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Abstract: A modification to an existing iterative method for computing zeros with unknown
multiplicities of nonlinear equations or a system of nonlinear equations is presented. We introduce
preconditioners to nonlinear equations or a system of nonlinear equations and their corresponding
Jacobians. The inclusion of preconditioners provides numerical stability and accuracy. The different
selection of preconditioner offers a family of iterative methods. We modified an existing method in
a way that we do not alter its inherited quadratic convergence. Numerical simulations confirm the
quadratic convergence of the preconditioned iterative method. The influence of preconditioners is
clearly reflected in the numerically achieved accuracy of computed solutions.

Keywords: nonlinear equations; systems of nonlinear equations; singular Jacobian; roots with
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1. Introduction

The design of an iterative method for solving nonlinear equations and systems of nonlinear
equations is an active area of research. Many researchers have proposed iterative methods for solving
nonlinear and systems of nonlinear equations for finding simple zeros or zeros with multiplicity
greater than one [1–15]. The classical iterative method for solving nonlinear and systems of nonlinear
equations to find simple zeros is the Newton method, which offers quadratic convergence [16,17] under
certain conditions. When we are talking about the iterative method for solving nonlinear equations or
systems of nonlinear equations to find zeros with multiplicities greater than one, the classical Newton
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method requires a modification. The modified Newton method for finding zeros with multiplicity
greater than one for nonlinear equations can be written asz0 = initial guess

zk+1 = zk −m φ(zk)
φ′(zk)

, k = 0, 1, · · · ,
(1)

where φ(zk) = 0 is the nonlinear equation. Jose et al. [18] proposed the multidimensional version of
of (1) as {

z0 = initial guess

zk+1 = zk −ΦΦΦ′(zk)
−1 diag(m)ΦΦΦ(zk), k = 0, 1, · · · ,

(2)

where m = [m1, m2, · · · , mn]T is a vector of multiplicities for a system of nonlinear equations ΦΦΦ(z) = 0,
and diag(·) represents a diagonal matrix that keeps the vector at its main diagonal. The proof of the
quadratic convergence of (2) is provided in [18]. Wu [19] proposed a variant of the Newton method
with the help of an auxiliary or a preconditioner exponential function. Suppose we have a system of
nonlinear equations ΦΦΦ(z) = 0, and we define a new system of nonlinear equations with a nonlinear
preconditioner function that has the same root

ΨΨΨ(z) = ev�z �ΦΦΦ(z) = 0, (3)

where � is the element-wise multiplication of two vectors. The application of the Newton method
for (3) is

zk+1 = zk −ΨΨΨ′(zk)
−1 ΨΨΨ(zk)

zk+1 = zk −
(
diag

(
ev�z) (ΦΦΦ′(z) + diag(v�ΦΦΦ(z))

))−1 ev�z �ΦΦΦ(z)

zk+1 = zk −
(
ΦΦΦ′(z) + diag(v�ΦΦΦ(z))

)−1 diag
(
ev�z)−1ev�z �ΦΦΦ(z)

zk+1 = zk −
(
ΦΦΦ′(z) + diag(v�ΦΦΦ(z))

)−1 ΦΦΦ(z).

(4)

The rate of convergence of (4) is quadratic. A modification [18] in (1) is proposed by using
a exponential preconditioner

ΨΨΨ(z) = ev�z �ΦΦΦ(z)1/m = 0, (5)

where 1/m = [1/m1, 1/m2, · · · , 1/mn]T and power of ΦΦΦ(z) is component-wise. The application of the
Newton method to (5) gives

zk+1 = zk −
(
ΦΦΦ′(z) + diag(v�ΦΦΦ(z))

)−1 diag(m)ΦΦΦ(z). (6)

The original idea of a nonlinear preconditioner function was proposed in [19]. Noor et al. [20]
proposed a Newton method with a general preconditioner. They defined a preconditioned system of
nonlinear equations as follows:

ΨΨΨ(z) = ΛΛΛ(z)�ΦΦΦ(z) = 0, (7)

where ΛΛΛ(z) 6= 0. Notice that the roots of ΨΨΨ(z) = 0 and ΦΦΦ(z) = 0 are the same because ΛΛΛ(z) 6= 0 for
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all z. The first order Fréchet derivative of (7) can be computed as

Ψi(z) = Φi(z) Λi(z)

∇Ψi(z)T = Φi(z)∇Λi(z)T + Λi(z)∇Φi(z)T , i = 1, 2, · · · , n
∇Ψ1(z)T

∇Ψ2(z)T

∇Ψ3(z)T

...
∇Ψn(z)T

 =


Φ1(z) 0 · · · 0

0 Φ2(z) · · · 0
0 0 · · · 0
...

