

	
0.31519

	
−0.06257

	
0.41747

	
0.62394

	
24.42046




	

	
200

	
−0.12975

	
−0.19484

	
−0.39270

	
0.19552

	
0.54739

	
−0.39801

	
0.25127

	
−0.15292

	
0.40869

	
0.59869

	
15.11250




	

	
500

	
−0.19310

	
−0.17229

	
−0.36609

	
0.20923

	
0.61180

	
−0.37565

	
0.30089

	
−0.22450

	
0.47133

	
0.60444

	
8.75946




	

	
1000

	
−0.19356

	
−0.18464

	
−0.35077

	
0.26929

	
0.61180

	
−0.40097

	
0.29274

	
−0.24058

	
0.41768

	
0.58457

	
6.77306




	

	
2000

	
−0.16577

	
−0.16642

	
−0.35510

	
0.26588

	
0.63592

	
−0.38138

	
0.27095

	
−0.24643

	
0.43211

	
0.58239

	
6.17573




	

	
3000

	
−0.17437

	
−0.15862

	
−0.34955

	
0.26143

	
0.63990

	
−0.38157

	
0.26516

	
−0.24155

	
0.41820

	
0.59485

	
4.64800




	
0.20

	
100

	
−0.14504

	
−0.09948

	
−0.34108

	
0.24926

	
0.56565

	
−0.34426

	
0.29779

	
−0.13584

	
0.40947

	
0.62501

	
12.55557




	

	
200

	
−0.16080

	
−0.17384

	
−0.35653

	
0.21984

	
0.59626

	
−0.38955

	
0.26341

	
−0.18663

	
0.40729

	
0.60783

	
8.16496




	

	
500

	
−0.19361

	
−0.16177

	
−0.34130

	
0.22732

	
0.62940

	
−0.37772

	
0.29134

	
−0.22686

	
0.44372

	
0.61191

	
4.82443




	

	
1000

	
−0.19260

	
−0.16915

	
−0.33276

	
0.26075

	
0.62898

	
−0.39165

	
0.28698

	
−0.23581

	
0.41417

	
0.60050

	
3.75051




	

	
2000

	
−0.17637

	
−0.15883

	
−0.33513

	
0.25880

	
0.64247

	
−0.38068

	
0.27492

	
−0.23911

	
0.42227

	
0.59904

	
3.43136




	

	
3000

	
−0.18131

	
−0.15460

	
−0.33203

	
0.25635

	
0.64460

	
−0.38087

	
0.27172

	
−0.23640

	
0.41457

	
0.60604

	
2.58030




	
True values

	
−0.19000

	
−0.15000

	
−0.31000

	
0.25000

	
0.65000

	
−0.38000

	
0.28000

	
−0.23000

	
0.41000

	
0.62000

	










Table 5. The C-S-AM-RLS estimates and errors with different noise variances for Example 2.







	
σ

	
t

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
δ(%)






	
0.50

	
100

	
−0.21759

	
−0.11924

	
−0.38525

	
0.15721

	
0.63656

	
−0.34223

	
0.29058

	
−0.20577

	
0.37492

	
0.48917

	
15.79715




	

	
200

	
−0.20637

	
−0.14535

	
−0.37445

	
0.17481

	
0.63617

	
−0.35041

	
0.28941

	
−0.21028

	
0.38068

	
0.52643

	
12.03360




	

	
500

	
−0.20820

	
−0.15449

	
−0.35370

	
0.20271

	
0.64497

	
−0.35998

	
0.29075

	
−0.22235

	
0.40008

	
0.56361

	
7.55407




	

	
1000

	
−0.20219

	
−0.15807

	
−0.34231

	
0.22279

	
0.64575

	
−0.36723

	
0.28829

	
−0.22609

	
0.39938

	
0.57785

	
5.31882




	

	
2000

	
−0.19351

	
−0.15523

	
−0.33660

	
0.23115

	
0.65084

	
−0.36868

	
0.28424

	
−0.22807

	
0.40408

	
0.58666

	
4.04352




	

	
3000

	
−0.19451

	
−0.15372

	
−0.33290

	
0.23487

	
0.65196

	
−0.37059

	
0.28273

	
−0.22881

	
0.40384

	
0.59231

	
3.39624




	
0.20

	
100

	
−0.22599

	
−0.13897

	
−0.32193

	
0.22250

	
0.58332

	
−0.31192

	
0.25836

	
−0.21204

	
0.39836

	
0.55805

	
10.49246




	

	
200

	
−0.22086

	
−0.15125

	
−0.32183

	
0.22627

	
0.60226

	
−0.33263

	
0.26598

	
−0.21525

	
0.40181

	
0.57614

	
7.64726




	

	
500

	
−0.21073

	
−0.15254

	
−0.31739

	
0.23480

	
0.62239

	
−0.35282

	
0.27247

	
−0.22272

	
0.40840

	
0.59331

	
4.55688




	

	
1000

	
−0.20374

	
−0.15441

	
−0.31579

	
0.24128

	
0.63135

	
−0.36182

	
0.27507

	
−0.22497

	
0.40834

	
0.60063

	
3.11396




	

