
algorithms

Article

Length-Bounded Hybrid CPU/GPU Pattern Matching
Algorithm for Deep Packet Inspection

Yi-Shan Lin 1, Chun-Liang Lee 2,* and Yaw-Chung Chen 1

1 Department of Computer Science, National Chiao Tung University, Hsinchu 30010, Taiwan;
yishanl@cs.nctu.edu.tw (Y.-S.L.); ycchen@cs.nctu.edu.tw (Y.-C.C.)

2 Department of Computer Science and Information Engineering, School of Electrical and Computer
Engineering, College of Engineering, Chang Gung University, Taoyuan 33302, Taiwan

* Correspondence: cllee@mail.cgu.edu.tw; Tel.: +886-3-211-8800 (ext. 5196)

Academic Editor: Andras Farago
Received: 29 November 2016; Accepted: 11 January 2017; Published: 18 January 2017

Abstract: Since frequent communication between applications takes place in high speed networks,
deep packet inspection (DPI) plays an important role in the network application awareness.
The signature-based network intrusion detection system (NIDS) contains a DPI technique that
examines the incoming packet payloads by employing a pattern matching algorithm that dominates
the overall inspection performance. Existing studies focused on implementing efficient pattern
matching algorithms by parallel programming on software platforms because of the advantages of
lower cost and higher scalability. Either the central processing unit (CPU) or the graphic processing
unit (GPU) were involved. Our studies focused on designing a pattern matching algorithm based on
the cooperation between both CPU and GPU. In this paper, we present an enhanced design for our
previous work, a length-bounded hybrid CPU/GPU pattern matching algorithm (LHPMA). In the
preliminary experiment, the performance and comparison with the previous work are displayed,
and the experimental results show that the LHPMA can achieve not only effective CPU/GPU
cooperation but also higher throughput than the previous method.

Keywords: network security; pattern matching algorithm; deep packet inspection; intrusion detection
system; general-purpose graphics processing unit; compute unified device architecture

1. Introduction

Deep packet inspection (DPI) is a technique that examines the packet content to ensure the
network security. While packet headers can be examined for blocking malicious packets, DPI is
responsible for checking packet contents for application awareness [1–3] demanded by modern
networks. The network intrusion detection system (NIDS) is one of the DPI applications for network
security. The anomaly-based and signature-based NIDSs are two forms of NIDSs to monitor the
network traffic. Anomaly-based NIDSs determine whether the behaviors in the network are normal
or anomalous [4–6]. In contrast, signature-based NIDSs inspect whether the packet payloads contain
any malicious content. Specific data strings considered as malicious contents and appearing in the
packet payloads are called “signatures” or “patterns”. A collection of those malicious strings is called
a “pattern set”. Once any pattern is recognized in a packet payload, the NIDS will alert or drop this
packet in order to protect the resources in the network. In the system, the pattern matching algorithm is
needed to recognize the patterns, which is the core mechanism for searching patterns in the payloads.

Designing an efficient pattern matching algorithm has become a priority because pattern matching
is very time-consuming and can occupy around 70% of system execution time [7,8]. Several pattern
matching algorithms for signature-based NIDSs designed on software platforms have been proposed.
In order to satisfy the required processing speed in high speed networks, some research focused on

Algorithms 2017, 10, 16; doi:10.3390/a10010016 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
http://www.mdpi.com/journal/algorithms

Algorithms 2017, 10, 16 2 of 13

implementing the pattern matching algorithms on the graphic processing units (GPUs) [9]. Since the
capability of central processing units (CPUs) cannot meet the performance requirement for such
networks nowadays, GPUs with more parallel processing power than CPUs may be deployed.
However, although GPU processing power is superior, the overall performance of GPUs is limited due
to the GPU overhead. The GPU overhead consists of kernel launch latency and data transfer latency;
this limitation must be taken into account during the development. As a consequence, designing an
efficient cooperative pattern matching algorithm between CPUs and GPUs becomes an essential issue.

Here, we focus on designing the software-based and collaborative pattern matching algorithms.
Initially, a hybrid CPU/GPU pattern matching algorithm (HPMA) [10] has been proposed. We designed
HPMA based on the considerations that CPU features performance degradation with the computation
and memory-intensive operations such as pattern matching algorithms, and GPU efficiency is limited
with the data transfer overhead via the peripheral component interconnect express (PCIe) channel.
Hence, an HPMA procedure was divided into “pre-filtering” and “full pattern matching”, which is
executed, respectively, by CPUs and GPUs. CPUs provide a rapid and high-filtration-ratio pre-filtering
to classify the “normal” and “suspicious” packets first, and then the suspicious packets are delivered
to GPU for full pattern matching. The normal packets can pass through directly. This mechanism can
not only lessen the computation and memory-intensive operations for CPU, but also reduce CPU–GPU
data transfer overhead to achieve the task allocation balancing. The experiment showed that the
HPMA brought higher efficiency than the CPU-only and GPU-only full pattern matching algorithms,
indicating that such collaboration is effective. However, the HPMA performance may be restricted
under a few conditions. For example, the input traffic with varying length packets can cause a large
variation of thread execution time in parallel processing, resulting in throughput degradation.

In this paper, a length-bounded hybrid CPU/GPU pattern matching algorithm (LHPMA) is
proposed to deal with this problem. Once an incoming packet is loaded, the LHPMA categorizes the
packet in advance according to a pre-determined payload length bound. The packets whose lengths
exceed the bound are delivered to the CPU rapid prefiltering; otherwise, the packets are assigned to
the GPU full pattern matching directly. Higher performance can be obtained by means of reducing the
payload length diversity. In the experiment, the previous methods are also implemented and compared
with the LHPMA, and the results demonstrate that the LHPMA can enhance the performance.

The rest of this paper is organized as follows: Section 2 describes typical pattern matching
algorithms and some previous studies of software-based implementation on CPU and GPU platform
applied to NIDSs. Section 3 illustrates the proposed LHPMA, including the overall architecture,
components, procedure and key algorithm. Section 4 demonstrates the experiment setup and results.
The conclusions and future work are presented in Section 5.

