
Article

Concurrent vs. Exclusive Reading in Parallel
Decoding of LZ-Compressed Files †

Sergio De Agostino 1,*, Bruno Carpentieri 2 and Raffaele Pizzolante 2

1 Computer Science Department, Sapienza University of Rome, Rome 00185, Italy
2 Dipartmento di Informatica, Università di Salerno, Fisciano (SA) 84084, Italy; bc@dia.unisa.it (B.C.);

rpizzolante@unisa.it (R.P.)
* Correspondence: deagostino@di.uniroma1.it; Tel.: +39-06-4991-8355
† This paper is an extended version of our paper published in International Conference on Data Compression,

Communication Processing and Security 2016.

Academic Editor: Spyros Kontogiannis
Received: 25 November 2016; Accepted: 23 January 2017; Published: 28 January 2017

Abstract: Broadcasting a message from one to many processors in a network corresponds to
concurrent reading on a random access shared memory parallel machine. Computing the trees
of a forest, the level of each node in its tree and the path between two nodes are problems that can
easily be solved with concurrent reading in a time logarithmic in the maximum height of a tree.
Solving such problems with exclusive reading requires a time logarithmic in the number of nodes,
implying message passing between disjoint pairs of processors on a distributed system. Allowing
concurrent reading in parallel algorithm design for distributed computing might be advantageous
in practice if these problems are faced on shallow trees with some specific constraints. We show
an application to LZC (Lempel-Ziv-Compress)-compressed file decoding, whose parallelization
employs these computations on such trees for realistic data. On the other hand, zipped files do not
have this advantage, since they are compressed by the Lempel–Ziv sliding window technique.

Keywords: LZ compression; decoding; pram; mapreduce

1. Introduction

Parallel random access machines (PRAMs) are out of fashion today, but an apology of this model
can still be done from the point of view of parallel algorithm design. Indeed, the so-called PRAM
model provides the most natural computational tool for a first approach to an algorithmic solution
of a problem with parallel computing, and secondly, a distributed memory implementation can be
derived from it on a network. The computing techniques involved in the design of parallel and
distributed algorithms strictly relate to the computational model on which the parallel or distributed
system is based. The efficiency of a technique designed for a specific model can consistently deteriorate
when applied to a different system. This is particularly evident when a technique designed for a shared
memory parallel random access machine is implemented on a distributed system. Indeed, when the
system is scaled up, the communication cost is a bottleneck to linear speed-up. So, we need to limit
the interprocessor communication, either involving more local computation or bounding the number
of global computation steps in order to obtain a practical algorithm. Local computation might cause
a lack of robustness when scalability properties are required. On the other hand, scalability and
robustness are generally guaranteed if bounding the number of global computation steps is possible
for a specific problem.

In this paper, we face the issue of concurrent versus exclusive reading in the design of a parallel
algorithm for message passing-based distributed computing with an application to Lempel–Ziv data
compression [1–3]. Broadcasting a message from one to many processors in a network corresponds

Algorithms 2017, 10, 21; doi:10.3390/a10010021 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
http://www.mdpi.com/journal/algorithms

Algorithms 2017, 10, 21 2 of 9

to concurrent reading on a random access shared memory parallel machine, while exclusive reading
implies message passing between disjoint pairs of processors on a distributed system. Basic subroutines
for parallel algorithm design are computing the trees of a forest, the level of each node in its tree,
and the path between two nodes. These problems can easily be solved with concurrent reading in
a time logarithmic in the maximum height of a tree by means of the pointer jumping technique.
The well-known Euler tour technique developed in [4] avoids concurrent reading by a linearization of
the forest, reducing these problems to list ranking and parallel prefix. Solving such problems with
exclusive reading requires a time logarithmic in the number of nodes. Besides avoiding concurrent
reading, the Euler tour technique makes the parallel computation of several tree functions possible,
as preorder, post-order, and computing the number of descendants of each node in logarithmic
time with a linear number of processors. Without such linearization, these functions cannot be
computed with such parallel complexity, even if concurrent reading is allowed. On the other hand,
allowing concurrent reading to compute the trees of a forest, the level of each node in its tree, and
the path between two nodes might be advantageous in parallel algorithm design for distributed
computing in practice if such problems are faced on shallow trees with some specific constraints.
Indeed, the concurrent reading is caused by the simultaneous access of two or more children to the
information stored in a parent node, which increases at each step with the descendants. Therefore,
the slow-down of such concurrency would not be so relevant if limited to a constant number of nodes.
We evidentiate the properties a tree must have to obtain such limitation, and observe how—in the case
of shallow trees—applying the Euler tour technique is not only unnecessary, but even disadvantageous
for the running time.