	
2000

	
−0.19848

	
−0.15281

	
−0.31510

	
0.24388

	
0.63828

	
−0.36705

	
0.27614

	
−0.22659

	
0.40919

	
0.60523

	
2.17345




	

	
3000

	
−0.19699

	
−0.15245

	
−0.31444

	
0.24521

	
0.64095

	
−0.36950

	
0.27665

	
−0.22739

	
0.40911

	
0.60772

	
1.76930




	
True values

	
−0.19000

	
−0.15000

	
−0.31000

	
0.25000

	
0.65000

	
−0.38000

	
0.28000

	
−0.23000

	
0.41000

	
0.62000

	










Table 6. The C-AM-RLS estimates and errors with different noise variances for Example 2.
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δ(%)






	
0.50

	
100

	
−0.14313

	
−0.08944

	
−0.29923

	
0.14967

	
0.60004

	
−0.48000

	
0.27048

	
−0.10880

	
0.39393

	
0.64199

	
17.32565




	

	
200

	
−0.15590

	
−0.16031

	
−0.30620

	
0.18954

	
0.60690

	
−0.43088

	
0.26046

	
−0.17047

	
0.40328

	
0.61953

	
9.53865




	

	
500

	
−0.18908

	
−0.15426

	
−0.31365

	
0.22262

	
0.63038

	
−0.39293

	
0.27930

	
−0.21346

	
0.42501

	
0.61348

	
3.57545




	

	
1000

	
−0.18864

	
−0.15914

	
−0.31439

	
0.24558

	
0.63487

	
−0.38941

	
0.28005

	
−0.22501

	
0.41240

	
0.60972

	
1.98417




	

	
2000

	
−0.18100

	
−0.15438

	
−0.31763

	
0.24933

	
0.64474

	
−0.38309

	
0.27657

	
−0.23004

	
0.41637

	
0.60902

	
1.58563




	

	
3000

	
−0.18721

	
−0.15257

	
−0.31714

	
0.24959

	
0.64668

	
−0.38257

	
0.27582

	
−0.23014

	
0.41296

	
0.61247

	
1.06366




	
0.20

	
100

	
−0.18575

	
−0.14611

	
−0.32571

	
0.23906

	
0.65606

	
−0.34876

	
0.27370

	
−0.22277

	
0.41431

	
0.62734

	
3.27710




	

	
200

	
−0.18663

	
−0.15518

	
−0.32364

	
0.24072

	
0.65224

	
−0.36429

	
0.27312

	
−0.22690

	
0.41301

	
0.62321

	
2.08590




	

	
500

	
−0.19190

	
−0.15066

	
−0.31665

	
0.24569

	
0.65227

	
−0.37418

	
0.27914

	
−0.23001

	
0.41543

	
0.62035

	
0.96352




	

	
1000

	
−0.19025

	
−0.15184

	
−0.31398

	
0.25006

	
0.65002

	
−0.37822

	
0.27973

	
−0.23074

	
0.41154

	
0.61862

	
0.43133




	

	
2000

	
−0.18790

	
−0.15067

	
−0.31339

	
0.25029

	
0.65091

	
−0.37870

	
0.27896

	
−0.23105

	
0.41213

	
0.61798

	
0.45028




	

	
3000

	
−0.18935

	
−0.15030

	
−0.31286

	
0.25024

	
0.65072

	
−0.37924

	
0.27882

	
−0.23074

	
0.41111

	
0.61867

	
0.31747




	
True values

	
−0.19000

	
−0.15000

	
−0.31000

	
0.25000

	
0.65000

	
−0.38000

	
0.28000

	
−0.23000

	
0.41000

	
0.62000

	













From Table 4, Table 5 and Table 6 and Figure 3, Figure 4, Figure 5, Figure 6 and Figure 7, we can draw the following conclusions:

	
In contrast to the AM-RLS algorithm, the proposed C-S-AM-RLS and C-AM-RLS algorithms have faster convergence rates and more accurate parameter estimates with the same simulation conditions, and the C-AM-RLS algorithm can obtain the most accurate estimates for the system parameters.



	
The parameter estimation errors given by the proposed algorithms are smaller under a lower noise level—see Table 4, Table 5 and Table 6 and Figure 3, Figure 4, Figure 5, Figure 6 and Figure 7.









5. Conclusions


By means of the auxiliary model identification idea, this paper employs the coupling identification concept to propose a novel recursive identification method for multivariate output-error systems. The proposed methods have the following properties:

	
The C-S-AM-RLS algorithm and the C-AM-RLS algorithm are presented by forming a coupled relationship between the parameter estimation vectors of the subsystems, and they avoid computing the matrix inversion in the multivariable AM-RLS algorithm so they require lower computational load and achieve highly accurate parameter estimates.



	
With the noise-to-signal ratios decreasing, the parameter estimation errors given by the proposed algorithms become smaller.








The basic idea of the proposed algorithms in this paper can be extended and applied to other fields [29,30,31].
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