2. Related Work

Pattern matching algorithms can be categorized as single-pattern matching and multi-pattern
matching. The former finds a single pattern within a string at one time; for instance, the
Knuth–Morris–Pratt (KMP) [11] and the Boyer–Moore (BM) [12] algorithms are well known. The latter
can recognize multiple patterns within a string simultaneously, in which the Aho–Corasick (AC) [13]
and Wu–Manber (WM) [14] algorithms are widely used.

Implementing the algorithms by software on general-purpose processors (GPPs) is a trend that
presents the advantages of lower cost and higher scalability than implementing it by hardware.
Earlier, some algorithms were carried out on the central processing units (CPUs) [15–17] to handle
the incoming packets; nevertheless, such processing did not satisfy the required performance for high
speed networks. Therefore, some studies began to focus on developing pattern matching algorithms
using graphical processing units (GPUs), which offer superior parallel processing power compared to
CPUs. Related studies with regard to designing algorithms on GPUs include Jacob and Bordely [18]
proposing a modified KMP algorithm “PixelSnort”, which was based on the conventional Snort [19]
system. PixelSnort involved off-loading packet processing to the GPU by respectively encoding the

Algorithms 2017, 10, 16 3 of 13

packets and patterns into pixels and textures to perform full matching. The result showed that their
method outperformed Snort by up to 40% in terms of packet processing rate, but the improvement
occurred only in heavy-load conditions. Vasiliadis et al. also modified the Snort and proposed a novel
system “Gnort” [20], in which the AC algorithm was ported to the GPU. The input packets were
transferred to the GPU for full pattern matching, and the matched results were sent back to the CPU.
The maximum throughput of 2.3 Gbps in the synthetic traffic was achieved, which was two times faster
than the Snort in real traffic. Vasiliadis et al. further proposed one more parallel processing architecture
named “MIDeA” [21] that optimized the parallelism of network interface card (NIC), CPUs and GPUs
to improve the processing performance. With real traffic input, MIDeA presented the throughput of
5.2 Gbps in off-the-shelf equipment. Vespa and Weng [22] presented an optimized pattern matching
algorithm “GPEP”, which achieves higher efficiency by means of low operational complexity and
small-size state transition tables. Jamshed et al. presented a software-based pattern matching method
named “Kargus” [23] processed by CPU and GPU, which also involved off-loading packet processing
to the GPU. The result presented that Kargus outperformed the existing state-of-the-art software IDS
by 1.9 to 4.3 times. Zu et al. [24] focused on porting nondeterministic finite automaton (NFA) to
the GPU platform. Their proposed data structure and parallel processing achieved a throughput of
10 Gbps. Yu and Becchi [25] studied more optimal porting to the GPU platform for deterministic finite
automaton (DFA) and NFA. They pointed that using small data tables was not the only way to improve
the matching efficiency; the pros and cons of porting automaton to GPU were also described. On the
other hand, some literature focused on porting algorithms to other processors [26] and optimizing
NFA [27] to further improve efficiency.

However, even though GPUs feature superior parallel processing power, the data transfer latency
between CPU and GPU impacts the overall performance of pattern matching algorithms. Literature [28]
showed that, in GPU program development, the GPU overhead (i.e., kernel launch latency and data
transfer latency) should be taken into account. The former indicates the latency of the triggering kernel
(the function executed by GPU), and the latter indicates the latency of data transfer between CPU
and GPU via PCIe channels. Especially, the data transfer latency is higher than the kernel launch
latency. In other words, allocating all tasks to GPU may not achieve the best efficiency in certain cases,
even with its powerful parallel processing. Thus, other studies began to concentrate on CPU and GPU
collaboration design to improve the efficiency.

For this purpose, we focused on designing effective cooperation methods based on CPUs and
GPUs. Our previous work HPMA [10] divides the processing tasks into two parts: rapid packet
prefiltering and full pattern matching, as shown in Figure 1. First, the incoming packets are delivered
to the CPU host memory, and then the CPU accessed the packets and started the prefiltering according
to the lookup tables (T1, Base Table, Indirect Table and T2). The table size is sufficiently small so that it
can reduce the memory access latency to decrease the pre-filtering time. In addition, a high filtration
ratio is also achieved so that the number of packets can be decreased to reduce the data transfer latency.
Next, the prefiltered packets considered “suspicious” are sent to the GPU for the full pattern matching
process. We adopted the AC algorithm into the GPU platform, and the AC lookup tables were stored
in the GPU texture memory for the algorithm use, since the access latency of texture memory is much
lower than that of device memory. The matched result is copied back to the CPU host memory after
the full pattern matching is completed. By using the pre-filtering method in HPMA, the CPU can
perform rapid pre-filtering and reach a high filtration ratio so that the GPU latency can be decreased
and make the processing more efficient. HPMA outperformed the CPU-only and GPU-only pattern
matching algorithms by 3.4 and 2.7 times, respectively, with input traffic of 1460-byte random payloads,
indicating that the collaboration between the CPU and GPU can improve overall processing speed.

Algorithms 2017, 10, 16 4 of 13
Algorithms 2017, 10, 16 4 of 13

Figure 1. Hybrid CPU/GPU pattern matching algorithms.

Nevertheless, the HPMA performance may be restricted under the following conditions: (a) all
incoming packets are finally delivered to the GPU, causing redundant operations rather than directly
delivering packets to the GPU; and (b) the input traffic consists of varying length packets that cause
execution time inconsistency of each thread in parallel processing. For these limitations, we have
proposed another design, a capability-based hybrid CPU/GPU pattern matching algorithm
(CHPMA) [29] to face the former condition. The CHPMA first estimates the CPU and GPU processing
capability of the system, and, during runtime, the CHPMA can automatically perform the processing
selection according to the historical filtration ratio and capability estimation result. To face the latter
condition, we propose a length-bounded hybrid CPU/GPU pattern matching algorithm in this paper,
as illustrated in the next section.