We show an application to LZC compressed file decoding [5,6], whose parallelization employs
these computations on such trees for realistic data. The pair compressor/decompressor presents
an asymmetry with respect to global parallel computation, since the encoder is not parallelizable [7,8],
while the decoder has a very efficient parallelization [8–10]. On realistic data, the number of iterations
of the decoding algorithm is much less than ten units when expressed on the parallel random
access shared memory machine [10], and about ten units when expressed in the MapReduce parallel
programming paradigm [11], as we will show in this paper. This makes it attractive in those cases
(which are the most common in practice) where compression is performed very rarely, while the
frequent reading of raw data needs fast decompression. On the other hand, zipped files do not have
such advantage, since they are compressed by the Lempel–Ziv sliding window technique [2,12,13].
In such cases, both coding and decoding are parallelizable in a symmetric way, requiring at least
logarithmic time in practice [8,14].

In Section 2, we describe the computing techniques involved with the design of a parallel
algorithm and discuss the concurrent versus exclusive reading issue. Section 3 shows the application
to parallel decompression. The MapReduce implementation is described in Section 4. Conclusions and
future work are given in Section 5.

2. Concurrent versus Exclusive Reading

If we use a parent array as data structure to represent a forest, computing the trees, the level of
each node in its tree, and the path between two nodes are problems which can easily be solved on
a CREW (concurrent read, exclusive write) PRAM by running in parallel the pointer jumping operation
parent[i] = parent[parent[i]]. The procedure takes a number of processors linear in the number of nodes
and a time logarithmic in the maximum height of a tree. Generally speaking, implementing such a
procedure causes a slow-down logarithmic in the number of nodes if we solve the reading conflicts by
standard broadcasting techniques. Therefore, the total running time increases to square-logarithmic in
the worst case, since the maximum height of a tree can reach the order of magnitude of the number of
nodes. To keep the time logarithmic, we need to assume some constraints on the structure of each tree
of the forest. Indeed, there must be a constant c > 0 such that for each tree of the forest, the number of
nodes with more than one child distant more than c from the root is less than c, and none of the nodes

Algorithms 2017, 10, 21 3 of 9

more distant than c from the root has more than c children. It is easy to see that this is a necessary and
sufficient condition to solve the reading conflicts by standard broadcasting with no slow-down on
the total running time in terms of asymptotic behavior of the parallel complexity. If such a constant
does not exist, the well-known Euler tour technique developed in [4] avoids the concurrent reading of
the children.

The Euler tour technique reduces the problems to list ranking on the EREW (exclusive read,
exclusive write) PRAM with a number of processors and a time, respectively, linear and logarithmic
both in the number of nodes. Let F be a forest of rooted trees with every node having a parent
pointer along with a doubly-linked list of children. To begin, we replace every node v of F by an array
V[1 · · · d(v) + 1] of copies of v, where d(v) is the number of children of v. Let w1 · · ·wd(v) be the
children of v and W1[1 · · · d(w1) + 1], · · ·Wd(v)[1 · · · d(wd(v) + 1)] the corresponding arrays. We link
Wi[1] to V[i] and V[i + 1] to Wi[d(wi) + 1], and obtain for each tree T of F a linked list starting at R[1]
and ending at R[d(r) + 1], where r is the root of T and R the corresponding array. Then, it is clear that
we find the trees in the forest by applying list ranking. Moreover, for each list associated with a tree,
we assign to the first entry in every array a weight +1, and to all the others −1. Then, the level of each
node in its tree is obtained with prefix computation by computing the partial sums of these values in
the list. Partial sums corresponding to positions of components of the array associated with v in the
list are equal to the level of v in its tree. Since we assumed to have children doubly linked with their
parent, the realization of the list takes constant time with a linear number of processors or logarithmic
time with O(n/log n) processors. List ranking and prefix computation require logarithmic time with
O(n/log n) processors as well. If children are not doubly linked to their parent, adding the links from
a parent to its children generally takes logarithmic time with a linear number of processors employing
parallel sorting procedures. However, there are cases where the bound to the number of children is
known and constant.