...
...

...
0 0 · · · Φn(z)




∇Λ1(z)T

∇Λ2(z)T

∇Λ3(z)T

...
∇Λn(z)T

+


Λ1(z) 0 · · · 0

0 Λ2(z) · · · 0
0 0 · · · 0
...

...
...

...
0 0 · · · Λn(z)




∇Φ1(z)T

∇Φ2(z)T

∇Φ3(z)T

...
∇Φn(z)T


(8)

From (8), the Fréchet derivative of ΦΦΦ(z)�ΛΛΛ(z) is

(ΦΦΦ(z)�ΛΛΛ(z))′ = diag(ΦΦΦ(z))ΛΛΛ′(z) + diag(ΛΛΛ(z))ΦΦΦ′(z)

ΨΨΨ′(z) = diag(ΛΛΛ(z))ΦΦΦ′(z) + diag(ΦΦΦ(z))ΛΛΛ′(z)

ΨΨΨ′(z) = diag(ΛΛΛ(z))
(

ΦΦΦ′(z) + diag(ΦΦΦ(z))diag(ΛΛΛ(z))−1 ΛΛΛ′(z)
)

.

(9)

If we apply the Newton method to (7), we obtain

zk+1 = zk −
(

ΦΦΦ′(z) + diag(ΦΦΦ(z))diag(ΛΛΛ(z))−1 ΛΛΛ′(z)
)−1

diag(ΛΛΛ(z))−1 ΛΛΛ(z)�ΦΦΦ(z)

zk+1 = zk −
(

ΦΦΦ′(z) + diag(ΦΦΦ(z))diag(ΛΛΛ(z))−1ΛΛΛ′(z)
)−1

ΦΦΦ(z).
(10)

The convergence order of (10) is two. The iterative method (6) with a general preconditioner can
be written as

zk+1 = zk −
(

ΦΦΦ′(z) + diag(ΦΦΦ(z))diag(ΛΛΛ(z))−1ΛΛΛ′(z)
)−1

diag(m)ΦΦΦ(z). (11)

The convergence order of (11) is also two. The modified Newton method [17,21,22] for solving
nonlinear equations with unknown multiplicity can be developed in this way. We define a new function

s(z) =
φ(z)
φ′(z)

. (12)

The application of the Newton method to (12) gives

zk+1 = zk −
s(zk)

s′(zk)

zk+1 = zk −
φ′(zk)φ(zk)

φ′(zk)2 − φ′′(zk) φ(zk)
.

(13)

The order of convergence of (13) is two. Noor and his co-researchers [23] have constructed a
family of iterative methods for solving nonlinear equations with unknown multiplicity by introducing
a preconditioner. They defined a new function

q(z) =
φ(z) λ(z)

φ′(z)
(14)

and application of the Newton method to (14) gives



Algorithms 2017, 10, 17 4 of 9

zk+1 = zk −
q(zk)

q′(zk)

zk+1 = zk −
φ′(zk) φ(zk) λ(zk)

φ′(zk)(φ(zk) λ(zk))′ − φ′′(zk) φ(zk) λ(zk)
,

(15)

where λ(z) is a non-zero function. The order of convergence of (15) is two.