3. Length-Bounded Hybrid CPU/GPU Pattern Matching Algorithm

3.1. Overall Architecture and Procedure

Figure 2 illustrates the architecture of LHPMA. As for the cooperation, the CPU is responsible
for pre-filtering the packets, and the GPU is responsible for inspecting the packets by full pattern
matching. Here, an additional process, the “length-bounded separation algorithm” (LBSA), is
executed by the CPU. Different from the previous work, the incoming packets pass the LBSA before
they are sent to the prefilter buffer in the CPU host memory, in which those packets to be processed
by the prefilter are stored. The task of LBSA is checking the payload lengths and determining the
allocation of those packets. The LBSA is described in the next subsection. After the LBSA process,
some packets are stored in the prefilter buffer and thus delivered to the CPU prefiltering (dashed-
line arrow); on the other hand, the other packets are directly sent to the full-matching buffer in the
CPU host memory (dotted-line arrow), which is used for storing the packets to be processed by the
GPU for full pattern matching. In addition, when the prefilter buffer becomes full, the prefiltering is
executed; prefiltered packets are also sent to the full-matching buffer (dashed arrow).

Once the full matching buffer is full, the buffered packets are transferred to the GPU device
memory and accessed by the full pattern matching algorithm. Here, the full pattern matching is
implemented using the AC algorithm, which requires the lookup tables (state transition table, accept
states table and failure states table) being copied to the GPU texture memory to accelerate the
inspection speed because of the much lower access latency. Finally, the matched result from the
full pattern matching algorithm is sent back to the CPU. Figure 3 illustrates the overall procedure
of LHPMA.

Figure 1. Hybrid CPU/GPU pattern matching algorithms.

Nevertheless, the HPMA performance may be restricted under the following conditions: (a) all
incoming packets are finally delivered to the GPU, causing redundant operations rather than directly
delivering packets to the GPU; and (b) the input traffic consists of varying length packets that
cause execution time inconsistency of each thread in parallel processing. For these limitations,
we have proposed another design, a capability-based hybrid CPU/GPU pattern matching algorithm
(CHPMA) [29] to face the former condition. The CHPMA first estimates the CPU and GPU processing
capability of the system, and, during runtime, the CHPMA can automatically perform the processing
selection according to the historical filtration ratio and capability estimation result. To face the latter
condition, we propose a length-bounded hybrid CPU/GPU pattern matching algorithm in this paper,
as illustrated in the next section.

3. Length-Bounded Hybrid CPU/GPU Pattern Matching Algorithm

3.1. Overall Architecture and Procedure

Figure 2 illustrates the architecture of LHPMA. As for the cooperation, the CPU is responsible
for pre-filtering the packets, and the GPU is responsible for inspecting the packets by full pattern
matching. Here, an additional process, the “length-bounded separation algorithm” (LBSA), is executed
by the CPU. Different from the previous work, the incoming packets pass the LBSA before they are
sent to the prefilter buffer in the CPU host memory, in which those packets to be processed by the
prefilter are stored. The task of LBSA is checking the payload lengths and determining the allocation
of those packets. The LBSA is described in the next subsection. After the LBSA process, some packets
are stored in the prefilter buffer and thus delivered to the CPU prefiltering (dashed-line arrow); on the
other hand, the other packets are directly sent to the full-matching buffer in the CPU host memory
(dotted-line arrow), which is used for storing the packets to be processed by the GPU for full pattern
matching. In addition, when the prefilter buffer becomes full, the prefiltering is executed; prefiltered
packets are also sent to the full-matching buffer (dashed arrow).

Once the full matching buffer is full, the buffered packets are transferred to the GPU device
memory and accessed by the full pattern matching algorithm. Here, the full pattern matching is
implemented using the AC algorithm, which requires the lookup tables (state transition table, accept
states table and failure states table) being copied to the GPU texture memory to accelerate the inspection
speed because of the much lower access latency. Finally, the matched result from the full pattern
matching algorithm is sent back to the CPU. Figure 3 illustrates the overall procedure of LHPMA.

Algorithms 2017, 10, 16 5 of 13Algorithms 2017, 10, 16 5 of 13

Figure 2. LHPMA architecture.

Figure 3. LHPMA overall procedure.

Figure 2. LHPMA architecture.

Algorithms 2017, 10, 16 5 of 13

Figure 2. LHPMA architecture.

Figure 3. LHPMA overall procedure.

Figure 3. LHPMA overall procedure.

Algorithms 2017, 10, 16 6 of 13

3.2. Length-Bounded Separation Algorithm

Algorithm 1 describes the LBSA. This algorithm categorizes the incoming packets in advance
according to a pre-determined payload length bound in order to reduce the payload length diversity
for parallel processing. Given the current processing of packet payload set P and the length bound Lb,
the LBSA can determine the payloads in P with Lb.

Initially, the prefilter buffer TPB and the full matching buffer TFB are empty. In addition, a payload
set Pfiltered is declared to temporarily store the prefiltering results, which is also empty (Lines 1–3).
A variable idxPB, the index of prefilter buffer entries, is set to zero (Line 4). For each payload in P,
the LBSA measures the payload length of packet Pi (denoted as Li) for comparing it with the length
bound Lb (Lines 5 and 6). If the payload length Li exceeds the bound (longer than Lb), the system
stores this packet in the prefilter buffer TPB and waits for the CPU prefiltering process (Lines 7 and 8).
After the packet is stored in TPB, the index of prefilter buffer entries idxPB increases for the next insert
(Line 9). Otherwise, this packet will be stored in the full matching buffer TFB to wait for the GPU full
pattern matching (Lines 10 and 11).

Once the prefilter buffer TPB is full, all of the packets in this buffer are delivered to the prefilter for
processing. Then, the resulting payload set Pfiltered is obtained and stored in the full matching buffer
TFB (Lines 14–16), and the system clears the data stored in Pfiltered, TPB and idxPB and continues the
process for the next batch of incoming packets (Lines 17–19). On the other hand, once the full matching
buffer TFB becomes full, all of the packets in this buffer are copied to the GPU device memory and the
full pattern matching process is executed. Finally, the matching result is returned, and system clears
the data stored in TFB (Lines 22–24).