To conclude this section, we wish to point out that even if there is a constant bounding the nodes
with more children and the children of a node too distant from the root, the Euler tour technique
might still be advantageous when the tree is not shallow enough. However, this is not the case for the
application to LZC-compressed file decoding that we present in this paper.

3. Decoding LZC-Compressed Files in Parallel

The most popular text compressors are based on Lempel–Ziv string complexity [1]. Zip
compressors apply the Lempel–Ziv sliding window method [2,12,13], while other applications use
the LZW (Lempel, Ziv, and Welch) compressor [3,5], also called LZC [6] when implemented as the
command line “compress” does on Unix and Linux platforms. LZC compression is less effective but
faster than the zipping applications. Zip compressors are based on a string factorization process,
where each factor is independent from the others since it extends by one character the longest match
with a substring to its left in the input string. On the other hand, the LZC compressor is based on
a factorization, where each factor is the extension by one character of the longest match with one
of the previous factors. This computational difference implies that while the zipping applications
have theoretical parallelizations, LZC compression is hard to parallelize. On the other hand, parallel
decompression is possible for both approaches.

Zipping and unzipping files in parallel requires a logarithmic number of global computation steps,
even if concurrent reading is allowed. On the other hand, the LZC encoder/decoder pair presents
an asymmetry, since the decoder has a very efficient parallelization requiring much less than ten
iterations on the CREW PRAM. As mentioned above, this makes LZC more attractive than Zip in those
cases (which are the most common in practice) where compression is performed very rarely while the
frequent reading of raw data needs fast decompression. Finally, we show that this advantage is lost if
the LZC decoder is implemented on the EREW PRAM.

Algorithms 2017, 10, 21 4 of 9

3.1. LZC Compression

Lempel–Ziv compression is a dictionary-based technique. Indeed, the factors of the string
are substituted by pointers to copies, stored in a dictionary, which are called targets. In practical
implementations, the dictionary has a fixed size d + α, where α is the cardinality of the alphabet.
With LZC, d + α = 216, and the dictionary is initially equal to the alphabet. The LZC factorization of
a string S fills up the dictionary by factorizing a prefix P of S. The factorization P = f1 f2 · · · fi · · · fd
is such that fi is either the longest match with the concatenation of a previous factor f j and the next
character or the current alphabet character if there is no match (that is, every factor concatenated with
the next character is a dictionary element). The filled up dictionary is “frozen”, and the factorization
continues in a “static” way for a while; that is, for d < i ≤ t, the factor fi is either the longest match
with the concatenation of a previous factor f j, with j ≤ d, and the next character or the current
alphabet character if there is no match. The value t is determined by monitoring the compression ratio.
When this ratio deteriorates, the dictionary is reset to be equal to the alphabet. LZC compression is the
one employed by the Unix and Linux “compress” applications, and similar applications have been
realized with Stuffit on Windows and Dos platforms.

3.2. The CREW PRAM Algorithm

A special mark occurs in the sequence of pointers of the LZC encoding when the dictionary
is cleared out, so that the decoder does not have to monitor the compression ratio. The positions
of the special mark are detected by parallel prefix. Each subsequence q1 · · · qm of pointers between
two consecutive marks can be decoded in parallel. The parallel algorithm is based on the fact that the
target of the pointer qi in the subsequence is the concatenation of the target of the pointer in position
qi − α with the first character of the target of the pointer in position qi − α + 1, and employs concurrent
reading [9].