2. Proposed Method

When we observe (14), we can notice that the preconditioner is only introduced for φ(z), and not
for φ′(z). We will also introduce a preconditioner for φ′(z), and will show that the convergence order
of (14) is still quadratic. We define a new function

q(z) =
λ(z) φ(z)

(ω(z) φ(z))′
, (16)

and after applying the Newton method, we obtain

zk+1 = zk −
q(zk)

q′(zk)

zk+1 = zk −
(ω(zk) φ(zk))

′ λ(zk) φ(zk)

(ω(zk) φ(zk))
′ (λ(zk) φ(zk))

′ − (ω(zk) φ(zk))
′′ λ(zk) φ(zk)

,
(17)

where ω(z) is a non-zero function. For the purpose of generalization of the iterative method (17) to a
system of nonlinear equations, we define a new function Q(z)

Q(z) =
(
(ΩΩΩ(z)�ΦΦΦ(z))′

)−1
(ΛΛΛ(z)�ΦΦΦ(z)) = 0. (18)

The first order Fréchet derivative of (18) can be written as

Q′(z) =
((

(ΩΩΩ(z)�ΦΦΦ(z))′
)−1

)2 (
(ΩΩΩ(z)�ΦΦΦ(z))′

(
ΛΛΛ(z)�ΦΦΦ(z)

)′
− (ΩΩΩ(z)�ΦΦΦ(z))′ (ΩΩΩ(z)�ΦΦΦ(z))′′

(
(ΩΩΩ(z)�ΦΦΦ(z))′

)−1
(ΛΛΛ(z)�ΦΦΦ(z))

)
.

(19)

Further simplification of Q′(z)−1 Q(z) gives

Q′(z)−1 Q(z) =
(
(ΩΩΩ(z)�ΦΦΦ(z))′ (ΛΛΛ(z)�ΦΦΦ(z))′ − (ΩΩΩ(z)�ΦΦΦ(z))′ (ΩΩΩ(z)�ΦΦΦ(z))′′(

(ΩΩΩ(z)�ΦΦΦ(z))′
)−1

(ΛΛΛ(z)�ΦΦΦ(z))
)
(ΩΩΩ(z)�ΦΦΦ(z))′ (ΛΛΛ(z)�ΦΦΦ(z)) .

(20)

If compare the underlined expressions in (17) and (20), they are different. Generally,
it is not possible to commute (ΩΩΩ(z)�ΦΦΦ(z))′ with (ΩΩΩ(z)�ΦΦΦ(z))′′. However, we

artificially eliminate terms (ΩΩΩ(z)�ΦΦΦ(z))′ and
(
(ΩΩΩ(z)�ΦΦΦ(z))′

)−1
from expression

(ΩΩΩ(z)�ΦΦΦ(z))′ (ΩΩΩ(z)�ΦΦΦ(z))′′
(
(ΩΩΩ(z)�ΦΦΦ(z))′

)−1
, and get the following iterative method.

zk+1 = zk −
(
(ΩΩΩ(zk)�ΦΦΦ(zk))

′ (ΛΛΛ(zk)�ΦΦΦ(zk))
′ − (ΩΩΩ(zk)�ΦΦΦ(zk))

′′ (ΛΛΛ(zk)�ΦΦΦ(zk))
)−1

(ΩΩΩ(zk)�ΦΦΦ(zk))
′ (ΛΛΛ(zk)�ΦΦΦ(zk)) .

(21)

It can be seen that the iterative method (21) is not the application of the Newton method to (18).
The iterative method (17) for solving scalar nonlinear equations with unknown multiplicity and vector
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version (21) are exactly the same. We will only provide the proof of quadratic convergence for (21),
and it is automatically applicable to scalar version (17). An iterative method was proposed in [24] to
compute the zeros with multiplicity of system of nonlinear equations that used preconditioners for a
system of nonlinear equations, but not for the Jacobian of the system of nonlinear equations. Notice
that in this article we are introducing preconditioners for the system of nonlinear equations as well as
the Jacobian of the system of nonlinear equations.

3. Convergence

In the following theorem, we established the proof of quadratic convergence of (21).

Theorem 1. Let ΦΦΦ : D ⊆ Rn −→ Rn and κκκ = [κ1, κ2, κ3, · · · , κn]T ∈ D is a root of
ΦΦΦ(z) = (z− κκκ)m � P(z) = 0 with corresponding multiplicities vector m = [m1, m2, · · · , mn]T and non-zero
function P = [p1(z), p2(z), · · · , pn(z)]T with pi(z)( 6= 0) ∈ C2 (D). Then, there exists a subset E ⊆ D such
that—if we choose z0 ∈ E—the iterative method (21) has quadratic convergence in E.