Algorithm 1: Length-Bounded Separation Algorithm (LBSA).

Input: P (packet payload set) and Lb (length boundary).
1 TPB ← empty; // Prefilter buffer
2 TFB ← empty; // Full matching buffer
3 Pfiltered ← empty; // Prefiltered payloads
4 idxPB ← 0; // Index of prefilter buffer
5 foreach Pi do
6 Li ← payload length of Pi;
7 if Li > Lb then
8 TPB [idxPB]← Pi; // store Pi in prefilter buffer
9 idxPB ← idxPB + 1;

10 else
11 TFB ← TFB ∪ Pi; // store Pi in full matching buffer
12 end
13
14 if TPB is full then
15 Pfiltered ← prefiltering(TPB); // execute prefiltering algorithm and
16 TFB ← TFB ∪ Pfiltered; // store Pfiltered in full matching buffer
17 Pfiltered ← empty;
18 TPB ← empty;
19 idxPB ← 0;
20 end
21
22 if TFB is full then
23 result← fullmatching(TFB); // execute full matching algorithm and
24 TFB ← empty; // return the matching result
25 end
26 end

Algorithms 2017, 10, 16 7 of 13

In this design, shorter packet payloads will be processed by the GPU that benefits the overall
efficiency. Since using short packets is a typical way to attack [30], a large number of packets can be
generated and sent in a shorter time; shorter packets are more likely malicious. If such packets are
sent to the GPU directly, the redundant operations of CPU prefiltering caused by these packets can be
reduced. Moreover, shorter packets can be collected into a larger number of packets that is favorable
for the GPU because of much higher parallel processing power. On the other hand, longer packets
may possibly pass the prefilter without being delivered to the GPU for complete inspection. Longer
packet payloads—namely, most of the packet bytes—can be reduced by the prefilter to offload the
GPU processing and decrease the data transfer latency.

4. Experiments

In this section, the experiments are demonstrated, including the experimental setup and results.
In the experiments, both the performance and comparison are illustrated.

4.1. Experimental Setup

The prefilter and full pattern matching algorithms were implemented respectively based on the
platform of Open Multi-Processing (OpenMP) [31] and NVIDIA’s (Nvidia Corporation, Santa Clara,
CA, USA) Compute Unified Device Architecture (CUDA) [32–35] programmed with multithreading
for parallel processing. The hardware for this experiment is shown in Table 1. The CPU and GPU
used here were respectively Intel Core i7-3770 (Intel Corporation, Santa Clara, CA, USA) with four
processor cores and NVIDIA GeForce GTX680 (NVIDIA Corporation, Santa Clara, CA, USA) with
1536 processor cores. For the parameters, the number of blocks and the number of threads per block
were, respectively, 128 and 64 for the CUDA setting. In addition, the sizes of full matching buffer and
pre-filter buffer were, respectively, 256 MB and 1 MB for the configuration.

Table 1. Hardware specification in the experiments.

Device Specification

CPU
Intel Core i7-3770 (3.40 GHz)
Number of cores: 4
Host memory: 8 GB DDR3

GPU
NVIDIA GeForce GTX680 (1058 MHz)
Number of cores: 1536
Device memory: 2 GB GDDR5

We took the Snort rules 2008 [19], from which we extracted and generated the pattern set for the
experiment. The pattern lengths range from 1 to 208 bytes with an average of 13.8 bytes. The lookup
tables for prefilter and full pattern matching algorithms were generated with the generated pattern set
and loaded to our system. A real packet trace was used as the input of incoming packets, which is the
web traffic extracted from the portal websites of Google, Amazon and Yahoo. Table 2 lists the payload
length statistics of the used packet trace, showing that this trace consists of various-length packets.

When the system started, those packets from the trace were loaded, allocated and inspected.
The execution times of LHPMA and other methods being compared were measured and recorded by
the system during the experiment; finally, the throughput results were calculated. In addition, the
system also recorded other information such as the number of total incoming packets, full-matched
packets and their lengths, in order to observe the distribution and relationship between them.

Algorithms 2017, 10, 16 8 of 13

Table 2. Payload length distribution of input traffic.

Payload Length (Bytes) Count Ratio

<100 3334 0.009
100–300 6664 0.018
300–500 32,919 0.090
500–700 14,670 0.040
700–900 4326 0.012

900–1100 3946 0.011
1100–1300 4441 0.012

>1300 297,419 0.809

4.2. Experimental Results

Figures 4–8 show the preliminary experiment results, in which the notations “LHPMA-AC” and
“HPMA-AC”, respectively, indicate the LHPMA and HPMA matching methods, and both methods
ported the AC algorithm to handle the full pattern matching task. On the other hand, the notations
“AC-GPU” and “AC-CPU” are the matching methods that directly inspect the packets by the AC
algorithm using the GPU and CPU, respectively. Before exhibiting the result of LHPMA, we first
discuss some factors that affect the GPU processing performance. Figure 4 illustrates the data transfer
rate between the CPU and GPU with different size of the full matching buffer. The x-axis represents
the buffer sizes, and the y-axis indicates the average data transfer rates performed in Gbps. It can be
observed that the data transfer rate presented was very low when the buffer size was small; namely,
few packet payloads were transferred at one time, and the overall GPU overhead would be significantly
high. For instance, when the buffer size was 0.25 MB, the data transfer rate was 1.95 Gbps. On the
other hand, when the buffer size was large enough, more packet payloads were transferred together at
one time, and the performed data transfer rate would be higher. For instance, when the buffer size
was 256 MB, the data transfer rate was 35.1 Gbps. Note that the optimal solution is not setting the full
matching buffer size as large as possible, since too large a buffer size may cause the packet payloads in
this buffer to wait for too much time and thus affect the overall performance. Therefore, the proper
choice was located at the turning point of the data transfer rate convergence, 256 MB.Algorithms 2017, 10, 16 9 of 13

Figure 4. The data transfer rate between CPUs and GPUs with different full matching buffer sizes.