Let Q1 · · ·QN be the LZC encoding of a string S, drawn over an alphabet A of cardinality α,
with Qh sequence of pointers between two consecutive reset operations, for 1 ≤ h ≤ N. Each Qh can
be decoded independently. Let q1...qm be the sequence of pointers Qh encoding the substring S′ of S.
The decoding of Qh requires on a CREW PRAM O((log(L)) time with O(|S′|) processors, where L is
the maximum length of a pointer target. The dictionary size is a theoretical upper bound to L that is
tight for unary strings. The algorithm computes an m× d matrix of prefix pointers M, initially null with
d = 216, as it follows:

input: sequence of pointers q1...qm;
output: matrix M of prefix pointers;
1. k := 1;
2. in parallel for 1 ≤ i ≤ m do
3. M[i, j] := qi;
4. last[i] := 1;
5. value[i] := M[i, j]− d;
6. while value[i] > 0 do
7. in parallel for 1 ≤ j ≤ k do
8. if j ≤ last[value[i]] then
9. M[last[i] + j.i] = M[j, value[i];
10. last[i] := last[i] + last[value[i]];
11. value[i] := value[value[i]];
13. k := 2k;

At each step, last[i] is the last nonnull component on the ith column considered (line 10 after the
initialization at line 4). The nonnull components of the value(i)th column are copied on the ith column
in the positions after last[i] (lines 7–9). Note that value(i) is strictly less than i. Then, value(i) is updated

Algorithms 2017, 10, 21 5 of 9

by setting value(i) := value(value(i)) (line 11). The loop stops on column i when value(i) is less or
equal to zero. This procedure takes O(|S′|) processors and O(log(L)) time on a CREW PRAM, since the
number of nonnull components on a column doubles at each step. The target of the pointer qi is the
concatenation of the target of the pointer in position qi − α with the first character of the target of the
pointer in position qi − α + 1, since the dictionary initially contains the alphabet characters. At the end
of the procedure, M[last[i], i] is the pointer representing the first character of the target of qi and last[i] is
the target length. Then, we conclude that M[last[M[j, i]− d + 1], M[j, i]− d + 1], for 1 ≤ j ≤ last[i]− 1,
is the pointer representing the (last[i]− j + 1)th character of the target of qi. That is, we have to look at
the pointer values written on column i and consider the last nonnull components of the columns in the
positions given by such values decreased by α− 1. Such components must be concatenated according
to the bottom-up order of the respective values on column i. By mapping each component into the
correspondent alphabet character, we obtain the suffix following the first character of the target of qi,
and the pointers are therefore decoded (see [9] for further clarifications).

The sequence of pointers can be seen as a parent pointer representation of a forest, where each
pointer q with a value greater than α represents a link from a node associated with q to its parent node
associated with the pointer in position q− α. The making of the matrix computes on each column
the path from the node associated with the corresponding pointer to the root of its tree. Such root is
always associated to an alphabet character. The maximum height of a tree is the maximum length
of a factor. The theoretical upper bound to the factor length is the dictionary size, which is tight in
the unary string case. However, on realistic data we can assume that the maximum factor length L is
such that 10 < L < 20. The motivation for this assumption is that in practice, the maximum length
of a factor is much smaller than the dictionary size. For example, when compressing english text
with sixteen-bit pointers, the average match length will only be about five units (for empirical results,
see [13]). It follows that the number of iterations (global computation steps) is much less than ten if the
PRAM CREW algorithm were executed in practice. In some exceptional cases, the maximum factor
length will reach one hundred units; that is, the number of iterations will be equal to seven units.
Moreover, the number of children for each node is theoretically bounded by the alphabet cardinality,
but in practice, such bound works only for the root. After a few levels, it is realistic to assume that
nodes have only one child. So, for realistic data there is a small constant c > 0 such that for each tree
of the forest, the number of nodes with more than one child distant more than c from the root is less
than c, and none of the nodes distant more than c from the root has more than c children. Therefore,
concurrent reading is resolved by standard broadcasting techniques with no relevant slow-down.