Proof. Let εεε = z− κκκ then ΦΦΦ(z) = εεεm � P(z). Whenever we take vector power of a vector, it is always
component-wise. So, εεεm =

[
εm1

1 , εm2
2 , · · · , εmn

n
]T . The first-order Fréchet derivative of ΦΦΦ(z) is

ΦΦΦ′(z) = diag
(

m� εεεm−1 � P(z)
)
+ diag(εεεm)P′(z). (22)

The expressions for terms in (21) are computed as follows.

(ΩΩΩ(z)�ΦΦΦ(z))′ = diag
(

m� εεεm−1 � P(z)�ΩΩΩ(z)
)
+ diag(εεεm �ΩΩΩ(z))P′(z) + diag(εεεm � P(z))ΩΩΩ′(z)

(23)

(ΛΛΛ(z)�ΦΦΦ(z))′ = diag
(

m� εεεm−1 � P(z)�ΛΛΛ(z)
)
+ diag(εεεm �ΛΛΛ(z))P′(z) + diag(εεεm � P(z))ΛΛΛ′(z)

(24)

By using (23) and (24), we can write the product of (ΩΩΩ(z)�ΦΦΦ(z))′ and (ΛΛΛ(z)�ΦΦΦ(z))′ as

(ΩΩΩ(z)�ΦΦΦ(z))′ (ΛΛΛ(z)�ΦΦΦ(z))′ =
(

m2 � εεε2m−2 � P(z)2 �ΩΩΩ(z)�ΛΛΛ(z)
)
+ O

(
diag

(
εεε2m−1

))
. (25)

Next, we compute the second order Fréceht derivative of (ΩΩΩ(z)�ΦΦΦ(z))′. Let φφφ be a scalar vector
of length n

(ΩΩΩ(z)�ΦΦΦ(z))′φφφ = m� εεεm−1 � P(z)�ΩΩΩ(z)�φφφ + A(φφφ), (26)

where A(φφφ) = diag(εεεm �ΩΩΩ(z))P′(z)φφφ + diag(εεεm � P(z))ΩΩΩ′(z)φφφ. We again compute the first order
Fréchet derivative of (26)

(ΩΩΩ(z)�ΦΦΦ(z))′′φφφ =diag
(

m� (m− 1)� εεεm−1 �φφφ� P(z)�ΩΩΩ(z)
)

+ diag
(

m� εεεm−1 �φφφ
)
(P(z)�ΩΩΩ(z))′ + A′(φφφ)

(ΩΩΩ(z)�ΦΦΦ(z))′′(ΛΛΛ(z)�ΦΦΦ(z)) = diag
(

m� (m− 1)� εεε2m−2 � P(z)2 �ΩΩΩ(z)
)

+ diag
(

m� εεε2m−1 � P(z)
)
(P(z)�ΩΩΩ(z))′A′(ΛΛΛ(z)�ΦΦΦ(z))

(ΩΩΩ(z)�ΦΦΦ(z))′′(ΛΛΛ(z)�ΦΦΦ(z)) =diag
(

m� (m− 1)� εεε2m−2 � P(z)2 �ΩΩΩ(z)
)
+ O

(
diag

(
εεε2m−1

))
.

(27)
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By subtracting (27) from (25), we obtain

(ΩΩΩ(z)�ΦΦΦ(z))′ (ΛΛΛ(z)�ΦΦΦ(z))′ − (ΩΩΩ(z)�ΦΦΦ(z))′′(ΛΛΛ(z)�ΦΦΦ(z)) = diag
(

m� εεε2m−2 � P(z)2 �ΩΩΩ(z)
)

(I + O(diag(εεε))).(
(ΩΩΩ(z)�ΦΦΦ(z))′ (ΛΛΛ(z)�ΦΦΦ(z))′ − (ΩΩΩ(z)�ΦΦΦ(z))′′(ΛΛΛ(z)�ΦΦΦ(z))

)−1
=

(I−O(diag(εεε)))

(
diag

(
m� εεε2m−2 � P(z)2 �ΩΩΩ(z)

))−1

.