Figure 5. The GPUs with different full matching buffer sizes.

Figure 6 presents the GPU performance with different lengths of payload sets. Here, a total of
six payload sets were prepared, which are 250-byte to 1460-byte (the maximum length of payload)
long, as represented in the x-axis. The y-axis indicates the average throughputs performed in Gbps.
The result shows that shorter payloads are favorable to the GPU efficiency, in which the GPU
performed up to 8.0 Gbps with a 250-byte set. As the payload length increased, an obvious
performance degradation occurred in the case of 750-byte set, and the throughput gradually
decreased to 5.9 Gbps with a 1460-byte set. Since the number of short payloads in the GPU device
memory is more than that of longer payloads, more benefits from multithread parallel processing can
be made due to the number of GPU cores being much larger than the number of CPU cores.

With respect to the LHPMA results, we initially observe the effect of payload length bound on
LHPMA. The LHPMA performance, with the packet trace described in the previous subsection as
input, and different settings of bound Lb are displayed in Figure 7. The x-axis represents the selected
Lb values, and the y-axis indicates the average throughputs in Gbps. According to this figure, the case
of Lb = 0 indicates that all of the incoming packets passed the prefilter with performance
12.7 Gbps. As the Lb value increased, the performance upgraded to 14.0 Gbps. In particular, a specific
case appeared with Lb = 750, which corresponded to the result in Figure 6. In other words, since the

Figure 4. The data transfer rate between CPUs and GPUs with different full matching buffer sizes.

Figure 5 illustrates the GPU performance with different sizes of the full matching buffer. The x-axis
represents the buffer sizes, and the y-axis indicates the average throughputs performed in Gbps.
Here, both short (100-byte) and long (1460-byte) packet payload sets were prepared, which were
represented with “AC-GPU-100” and “AC-GPU-1460”, respectively. As Figure 4 presented, the

Algorithms 2017, 10, 16 9 of 13

performance became low with small buffer size, especially in the case of AC-GPU-1460 with 2 MB
buffer size. In addition to the data transfer rate, the number of packet payloads were few in this case,
resulting in low GPU thread utilization and thus degrading overall performance. In other words, the
input payload set length also affects the GPU efficiency. Shorter packets can be collected into a larger
number of packets, which is favorable for the parallel processing power of GPU—hence, the efficiency
of AC-GPU-100 displayed from 5.37 Gbps to 9.03 Gbps, which was higher than that of AC-GPU-1460,
from 2.71 Gbps to 6.10 Gbps.

Figure 6 presents the GPU performance with different lengths of payload sets. Here, a total of six
payload sets were prepared, which are 250-byte to 1460-byte (the maximum length of payload) long, as
represented in the x-axis. The y-axis indicates the average throughputs performed in Gbps. The result
shows that shorter payloads are favorable to the GPU efficiency, in which the GPU performed up to
8.0 Gbps with a 250-byte set. As the payload length increased, an obvious performance degradation
occurred in the case of 750-byte set, and the throughput gradually decreased to 5.9 Gbps with a
1460-byte set. Since the number of short payloads in the GPU device memory is more than that of
longer payloads, more benefits from multithread parallel processing can be made due to the number
of GPU cores being much larger than the number of CPU cores.

Algorithms 2017, 10, 16 9 of 13

Figure 4. The data transfer rate between CPUs and GPUs with different full matching buffer sizes.

Figure 5. The GPUs with different full matching buffer sizes.

Figure 6 presents the GPU performance with different lengths of payload sets. Here, a total of
six payload sets were prepared, which are 250-byte to 1460-byte (the maximum length of payload)
long, as represented in the x-axis. The y-axis indicates the average throughputs performed in Gbps.
The result shows that shorter payloads are favorable to the GPU efficiency, in which the GPU
performed up to 8.0 Gbps with a 250-byte set. As the payload length increased, an obvious
performance degradation occurred in the case of 750-byte set, and the throughput gradually
decreased to 5.9 Gbps with a 1460-byte set. Since the number of short payloads in the GPU device
memory is more than that of longer payloads, more benefits from multithread parallel processing can
be made due to the number of GPU cores being much larger than the number of CPU cores.

With respect to the LHPMA results, we initially observe the effect of payload length bound on
LHPMA. The LHPMA performance, with the packet trace described in the previous subsection as
input, and different settings of bound Lb are displayed in Figure 7. The x-axis represents the selected
Lb values, and the y-axis indicates the average throughputs in Gbps. According to this figure, the case
of Lb = 0 indicates that all of the incoming packets passed the prefilter with performance
12.7 Gbps. As the Lb value increased, the performance upgraded to 14.0 Gbps. In particular, a specific
case appeared with Lb = 750, which corresponded to the result in Figure 6. In other words, since the

Figure 5. The GPUs with different full matching buffer sizes.

Algorithms 2017, 10, 16 10 of 13

payload length diversity is reduced, some performance gains were thus obtained. On the other hand,
the case of Lb = 1460 revealed a performance degradation of 5.9 Gbps. This is because all of the
incoming packets were sent to the GPU without passing the prefiltering. The degradation was caused
by both data transfer latency and payload length diversity.

For demonstrating the improvement to the previous work HPMA and the CPU/GPU
cooperation that is more efficient than using either CPU only or GPU only, the comparison is
displayed in Figure 8. The input traffic is also the packet trace described in the previous subsection.
The x-axis represents the different matching methods, and the y-axis indicates the average
throughputs performed in Gbps. Here, the middle of the bound, Lb = 750, is chosen for the LHPMA-
AC. According to this figure, the LHPMA-AC, HPMA-AC, AC-GPU and AC-CPU, respectively,
performed 13.8, 12.7, 5.9 and 4.6 Gbps, indicating that the LHPMA enhanced performance more than
the HPMA and outperformed the AC-GPU and the AC-CPU methods by 2.3 and 3.0 times,
respectively.

