
algorithms

Article

Mining Domain-Specific Design Patterns:
A Case Study †

Vassiliki Gkantouna 1,* and Giannis Tzimas 2

1 Department of Computer Engineering & Informatics, University of Patras, Patras 26504, Greece
2 Computer & Informatics Engineering Department, Technological Educational Institute of Western Greece,

Patras 26334, Greece; tzimas@teiwest.gr
* Correspondence: gkantoun@ceid.upatras.gr; Tel.: +30-2610-996-960
† This paper is an extended version of our paper published in Proceedings of Mining Humanistic Data

Workshop (MHDW), 2016.

Academic Editors: Katia Lida Kermanidis, Christos Makris, Phivos Mylonas and Spyros Sioutas
Received: 16 November 2016; Accepted: 16 February 2017; Published: 21 February 2017

Abstract: Domain-specific design patterns provide developers with proven solutions to common
design problems that arise, particularly in a target application domain, facilitating them to produce
quality designs in the domain contexts. However, research in this area is not mature and there
are no techniques to support their detection. Towards this end, we propose a methodology which,
when applied on a collection of websites in a specific domain, facilitates the automated identification
of domain-specific design patterns. The methodology automatically extracts the conceptual models
of the websites, which are subsequently analyzed in terms of all of the reusable design fragments
used in them for supporting common domain functionalities. At the conceptual level, we consider
these fragments as recurrent patterns consisting of a configuration of front-end interface components
that interrelate each other and interact with end-users to support certain functionality. By performing
a pattern-based analysis of the models, we locate the occurrences of all the recurrent patterns in
the various website designs which are then evaluated towards their consistent use. The detected
patterns can be used as building blocks in future designs, assisting developers to produce consistent
and quality designs in the target domain. To support our case, we present a case study for the
educational domain.

Keywords: domain-specific design pattern; web mining; web design; design quality; content
management system (CMS); conceptual modeling

1. Introduction

Design patterns [1] have emerged as a means to promote design reuse, providing designers with
proven solutions to recurring design problems that can be reused in different contexts where the
corresponding problem arises. By reusing such successful design solutions, developers can produce
applications of high quality more rapidly, since they can rely on prior experiences and well-tested good
practices. As a result, the development process of an application is accelerated and the development
cost is reduced. At the same time, the adoption of design patterns can also bring many benefits, in terms
of usability and overall application quality. When developers apply design patterns, they have the
ability to enforce a coherent design style which can potentially result in more consistent and predictable
designs. This makes it easier for the end-users to recognize typical patterns of interactions with the
system for performing common tasks, thus improving the ease of use of an application. Furthermore,
design patterns help improving the communication among interdisciplinary development teams,
by providing them with a common design vocabulary to discuss the design alternatives and understand
the various design decisions made throughout all phases of the development lifecycle.

Algorithms 2017, 10, 28; doi:10.3390/a10010028 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
http://www.mdpi.com/journal/algorithms

Algorithms 2017, 10, 28 2 of 17

While initially used mainly in the field of software engineering, over the last decades design
patterns have also been enthusiastically embraced by the web engineering community for addressing
common web design problems. A large number of web design patterns have been identified and
organized into pattern catalogues [2–4], offering design guidelines to developers concerning several
aspects of web design, e.g., navigation and user interface design. However, the available patterns are of
general-purpose, i.e., too abstract and divorced from the context that an application is being developed,
thus making it difficult for developers to understand the available context in which a pattern can be
applied when the boundaries of its applicability are not clearly defined. Furthermore, the process
of the pattern instantiation is a complex task, since it is difficult for developers, even for a certain
application context, to determine in which part of the system a pattern can be used. In fact, in some
cases, design patterns cannot be instantiated directly, due to natural constraints of the application
context in which they are going to be used. As an example, consider the case of the popular carrousel
pattern [5] used when developers need to display a large collection of items on a page, but there is
not enough space. The carousel displays only a subset of the items at a time, arranged in a horizontal
line where each item has a thumbnail image attached, thus, optimizing the screen space. Obviously,
this pattern is a good design choice for domains in which the website content consists mainly of
highly visual items, such as the various products in e-commerce websites. On the other hand, it can be
a disaster in websites having as content text articles, PDF documents, etc. This raises the following
questions: in what application domains can this pattern be used, except for the obvious e-commerce
domain? Is it effective to use it on the domain of news sites? If yes, on which pages of a news site,
and for what type of content, can this pattern be used? All of these questions cannot be answered
by the pattern’s definition in the available catalogues since they are expressed in natural language
following a common structure of some typical elements, such as the pattern’s name, the problem
statement, the solution and its consequences, often resulting in prescriptive guidance which is vague
and conflicting. As a result, developers have difficulties to effectively incorporate general-purpose
patterns into their designs and, to make matters worse, they often attempt to force-fit them into use,
causing serious design inconsistencies and other quality-related issues [6].