(28)

By using (26), the expression for (ΩΩΩ(z)�ΦΦΦ(z))′(ΛΛΛ(z)�ΦΦΦ(z)) is

(ΩΩΩ(z)�ΦΦΦ(z))′(ΛΛΛ(z)�ΦΦΦ(z)) = m� εεε2m−1 � P(z)2 �ΩΩΩ(z)� (1 + O(εεε)). (29)

From (28) and (29), we get(
(ΩΩΩ(z)�ΦΦΦ(z))′ (ΛΛΛ(z)�ΦΦΦ(z))′ − (ΩΩΩ(z)�ΦΦΦ(z))′′(ΛΛΛ(z)�ΦΦΦ(z))

)−1
(ΩΩΩ(z)�ΦΦΦ(z))′(ΛΛΛ(z)�ΦΦΦ(z))

=(I−O(diag(εεε)))

(
diag

(
m� εεε2m−2 � P(z)2 �ΩΩΩ(z)

))−1

m� εεε2m−1 � P(z)2 �ΩΩΩ(z)� (1 + O(εεε))

=(I−O(diag(εεε)))diag(εεε)(1 + O(εεε)) = εεε + O(εεε2). (30)

The error equation for (21) can be written as

εεεk+1 = εεεk −
(

εεεk + O
(

εεε2
k

))
= O

(
εεε2

k

)
. (31)

The error Equation (31) for (21) indicates that the order of convergence for the proposed iterative
method is quadratic.

4. Numerical Testing

The two preconditioners ω(z) and λ(z) produce families of iterative methods. If we define
ω(z) = exp(v z) and λ(z) = exp(ϑ z) , we get the following two-parameter family of iterative
methods for solving nonlinear equations that have zeros with unknown multiplicity.

S1: zk+1 = zk −
(v φ(z) + φ′(z)) φ(z)

(ϑ−v) φ′(z) (v + φ(z)) φ′(z)2 − φ′′(z) φ(z)
.

Now we choose ω(z) = exp(v φ(z)) and λ(z) = (ϑ φ(z)), and obtain the following method

S2: zk+1 = zk −
φ′(z) (1 + v φ(z)) φ(z)

φ′(z)2 (1 + (ϑ−v) (1 + v φ(z)) φ(z))− φ′′(z) φ(z) (1 + v φ(z))
.

We only conducted numerical testing for the system of nonlinear equations, and the cases for the
nonlinear equations are similar. It is important to test the computational convergence order (CCO) of
the proposed iterative methods. In all our simulations, we adopted the following definition of CCO:

CCO =
log
(
||ΦΦΦ(zk+1)||∞/||ΦΦΦ(zk)||∞

)
log
(
||ΦΦΦ(zk)||∞/||ΦΦΦ(zk−1)||∞

) or
log
(
||zk+1 − κκκ||∞/||zk − κκκ||∞

)
log
(
||zk − κκκ||∞/||zk−1 − κκκ||∞

) . (32)

For numerical simulations, three problems were selected with different multiplicities.
The performance of iterative method (11) is not better, comparatively. The various choices for the
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preconditioners are made in Tables 1–3 for all three problems. In Table 1, we have shown that the
selection of preconditioners has an influence on the numerical accuracy of computed zeros with
multiplicities. Moreover, the computational cost of performing the different operation is reasonable,
because in all cases, we selected preconditioners in a way that their first- and second-order Fréchet
derivatives are diagonal matrices. When we selected ΛΛΛ(z) = 6 + cos(z)/10 and ΩΩΩ(z) = 6 + cos(z)/10
for Problem 1, we achieved the best accuracy in computed zeros with different multiplicities. For the
second problem, Table 2 shows that the selection of ΛΛΛ(z) produces good accuracy. In Table 3, again the
selection of both preconditioners provides the best accuracy, comparatively.

Problem 1 =


Φ1(z) = (z1 − 1)4 exp(z2) = 0

Φ2(z) = (z2 − 2)5 (z1 z2 − 1) = 0

Φ3(z) = (z3 + 4)6 = 0

(33)

Problem 2 =


Φ1(z) = z1 z2 = 0

Φ2(z) = z2 z3 = 0

Φ3(z) = z3 z4 = 0

Φ4(z) = z4 z1 = 0

(34)

Problem 3 =


Φ1(z) =

√
z1 − 1 z2 z3 = 0

Φ2(z) =
√

z2 − 1 z1 z3 = 0

Φ3(z) =
√

z3 − 1 z1 z2 = 0

(35)

Table 1. Problem 1: initial guess = [2, 1,−2], m = [4, 5, 6]. CCO: computational convergence order.