3.3. The EREW PRAM Algorithm

The subsequence q1 · · · qm of pointers between two consecutive reset operations that we decoded
on the CREW PRAM in the previous subsection is decoded on the EREW PRAM in two phases. In the
first phase, since the pointers do not contain the information on the length of their targets, these
lengths have to be computed. The target of the pointer qi in the subsequence is the concatenation
of the target of the pointer in position qi − α with the first character of the target of the pointer in
position qi − α + 1, where α is the alphabet cardinality. Then, in parallel for each i, link pointer qi to
the pointer in position qi − α if qi > α. Again, we obtain a forest where each tree is rooted in a pointer
representing an alphabet character, and the length li of the target of a pointer qi is equal to the level of
the pointer in the tree plus 1. It is known from [1] that the largest number of distinct factors whose
concatenation forms a given string of length ` is O(`/ log `). Since a factor of the LZW factorization
of a string appears a number of times which is at most equal to the alphabet cardinality, it follows
that m is O(`/ log `) if ` is the length of the substring encoded by the subsequence q1 · · · qm. Then,
building such a forest takes O(log(|S′|)) time with O(|S′|) processors on a shared memory parallel
machine without writing and reading conflicts. With the same parallel complexity, we can compute
the trees of such forest and the level of each node in its own tree by means of the Euler tour technique.
Therefore, we can compute the lengths l1, ..., lm of the targets. If s1, ..., sm are the partial sums, the target

Algorithms 2017, 10, 21 6 of 9

of qi is the substring over the positions si−1 + 1 · · · si of the output string. For each qi which does not
correspond to an alphabet character, define f irst(i) = sqi−α−1 + 1 and last(i) = sqi−α + 1. Since the
target of the pointer qi is the concatenation of the target of the pointer in position qi − α with the
first character of the target of the pointer in position qi − α + 1, link the positions si−1 + 1 · · · si to
the positions s f irst(i) · · · slast(i), respectively. As in the sliding dictionary case, if the target of qi is
an alphabet character, the corresponding position in the output string is the root of a tree in a forest,
and all the nodes in a tree correspond to positions of the decoded string where the character is the root.
Since the number of children for each node is at most α, in O(log(|S′|)) time with O(|S′|) processors,
we can store the forest in a doubly linked structure and decode by means of the Euler tour technique
on the EREW PRAM [14]. Differently from the CREW PRAM algorithm, the running time is obviously
O(log(|S′|)), regardless of the factor maximum length.

4. The MapReduce Implementation of the CREW Algorithm

We show how to implement the CREW PRAM algorithm of the previous section in MapReduce,
and discuss the complexity issues. First, we present the MapReduce model of computation.

4.1. The MapReduce Model of Computation

The MapReduce model allows global computation on a distributed system in its theoretical
formulation. Therefore, bounding the number of computational steps is a requirement for the design
of a practical algorithm.

The MapReduce programming paradigm is a sequence P = µ1ρ1 · · · µRρR, where µi is a mapper
and ρi is a reducer for 1 ≤ i ≤ R. First, we describe this paradigm and then discuss how to implement
it on a distributed system. Since the input/output phases are inherent to any parallel algorithm and
have standard solutions, the sequence P does not include the I/O phases, and the input to µ1 is
a multiset U0 where each element is a (key, value) pair. The input to each mapper µi is a multiset Ui−1
output by the reducer ρi−1, for 1 < i ≤ R. Mapper µi is run on each pair (k, v) in Ui−1, mapping (k, v)
to a set of new (key, value) pairs. The input to reducer ρi is U′i , the union of the sets output by µi.
For each key k, ρi reduces the subset of pairs of U′i with the key component equal to k to a new set of
pairs with key component still equal to k. Ui is the union of these new sets.

In a distributed system implementation, a key is associated with a processor. All the pairs with
a given key are processed by the same node, but more keys can be associated to it in order to lower the
scale of the system involved. Mappers are in charge of the data distribution, since they can generate
new key values. On the other hand, reducers just process the data stored in the distributed memory,
since they output for a set of pairs with a given key another set of pairs with the same given key.

The following complexity requirements are stated as necessary for a practical interest in [11]:

• R is polylogarithmic in the input size n;
• the number of processors (or nodes in the Web) involved is O(n1−ε) with 0 < ε < 1;
• the amount of memory for each node is O(n1−ε);
• mappers and reducers take polynomial time in n.