Figure 6. The performance of GPU processing with different lengths of input payloads.

Figure 7. The performance of LHPMA with different payload length boundaries.

Figure 6. The performance of GPU processing with different lengths of input payloads.

With respect to the LHPMA results, we initially observe the effect of payload length bound on
LHPMA. The LHPMA performance, with the packet trace described in the previous subsection as

Algorithms 2017, 10, 16 10 of 13

input, and different settings of bound Lb are displayed in Figure 7. The x-axis represents the selected Lb
values, and the y-axis indicates the average throughputs in Gbps. According to this figure, the case of
Lb = 0 indicates that all of the incoming packets passed the prefilter with performance 12.7 Gbps. As the
Lb value increased, the performance upgraded to 14.0 Gbps. In particular, a specific case appeared
with Lb = 750, which corresponded to the result in Figure 6. In other words, since the payload length
diversity is reduced, some performance gains were thus obtained. On the other hand, the case of
Lb = 1460 revealed a performance degradation of 5.9 Gbps. This is because all of the incoming packets
were sent to the GPU without passing the prefiltering. The degradation was caused by both data
transfer latency and payload length diversity.

For demonstrating the improvement to the previous work HPMA and the CPU/GPU cooperation
that is more efficient than using either CPU only or GPU only, the comparison is displayed in Figure 8.
The input traffic is also the packet trace described in the previous subsection. The x-axis represents
the different matching methods, and the y-axis indicates the average throughputs performed in Gbps.
Here, the middle of the bound, Lb = 750, is chosen for the LHPMA-AC. According to this figure, the
LHPMA-AC, HPMA-AC, AC-GPU and AC-CPU, respectively, performed 13.8, 12.7, 5.9 and 4.6 Gbps,
indicating that the LHPMA enhanced performance more than the HPMA and outperformed the
AC-GPU and the AC-CPU methods by 2.3 and 3.0 times, respectively.

Algorithms 2017, 10, 16 10 of 13

payload length diversity is reduced, some performance gains were thus obtained. On the other hand,
the case of Lb = 1460 revealed a performance degradation of 5.9 Gbps. This is because all of the
incoming packets were sent to the GPU without passing the prefiltering. The degradation was caused
by both data transfer latency and payload length diversity.

For demonstrating the improvement to the previous work HPMA and the CPU/GPU
cooperation that is more efficient than using either CPU only or GPU only, the comparison is
displayed in Figure 8. The input traffic is also the packet trace described in the previous subsection.
The x-axis represents the different matching methods, and the y-axis indicates the average
throughputs performed in Gbps. Here, the middle of the bound, Lb = 750, is chosen for the LHPMA-
AC. According to this figure, the LHPMA-AC, HPMA-AC, AC-GPU and AC-CPU, respectively,
performed 13.8, 12.7, 5.9 and 4.6 Gbps, indicating that the LHPMA enhanced performance more than
the HPMA and outperformed the AC-GPU and the AC-CPU methods by 2.3 and 3.0 times,
respectively.

Figure 6. The performance of GPU processing with different lengths of input payloads.

Figure 7. The performance of LHPMA with different payload length boundaries. Figure 7. The performance of LHPMA with different payload length boundaries.Algorithms 2017, 10, 16 11 of 13

Figure 8. The performance of LHPMA and comparison with the previous methods.

Since the conditions of other related work were quite different each other (e.g., configuration
setting, input packet traffic set, pattern set and hardware specification), it is hard to make
comparisons. Therefore, we provide a presentation referred from [26] that illustrates the efficiency
per cost of our method, as presented in Table 3. According to the resulting LHPMA throughput
(13.8 Gbps) and the total processor cost of CPU and GPU being $875, the throughput per dollar of the
LHPMA was 16.15 Mbps/$.

Table 4 presents the full-matched (considered intrusive) packet distribution of the input packet
trace traffic. The result shows that most of the short packets are intrusive; even the number of longer
packets are much more in this case, and the ratio of intrusion in the shorter packets are up to 88%
higher than that in longer packets. It indicates that shorter packets are usually selected as the way to
generate the intrusion.

Table 3. LHPMA efficiency per cost.

Processor Cost ($) Throughput (Gbps) Throughput per Dollar (Mbps/$)
$875 13.8 16.15

Table 4. The ratio of number of full-matched packets and total number of packets in input traffic.

Lb = 750 Full-Matched/Total Packets Ratio
Li ≤ Lb 54,511/61,929 88%
Li > Lb 80,549/328,991 24%

5. Conclusions

In this paper, the LHPMA, a pattern matching algorithm based on CPU and GPU cooperation
for packet inspection is proposed, which is an enhanced version of our HPMA to improve efficiency
in the case of various payload lengths in input traffic. This work achieves the goal by automatically
categorizing and allocating the incoming packets to the corresponding process, in which the
categorizing depends on the pre-determined payload length bound to reduce the payload length
diversity. We present the experiments, which consists of the GPU efficiency affected by the payload
sets with different lengths, the LHPMA performance affected by different payload length bounds
and the performance comparison with other methods. The results demonstrate that the LHPMA can
outperform the HPMA and the CPU and GPU individual processing methods. Since the LHPMA is
an initial design, future work involves analyzing the input traffic with different payload length
distributions and processing overhead to have a more advanced design of the LHPMA method.

Figure 8. The performance of LHPMA and comparison with the previous methods.

Algorithms 2017, 10, 16 11 of 13

Since the conditions of other related work were quite different each other (e.g., configuration
setting, input packet traffic set, pattern set and hardware specification), it is hard to make comparisons.
Therefore, we provide a presentation referred from [26] that illustrates the efficiency per cost of our
method, as presented in Table 3. According to the resulting LHPMA throughput (13.8 Gbps) and
the total processor cost of CPU and GPU being $875, the throughput per dollar of the LHPMA was
16.15 Mbps/$.

Table 3. LHPMA efficiency per cost.