ΛΛΛ(z) ΩΩΩ(z) Iter. ||z−κκκ||∞ CCO

Iterative method (21)

1 1 6 O
(
10−43) 2.0

6 + cos(z)/10 1 6 O
(
10−51) 2.05

1 + z3/1000 1 6 O
(
10−42) 2.0

exp(−z/100) 1 6 O
(
10−46) 2.0

1 6 + cos(z)/10 6 O
(
10−38) 2.0

1 1 + z3/1000 6 O
(
10−46) 2.0

1 exp(−z/100) 6 O
(
10−39) 2.0

6 + cos(z)/10 6 + cos(z)/10 6 O
(
10−41) 2.0

6 + cos(z)/10 1 + z3/1000 6 O
(
10−65) 2.0

6 + cos(z)/10 exp(−z/100) 6 O
(
10−43) 2.0

1 + z3/1000 1 + z3/1000 6 O
(
10−45) 2.0

1 + z3/1000 6 + cos(z)/10 6 O
(
10−37) 2.0

1 + z3/1000 exp(−z/100) 6 O
(
10−38) 2.0

exp(−z/100) exp(−z/100) 6 O
(
10−41) 2.0

exp(−z/100) exp(z/100) 6 O
(
10−53) 2.0

exp(−z/100) 6 + cos(z)/10 6 O
(
10−40) 2.0

exp(−z/100) 1 + z3/1000 6 O
(
10−53) 2.0

Iterative method (11)

1 - 6 O
(
10−30) 2.0

6 + cos(z)/10 - 6 O
(
10−30) 2.0

1 + z3/1000 - 6 O
(
10−30) 2.0

exp(z/100) - 6 O
(
10−30) 2.0
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Table 2. Problem 2: initial guess = [1, 2, 4, 3], m = [2, 2, 2, 2].

ΛΛΛ(z) ΩΩΩ(z) Iter. ||ΦΦΦ(z)||∞ CCO

Iterative method (21)

1 1 1 - -

6 + cos(z)/10 1 7 O
(
10−2042) 3.0

1 + z3/1000 1 7 O
(
10−8482) 3.98

exp(z/100) 1 7 O
(
10−376) 2.00

Iterative method (11)

1 - 1 - -

6 + cos(z)/10 - 20 O
(
10−23) 1.0

1 + z3/1000 - 20 Not converging -

exp(z/100) - 7 O
(
10−443) 2.0

Table 3. Problem 3: initial guess = [2, 4, 3], m = [1/2, 1/2, 1/2].

ΛΛΛ(z) ΩΩΩ(z) Iter. ||ΦΦΦ(z)||∞ CCO

Iterative method (21)

1 1 12 O
(
10−2011) 2.00

6 + cos(z)/10 1 12 O
(
10−1914) 2.00

1 + z3/1000 1 12 O
(
10−1248) 2.00

exp(−z/10) 1 12 O
(
10−2767) 2.00

exp(−z/10) exp(z/10000) 12 O
(
10−2110) 2.00

exp(−z/10) exp(−z/10000) 12 O
(
10−2771) 2.00

Iterative method (11)

1 - 1 - -

6 + cos(z)/10 - 12 O
(
10−56) 2.00

1 + z3/1000 - 20 Not converging -

exp(−z/10) - 7 O
(
10−35) 2.00

5. Conclusions

The inclusion of preconditioners in the existing iterative methods for finding zeros with
multiplicities for solving a system of nonlinear equations gives benefits in numerical stability and
numerical accuracy. The proposed methodology is equally effective for nonlinear and systems of
nonlinear equations. It is assumed in all cases that the preconditioners should be non-zero, because
in this way, it does not affect the zeros of nonlinear or systems of nonlinear equations. The different
selections of preconditioners provide different families of iterative methods. The claimed order of
convergence is also verified by computing the computational order of convergence in all numerical
simulations. Study of the dynamics of nonlinear preconditioners for finding zeros with multiplicities
of nonlinear equations and systems of nonlinear equations could be an interesting topic for research.
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