In [11], it is also shown that a t(n) time CREW PRAM algorithm using subquadratic work space
and a subquadratic number of processors can be implemented by MapReduce with a simulation
satisfying the above requirements if t(n) is polylogarithmic. Indeed, the parameter R of the simulation
is O(t(n)), while the subquadratic work space is partitioned among a sublinear number of processors
taking polynomial computational time.

Such requirements are necessary but not sufficient to guarantee a speed-up of the computation.
Obviously, the total running time of mappers and reducers cannot be higher than the sequential
one, and this is trivially implicit in what is stated in [11]. The non-trivial bottleneck is the
communication cost of the computational phase. This needs to be checked experimentally, since
R can be polylogarithmic in the input size. Generally speaking, a MapReduce implementation has

Algorithms 2017, 10, 21 7 of 9

a practical interest if R is about ten units or less. If this is obtained from the simulation of a CREW
PRAM algorithm, it might be preferable to the simulation of an EREW PRAM algorithm with a higher
number of iterations.

4.2. Decoding LZC-Compressed Files in MapReduce

The MapReduce implementation of the decoder decompressing the sequence of pointers q1...qm

of the previous section is P = µ0ρ0µ1ρ1 · · · µ2Rρ2Rµ2R+1ρ2R+1, with R = dlogLe. The number of
iterations is 2R + 2 since, generally speaking, the simulation of a CREW PRAM algorithmic step is
realized by two mappers and two reducers, where the reducers compute the memory requests and
the corresponding information that must be provided to the processors while the mappers route the
memory requests and the information to the reducers responsible for the particular processor [11].
In this particular case, the keys correspond to the matrix entries, and the reducers compute the
memory requests by looking at the values associated with the keys corresponding to the matrix entries,
storing the last non-null components on the columns. As far as the other reducers are concerned,
the information that must be provided to the processors is already computed, since the procedure
just consists of copying values from columns to columns. Therefore, such reducers just identify the
processors (or the keys) for the mappers routing the information.

The input to µ0 is a multiset U−1 of cardinality m, where each element is a (key, value) pair with
key = (1, i) and value = qi for 1 ≤ i ≤ m. The output of µ0 is U′0 = U−1 ∪O′0, where each element in
O′0 is a (key, value) pair with key = (1, i) and value = i′ such that i < i′ ≤ m and qi′ − α = i. Then,
reducer ρ0 outputs the set U0 = U−1 ∪O0, where O0 is obtained from O′0 by reducing each element
((1, i), i′) to the element ((1, i), (2, i′)). In other words, µ0 (as every other mapper of the sequence with
an even index) routes a memory request for every processor. Since µ0 is the first mapper, it also does
the job of computing the memory request (that is, subtracting the alphabet cardinality to the pointer
value). Afterwords, this job is done by each reducer with an odd index for the next mapper. Reducer ρ0

(as every other reducer with an even index) computes the keys that the next mapper will use to route
the information.

The keys computed by ρ0 are used by mapper µ1. The output of µ1 is U′1 = U−1 ∪O′1, where each
element in O′1 is a (key, value) pair with key = (2, i′) and value = q > 0 such that ((1, i), (2, i′)) ∈ O0

and qi = q. Then, reducer ρ1 outputs the set U1 = U′1 ∪O1, where O1 is the set of elements with key
(2, i) and value q− α such that ((2, i), q) ∈ U′1 and q− α > 0. So, reducer ρ1 does the job that µ0 did by
itself. Therefore, mapper µ2 operates in a slightly different way from µ0 as every other mapper with
an even index.

Mapper µ2 outputs U′2 = U′1 ∪ O′2, where each element in O′2 is a (key, value) pair with
key = (1, i) or key = (2, i) and value = i′ such that i < i′ ≤ m and qi′ − α = i, that is,
((2, i′), i) ∈ O1. Then, reducer ρ2 outputs the set U2 = U′1 ∪ O2, where O2 is obtained from O′2
by reducing each element ((1, i), i′) or ((2, i), i′) in O′2 to the element ((1, i), (3, i′)) or ((2, i), (4, i′)).
To complete the first two CREW PRAM algorithmic steps, we describe mapper µ3 and reducer ρ3.