As a response to the problems of general-purpose design patterns, the web engineering
community has also welcomed the advent of domain-specific design patterns, encapsulating design
experience which is in alignment with the natural constraints of a particular application domain.
In fact, domain-specific design patterns are design patterns defined particularly for the design
of web applications in a specific application domain. They offer developers solutions to common
design problems that arise particularly in the context of this specific domain. This makes it easier for
developers to better understand the circumstances under which patterns can be used (i.e., the particular
domain design problem they solve), thus facilitating them to effectively incorporate patterns into their
designs, since they have more clear bounds of applicability. Moreover, they are specified in terms of
domain-related objects, thus making it easier for developers to cope with the pattern instantiation
process. To understand the main advantage of using domain-specific design patterns, consider the
case of a domain-specific pattern that is based on the use of the previously described general-purpose
carrousel pattern in the domain of news sites. The task of determining the context in which the
carrousel pattern can be used in a news site is not simple since the content of these websites consists
mainly of text articles. An example of a domain-specific pattern could be the one specifying the use of
the carousel pattern on the pages of the websites corresponding to the news site editors’ personal page
for displaying their published books. The main difference now is that, in the case of the domain-specific
pattern, the design problem addressed by the pattern is clearly defined, as well as the part of the
website in which the pattern can be used (i.e., on the editors’ personal pages). The rationale behind
the concept of domain-specific design patterns is to capture reusable design fragments which can
be used as design micro-architectures by developers for supporting common functionalities in the
designs of websites in the considered domain. Contrary to general-purpose patterns, the number of the
available domain-specific web design patterns is very limited mainly due to the absence of techniques

Algorithms 2017, 10, 28 3 of 17

able to identify them. This happens because of the intrinsic complexity of these types of patterns,
since they must encompass generality and variability for being able to be instantiated for various
applications in a domain. As a result, there is a need for techniques able to facilitate the identification
of domain-specific design patterns.

Towards this end, we present a methodology which, when applied on a collection of websites
in a particular application domain, facilitates the automated identification of domain-specific design
patterns. The methodology was originally introduced in [7]. In this paper, we present an important
extension of our previous work in [7], which is based on the use of domain concepts in the process of
identifying the reusable design solutions that can be considered as domain-specific patterns. The key
idea is to analyze the designs of the various websites in order to detect all of the possible design
commonalities among them that can be considered as partitions of the domain and, thus, can be
used as building blocks for producing future designs. Based on this, the proposed methodology
analyzes the conceptual models of the collected websites in terms of the reusable design fragments
repeatedly used in them for supporting common functionalities within the domain context. At the
conceptual level, we consider these fragments as recurrent patterns occurring in the conceptual
models of the websites, consisting of a configuration of front-end interface components that interrelate
with each other and interact with the end-user to achieve a certain functionality, i.e., support user
navigation to certain information objects. To be able to inspect the consistent use of these patterns,
we also consider pattern variants. More specifically, we consider that a pattern consists of a core
specification, i.e., an invariant composition of front-end design elements that characterizes the pattern,
and by a number of pattern variants which extend the core specification with all the valid modalities
in which the pattern composition can start (starting variants) or terminate (termination variants).
First, we create a collection of websites in a target application domain and capture their designs
by automatically extracting their conceptual models. Subsequently, to identify the possible design
commonalities among the website designs, we perform a pattern-based analysis of the recovered
models which results into the identification of all the incorporated recurrent patterns occurring
at hypertext level. To verify that the identified patterns (i.e., hypertext compositions) are actually
used for supporting common functionality, we additionally examine the semantic aspect of their
occurrences in the various websites, for determining whether the recurrence of the design elements at
the hypertext design goes with a recurrence at the data level, i.e., the type of content they deliver to the
end-users, which is captured by means of domain concepts. This is achieved by applying a semantic
similarity measurement technique among the content of the pages involved in a pattern among its
various occurrences on the websites which computes the degree of their semantic similarity and
detects the common semantic concepts to which they refer. The computed common semantic concepts
are considered as domain concepts representing the common information object types frequently
appearing on the pages of the educational websites in the collection. We locate the pattern occurrences
which are highly semantically related and deliver the same configuration of domain concepts to
end-users, implying possible recurrence at the data level and, thus, increasing the possibility of
performing common functionality. This way, the various domain functionalities are also expressed as
configurations of domain concepts. Finally, we calculate evaluation metrics for the detected patterns,
revealing whether they are used consistently throughout the models of the various websites, and store
them on a central pattern repository. We argue that the detected patterns can assist developers
produce more consistent and quality designs in the context of the target application domain, since they
offer them design guidelines derived from the best design practices used in the considered domain.
To exemplify the concepts behind our approach, we present the results of a case study in which the
methodology has been applied in the domain of educational websites.