Processor Cost ($) Throughput (Gbps) Throughput per Dollar (Mbps/$)

$875 13.8 16.15

Table 4 presents the full-matched (considered intrusive) packet distribution of the input packet
trace traffic. The result shows that most of the short packets are intrusive; even the number of longer
packets are much more in this case, and the ratio of intrusion in the shorter packets are up to 88%
higher than that in longer packets. It indicates that shorter packets are usually selected as the way to
generate the intrusion.

Table 4. The ratio of number of full-matched packets and total number of packets in input traffic.

Lb = 750 Full-Matched/Total Packets Ratio

Li ≤ Lb 54,511/61,929 88%
Li > Lb 80,549/328,991 24%

5. Conclusions

In this paper, the LHPMA, a pattern matching algorithm based on CPU and GPU cooperation
for packet inspection is proposed, which is an enhanced version of our HPMA to improve efficiency
in the case of various payload lengths in input traffic. This work achieves the goal by automatically
categorizing and allocating the incoming packets to the corresponding process, in which the
categorizing depends on the pre-determined payload length bound to reduce the payload length
diversity. We present the experiments, which consists of the GPU efficiency affected by the payload
sets with different lengths, the LHPMA performance affected by different payload length bounds
and the performance comparison with other methods. The results demonstrate that the LHPMA can
outperform the HPMA and the CPU and GPU individual processing methods. Since the LHPMA
is an initial design, future work involves analyzing the input traffic with different payload length
distributions and processing overhead to have a more advanced design of the LHPMA method.

Acknowledgments: This work was supported in part by the High Speed Intelligent Communication (HSIC)
Research Center of Chang Gung University, Taoyuan, Taiwan, and by grants from the Ministry of Science
and Technology of Taiwan (MOST-101-2221-E-009-004-MY3 and MOST-102-2221-E-182-034) and Chang Gung
Memorial Hospital (BMRP 942).

Author Contributions: Yi-Shan Lin and Chun-Liang Lee conceived and designed the experiments; Yi-Shan Lin
performed the experiments; Yi-Shan Lin and Chun-Liang Lee analyzed the data; Yi-Shan Lin contributed
reagents/materials/analysis tools; and Yi-Shan Lin, Chun-Liang Lee and Yaw-Chung Chen wrote the paper.
All authors have read and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Handley, M.; Paxson, V.; Kreibich, C. Network intrusion detection: Evasion, traffic normalization, and
end-to-end protocol semantics. In Proceedings of the Symposium on USENIX Security, Washington, DC,
USA, 13–17 August 2001; pp. 115–131.

Algorithms 2017, 10, 16 12 of 13

2. Kruegel, C.; Valeur, F.; Vigna, G.; Kemmerer, R. Stateful intrusion detection for high-speed networks.
In Proceedings of Symposium on Security and Privacy, Oakland, CA, USA, 12–15 May 2002; pp. 285–293.

3. Paxson, V. Bro: A system for detecting network intruders in real-time. Comput. Netw. 1999, 31, 2435–2463.
[CrossRef]

4. Tian, D.; Liu, Y.H.; Xiang, Y. Large-scale network intrusion detection based on distributed learning algorithm.
Int. J. Inf. Secur. 2009, 8, 25–35. [CrossRef]

5. Beghdad, R. Critical study of neural networks in detecting intrusions. Comput. Secur. 2009, 27, 168–175.
[CrossRef]

6. Wu, J.; Peng, D.; Li, Z.; Zhao, L.; Ling, H. Network intrusion detection based on a general regression neural
network optimized by an improved artificial immune algorithm. PLoS ONE 2015, 10, e0120976. [CrossRef]
[PubMed]

7. Antonatos, S.; Anagnostakis, K.G.; Markatos, E.P. Generating realistic workloads for network intrusion
detection systems. ACM SIGSOFT Softw. Eng. Notes 2004, 29, 207–215. [CrossRef]

8. Cabrera, J.B.; Gosar, J.; Lee, W.; Mehra, R.K. On the statistical distribution of processing times in network
intrusion detection. In Proceedings of the Conference on Decision and Control, Woburn, MA, USA,
14–17 December 2004; Volume 1, pp. 75–80.

9. General-Purpose Computation Using Graphics Hardware. Available online: http://www.gpgpu.org
(accessed on 24 November 2016).

10. Lee, C.L.; Lin, Y.S.; Chen, Y.C. A hybrid CPU/GPU pattern matching algorithm for deep packet inspection.
PLoS ONE 2015, 10, e0139301. Available Online: http://journals.plos.org/plosone/article?id=10.1371/
journal.pone.0139301 (accessed on 24 November 2016). [CrossRef] [PubMed]

11. Knuth, D.E.; Morris, J.; Pratt, V. Fast pattern matching in strings. SIAM J. Comput. 1977, 6, 127–146. [CrossRef]
12. Boyer, R.S.; Moore, J.S. A fast string searching algorithm. Commun. ACM 1977, 20, 762–772. [CrossRef]
13. Aho, A.V.; Corasick, M.J. Efficient string matching: An aid to bibliographic search. Commun. ACM 1975, 18,

333–340. [CrossRef]
14. Wu, S.; Manber, U. A Fast Algorithm for Multi-Pattern Searching; Department of Computer Science, University

of Arizona: Tucson, AZ, USA, 1994.
15. Scarpazza, D.P.; Villa, O.; Petrini, F. Exact multi-pattern string matching on the cell/B.E. processor.

In Proceedings of the Conference on Computing Frontiers, Ischia, Italy, 5–7 May 2008; pp. 33–42.
16. Schuff, D.L.; Choe, Y.R.; Pai, V.S. Conservative vs. optimistic parallelization of stateful network intrusion

detection. In Proceedings of the International Symposium on Performance Analysis of Systems and Software,
Philadelphia, PA, USA, 20–22 April 2008; pp. 32–43.

17. Vallentin, M.; Sommer, R.; Lee, J.; Leres, C.; Paxson, V.; Tierney, B. The NIDS cluster: Scalable, stateful
network intrusion detection on commodity hardware. In Proceedings of the International workshop on
Recent Advances in Intrusion Detection, Queensland, Australia, 5–7 September 2007; pp. 107–126.