Mapper µ3 outputs U′3 = U′1 ∪O′3. Each element in O′3 is a (key, value) pair with key = (3, i′) or
key = (4, i′) and value = q > 0 such that ((1, i), (3, i′)) ∈ O2 or ((2, i), (4, i′)) ∈ O2 and qi = q. Then,
reducer ρ3 outputs the set U3 = U′3 ∪O3, where O3 is the set of elements with key (4, i) and value
q− α such that ((4, i), q) ∈ U′3 and q− α > 0, similarly to ρ1. Now, we can provide the MapReduce
implementation of the generic step.

At the k-th step, for 4 ≤ k ≤ 2R− 1, if k is even mapper µk outputs U′k = U′k−1 ∪O′k. Each element
in O′k is a (key, value) pair with key (χ, i), for 1 ≤ χ ≤ t and t ≤ 2k/2−1, and value i′ such that
i < i′ ≤ m and qi′ − α = i; that is, ((2k/2−1, i′), i) ∈ Ok−1. Then, reducer ρk outputs the set
Uk = U′k−1 ∪Ok, where Ok is obtained from O′k by reducing each element ((χ, i), i′) ∈ O′2 to the
element ((χ, i), (2k/2−1 + χ, i′)).

If k is odd, mapper µk outputs U′k = U′k−2 ∪O′k. Each element in O′k is a (key, value) pair with
key = (j, i′) and value = q > 0 such that (j− χ, i), (j, i′)) ∈ Ok−1 and qi = q for some χ with 1 ≤ χ ≤ t

Algorithms 2017, 10, 21 8 of 9

and t ≤ 2k/2−1. Then, if k < 2R− 1, reducer ρk outputs the set Uk = U′k ∪Ok, where Ok is the set of
elements with key (2dk/2e, i) and value q− α such that ((2dk/2e, i), q) ∈ U′k and q− α > 0.

Reducer ρ2R−1 outputs the set U2R−1 = U′2R−1 ∪O2R−1, where each ((j, i), q) ∈ U′2R−1 is reduced
to ((j, i), q − α + 1) ∈ O2R−1. Mapper µ2R outputs U′2R = U′2R−1 ∪ O′2R. Each element in O′2R is
either equal to ((1, i), q), where ((`i, i), q) ∈ U′2R−1 and `i is the length of the factor encoded by qi or
to a (key, value) pair with key equal to (1, i) and value (j′, i′) such that ((j′, i′), i) ∈ O2R−1. Then,
reducer ρ2R outputs U2R, where each element ((1, i), (q, (j′, i′))) ∈ U2R is obtained from the
two elements ((1, i), q) and ((1, i), (j′, i′)) in U′2R.

Finally, µ2R+1 outputs U′2R+1 by mapping the element ((1, i), (q, (j′, i′))) to the element
((1, i′), (j′, a)) ∈ U′2R+1, where a is the alphabet character target of q. Then, reducer ρ2R+1 outputs
U2R+1 by reducing the set of elements {((1, i′), (a, j′)) ∈ U′2R+1 : 1 ≤ j′ ≤ `i′ } to the element ((1, i′), fi′),
where fi′ is the target of qi′ obtained by concatenating each alphabet character a for `i′ ≥ j′ ≥ 1.

4.3. Complexity Issues

If Q1 · · ·QN is the encoding of the input string S, with Qh = qh
1...qh

mh sequence of pointers
between two consecutive reset operations for 1 ≤ h ≤ N, the MapReduce decoding sequence
P = µ0ρ0µ1ρ1 · · · µ2Rρ2Rµ2R+1ρ2R+1 of Qh is such that 2R + 2 is about ten units in practice. It is easy to
extend the MapReduce sequence P to a MapReduce sequence Π = M0P0M1P1 · · ·M2RP2R M2R+1P2R+1,
where the input to M0 is the multiset ∪N

h=1Vh and each element in Vh is a (key, value) pair with
key = (1, i) and value = qh