In order to automate the process of analyzing the design of a website, we have to narrow down
the methodology’s scope to the domain of Content Management systems (CMSs), since they provide
a common base of source code which can be systematically processed. The proposed methodology is
accompanied by a tool support available in [8], allowing developers to apply it on websites developed

Algorithms 2017, 10, 28 4 of 17

by using the Joomla! [9] and Drupal [10] CMS platforms. Due to space limitations, in this work we
present the methodology for the case of Joomla!-based websites. The remaininder of this paper is
organized as follows: Section 2 provides an overview of the related work. Section 3 presents, in detail,
the methodology for mining the domain-specific design patterns, while Section 4 presents the case
study for the domain of educational websites. Finally, Section 5 discusses conclusions and future work.

2. Related Work

The main objective of this work is to facilitate the detection of domain-specific web design patterns.
Unfortunately, research in the field of domain-specific design patterns is very limited and there is an
absence of techniques for the patterns identification.

By searching the literature for studies related to domain-specific design patterns in the web
engineering field, one can find out that there are only very few domain-specific pattern catalogues,
such as the ones in [11,12]. These catalogues include design guidelines for designing websites in
a specific application domain, e.g., e-commerce, news sites, travel sites, etc., expressed in natural
language. The available guidelines have been derived empirically by experienced designers after
studying and manually analyzing the designs of successful websites in a target application domain.
Some other works focused on the automated detection of design patterns in the conceptual model
of data-intensive web applications can be found in [13,14]. In [13], authors present the Web Quality
Analyzer (WQA) which is able to automatically analyze the conceptual schemas of WebML-based
web applications with the aim of identifying the occurrences of a predefined set of WebML design
patterns specifying typical ways of content publishing and management. By calculating metrics
about the coherent use of the identified occurrences of design patterns throughout the application
schema, the WQA allows designers to automatically monitor the design consistency of the applications.
In [14], authors present an approach for supporting the automatic identification of web interaction
design patterns implemented in a Web application. The approach is based on reverse engineering
techniques aiming to search the code of a website’s pages to detect those features that characterize
a pattern. The authors have selected the characteristic features for a number of patterns by analyzing
different typical pattern implementations. Such features include UI model fragments (e.g., forms,
tables, etc.) and lexical terms (e.g., login, poll, etc.). To identify a given pattern, the approach
requires that its characteristic features are specified a priori. However, these approaches are focused on
general-purpose web design patterns. Only few approaches have been proposed to assist developers
identify domain-specific patterns, but they all refer to the field of software engineering.

In [15,16], the authors present a method for constructing and reusing domain-specific design
patterns, applicable to the domain of real-time applications. The proposed method guides developers
to construct the patterns by applying a set of comparison criteria, which are defined by experts after
manually performing domain analysis, on various applications in the real-time domain in order
to identify the possible commonalities and differences between the applications models and, thus,
derive the fundamental, optional, and extensible elements of a pattern. This method is based on the
UML-profile language. However, this method is applicable merely for the real-time domain and it is
possible that it can result in patterns which their instantiation may not correspond to reality.