18. Jacob, N.; Brodley, C. Offloading IDS computation to the GPU. In Proceedings of the Computer Security
Applications Conference, Miami Beach, FL, USA, 11–15 December 2006; pp. 371–380.

19. Snort.Org. Available online: http://www.snort.org (accessed on 24 November 2016).
20. Vasiliadis, G.; Antonatos, S.; Polychronakis, M.; Markatos, E.P.; Iasnnidis, S. Gnort: High performance

network intrusion detection using graphics processors. In Proceedings of the International Workshop on
Recent Advances in Intrusion Detection, Cambridge, MA, USA, 15–17 September 2008; pp. 116–134.

21. Vasiliadis, G.; Polychronakis, M.; Ioannidis, S. MIDeA: A multi-parallel intrusion detection architecture.
In Proceedings of the Conference on Computer and Communication Security, Chicago, IL, USA, 17–21
October 2011; pp. 297–308.

22. Vespa, L.J.; Weng, N. GPEP: Graphics processing enhanced pattern-matching for high-performance deep
packet inspection. In Proceedings of the International Conference on Internet of Things and International
Conference on Cyber, Physical and Social Computing, Dalian, China, 19–22 October 2011; pp. 74–81.

23. Jamshed, M.A.; Lee, J.; Moon, S.; Yun, I.; Kim, D.; Lee, S.; Yi, Y.; Park, K. Kargus: A highly-scalable
software-based intrusion detection system. In Proceedings of the ACM conference on Computer and
Communications Security, Raleigh, NC, USA, 16–18 October 2012; pp. 317–328.

24. Zu, Y.; Yang, M.; Xu, Z.; Wang, L.; Tian, X.; Peng, K.; Dong, Q. GPU-based NFA implementation for memory
efficient high speed regular expression matching. ACM SIGPLAN Not. 2012, 47, 129–140. [CrossRef]

http://dx.doi.org/10.1016/S1389-1286(99)00112-7
http://dx.doi.org/10.1007/s10207-008-0061-2
http://dx.doi.org/10.1016/j.cose.2008.06.001
http://dx.doi.org/10.1371/journal.pone.0120976
http://www.ncbi.nlm.nih.gov/pubmed/25807466
http://dx.doi.org/10.1145/974043.974078
http://www.gpgpu.org
http://journals. plos.org/plosone/article?id=10.1371/journal.pone.0139301
http://journals. plos.org/plosone/article?id=10.1371/journal.pone.0139301
http://dx.doi.org/10.1371/journal.pone.0139301
http://www.ncbi.nlm.nih.gov/pubmed/26437335
http://dx.doi.org/10.1137/0206024
http://dx.doi.org/10.1145/359842.359859
http://dx.doi.org/10.1145/360825.360855
http://www.snort.org
http://dx.doi.org/10.1145/2370036.2145833

Algorithms 2017, 10, 16 13 of 13

25. Yu, X.; Becchi, M. GPU acceleration of regular expression matching for large datasets: Exploring the
implementation space. In Proceedings of the ACM International Conference on Computing Frontiers, Ischia,
Italy, 14–16 May 2013; p. 18.

26. Jiang, H.; Zhang, G.; Xie, G.; Salamatian, K.; Mathy, L. Scalable high-performance parallel design for network
intrusion detection systems on many-core processors. In Proceedings of the ACM/IEEE Symposium on
Architectures for Networking and Communications Systems, San Jose, CA, USA, 21–22 October 2013;
pp. 137–146.

27. Valgenti, V.C.; Kim, M.S.; Oh, S.I.; Lee, I. REduce: Removing redundancy from regular expression matching
in network security. In Proceeding of the International Conference on Computer Communication and
Networks, Las Vegas, NV, USA, 3–6 August 2015; pp. 1–10.

28. Han, S.; Jang, K.; Park, K.; Moon, S. PacketShader: A GPU-accelerated software router. ACM SIGCOMM
Comput. Commun. Rev. 2011, 40, 195–206. [CrossRef]

29. Lin, Y.S.; Lee, C.L.; Chen, Y.C. A capability-based hybrid CPU/GPU pattern matching algorithm for deep
packet inspection. Int. J. Comput. Commun. Eng. 2016, 5, 321–330. [CrossRef]

30. Douligeris, C.; Serpanos, D.N. Network Security: Current Status and Future Directions; John Wiley & Sons:
Hoboken, NJ, USA, 2007.

31. OpenMP. Available online: http://openmp.org (accessed on 24 November 2016).
32. Fatahalian, K.; Houston, M. A closer look at GPUs. Commun. ACM 2008, 51, 50–57. [CrossRef]
33. Nickolls, J.; Buck, I.; Garland, M.; Skadron, K. Scalable parallel programming with CUDA. ACM Queue 2008,

6, 40–53. [CrossRef]
34. NVIDIA. CUDA Architecture Introduction & Overview. Available online: http://developer.download.

nvidia.com/compute/cuda/docs/CUDA_Architecture_Overview.pdf (accessed on 24 November 2016).
35. NVIDIA. CUDA C Programming Guide. Available online: http://docs.nvidia.com/cuda/pdf/CUDA_C_

Programming_Guide.pdf (accessed on 24 November 2016).

© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/1851275.1851207
http://dx.doi.org/10.17706/IJCCE.2016.5.5.321-330
http://openmp.org
http://dx.doi.org/10.1145/1400181.1400197
http://dx.doi.org/10.1145/1365490.1365500
http://developer.download.nvidia.com/compute/cuda/docs/CUDA_Architecture_Overview.pdf
http://developer.download.nvidia.com/compute/cuda/docs/CUDA_Architecture_Overview.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Length-Bounded Hybrid CPU/GPU Pattern Matching Algorithm
	Overall Architecture and Procedure
	Length-Bounded Separation Algorithm

	Experiments
	Experimental Setup
	Experimental Results

	Conclusions