i , for 1 ≤ i ≤ mh and 1 ≤ h ≤ N. For 1 ≤ h ≤ N, the mappers and reducers
of the sequence Π operate as described in the previous subsection on the pointers corresponding to
h. Let H = max{mh : 1 ≤ h ≤ N}. The sub-linearity requirements stated in [11] are satisfied if we
implement Π on a cluster of H processors, since N and mh, for 1 ≤ h ≤ N, are generally sub-linear
in practice. Moreover, the time of a MapReduce operation multiplied by the number of processors is
O(T), with T sequential time, since 2R + 2 is about ten units (optimality requirement). This makes
this MapReduce implementation of practical interest, since it has a small number of iterations. Finally,
concurrent reading is resolved by standard broadcasting techniques with no relevant slow-down, since
the MapReduce sequence implements the CREW PRAM algorithm of the previous section.

5. Conclusions

In this paper, we discussed when the design of a concurrent read, exclusive write parallel
algorithm might have more practical value than the corresponding exclusive read version. We showed
a practical example with a MapReduce implementation for decoding LZC compressed files. As future
work, we would like to implement the MapReduce implementation of the LZC decoder on today’s
large scale clusters.

Author Contributions: Bruno Carpentieri and Raffaele Pizzolante conceived how to implement in practice
the parallel decoding algorithm designed by Sergio De Agostino; Sergio De Agostino wrote the MapReduce
implementation and the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lempel, A.; Ziv, J. On the Complexity of Finite Sequences. IEEE Trans. Inf. Theory 1976, 22, 75–81.
2. Lempel, A.; Ziv, J. A Universal Algorithm for Sequential Data Compression. IEEE Trans. Inf. Theory 1977, 23,

337–443.
3. Ziv, J.; Lempel, A. Compression of Individual Sequences via Variable-Rate Coding. IEEE Trans. Inf. Theory

1978, 24, 530–536.
4. Tarjan, R.E.; Vishkin, U. An Efficient Parallel Biconnectivity Algorithm. SIAM J. Comput. 1985, 14, 862–874.
5. Welch, T.A. A Technique for High-Performance Data Compression. IEEE Comput. 1984, 17, 8–19 .
6. Bell, T.C.; Cleary, J.G.; Witten, I.H. Text Compression; Prentice Hall: Upper Saddle River, NJ, USA, 1990.
7. De Agostino, S. P-complete Problems in Data Compression. Theor. Comput. Sci. 1994, 127, 181–186.

Algorithms 2017, 10, 21 9 of 9

8. De Agostino, S. Lempel-Ziv Data Compression on Parallel and Distributed Systems. Algorithms 2011, 4,
183–199.

9. De Agostino, S. A Parallel Decoding Algorithm for LZ2 Data Compression. Parallel Comput. 1995, 21,
1957–1961.

10. De Agostino, S. The Uncompress Application on Distributed Communications Systems. In Proceedings of the
ICNS2015: The Eleventh International Conference on Networking and Services, Rome, Italy, 24–29 May 2015;
pp. 55–60.

11. Karloff, H.J.; Suri, S.; Vassilvitskii, S. A Model of Computation for MapReduce. In Proceedings of the
SIAM-ACM Symposium on Discrete Algorithms, Austin, TX, USA, 17–19 January 2010; pp. 938–948.

12. Storer, J.A.; Szymansky, T.G. Data Compression via Textual Substitution. J. ACM 1982, 24, 928–951.
13. Storer, J.A. Data Compression: Methods and Theory; Computer Science Press: Rockville, MD, USA, 1988.
14. De Agostino, S. Almost Work-Optimal PRAM EREW Decoders of LZ-Compressed Text. Parallel Process. Lett.

2004, 14, 351–359.

c© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Concurrent versus Exclusive Reading
	Decoding LZC-Compressed Files in Parallel
	LZC Compression
	The CREW PRAM Algorithm
	The EREW PRAM Algorithm

	The MapReduce Implementation of the CREW Algorithm
	The MapReduce Model of Computation
	Decoding LZC-Compressed Files in MapReduce
	Complexity Issues

	Conclusions