In [17], the authors highlight the need to introduce a formalism to describe domain-specific
patterns accurately and to allow a rigorous reasoning process to assist developers retrieve the most
appropriate pattern for handling a specific instantiation of a design problem in a particular application
domain. To this end, they propose a semantic representation for domain-specific design patterns which
can be used as an underlying armature for complementing the informal textual pattern description
by means of semantic annotations. More specifically, they propose an ontology-based approach that
allows designers to enrich a set of predefined domain-specific patterns with semantic annotations
using domain concepts and terms defined by domain experts. The pattern format and the domain
knowledge concerning the pattern are kept separately in a representational vocabulary using ontologies.
This representation framework keeps the pattern template and the domain knowledge separate, since

Algorithms 2017, 10, 28 5 of 17

each domain, depending on its needs, uses more or fewer fields to describe its patterns and the later
ontology changes according to the domain knowledge that the pattern captures. In [18], authors
present a UML-based language for specifying domain-specific design patterns. They present a pattern
specification notation called the Role-Based Metamodeling Language (RBML) and shows how it can be
used to express domain-specific patterns. An RBML pattern defines a domain-specific sublanguage of
the Unified Modeling Language (UML). Developers can use the sublanguage to create UML diagrams
for applications in the domain addressed by the pattern.

All of the aforementioned approaches assume the existence of a predefined set of domain-specific
design patterns which are manually devised by domain experts after analyzing the designs of successful
websites in a domain. The key difference of our approach is that it is not based on this assumption.
Our aim is not to devise domain-specific design patterns, but rather to discover and mine these patterns
by detecting their recurrent use in a set of real domain-specific websites. To this end, we provide
a methodology for the automated identification of the recurrent domain-specific design patterns
lying in the designs of a collection of websites in a specific application domain. We can detect even
patterns which may be hidden in a particular instantiation of a design problem, making it hard even for
experienced designers to recognize them and come up with reusable design examples. The identified
patterns can empower less-experienced designers to produce designs of high quality in a specific
application domain on the grounds that these patterns provide them with well-tested solutions,
guiding them on how to organize the various sections of a domain-specific website.

3. The Methodology

In this section, we present the methodology for mining domain-specific design patterns from
a set of concrete designs of various websites in a target application domain. It is comprised by three
main phases (Figure 1). First, we utilize a web crawler to create a collection of websites, and then we
extract their conceptual models at hypertext level. Secondly, the recovered models are submitted to
a pattern-based analysis with the aim of (i) identifying the occurrences of all the recurrent patterns
lying within them; and (ii) verifying which of them can be considered as candidate domain-specific
design patterns (i.e., supporting the realization of common functionalities). Finally, we calculate a set
of evaluation metrics to assess if they are used consistently throughout the models of the websites.
The identified patterns are stored in a repository available at [8].

Algorithms 2017, 10, 28 5 of 16

pattern defines a domain-specific sublanguage of the Unified Modeling Language (UML).
Developers can use the sublanguage to create UML diagrams for applications in the domain
addressed by the pattern.

All of the aforementioned approaches assume the existence of a predefined set of domain-specific
design patterns which are manually devised by domain experts after analyzing the designs of
successful websites in a domain. The key difference of our approach is that it is not based on this
assumption. Our aim is not to devise domain-specific design patterns, but rather to discover and
mine these patterns by detecting their recurrent use in a set of real domain-specific websites. To this
end, we provide a methodology for the automated identification of the recurrent domain-specific
design patterns lying in the designs of a collection of websites in a specific application domain.
We can detect even patterns which may be hidden in a particular instantiation of a design problem,
making it hard even for experienced designers to recognize them and come up with reusable
design examples. The identified patterns can empower less-experienced designers to produce
designs of high quality in a specific application domain on the grounds that these patterns provide
them with well-tested solutions, guiding them on how to organize the various sections of a
domain-specific website.

3. The Methodology

In this section, we present the methodology for mining domain-specific design patterns from a
set of concrete designs of various websites in a target application domain. It is comprised by three
main phases (Figure 1). First, we utilize a web crawler to create a collection of websites, and then we
extract their conceptual models at hypertext level. Secondly, the recovered models are submitted to
a pattern-based analysis with the aim of (i) identifying the occurrences of all the recurrent patterns
lying within them; and (ii) verifying which of them can be considered as candidate domain-specific
design patterns (i.e., supporting the realization of common functionalities). Finally, we calculate a set
of evaluation metrics to assess if they are used consistently throughout the models of the websites.
The identified patterns are stored in a repository available at [8].

Figure 1. The three main phases of the methodology.

Figure 1. The three main phases of the methodology.

Algorithms 2017, 10, 28 6 of 17

3.1. Phase 1: Extracting the Conceptual Models of the Websites

In the first phase, we utilize a web crawler which crawls all of the pages of a set of websites in
a target application domain and locally stores them on the user’s computer, thus creating a collection
of domain-specific websites. Then, we utilize the “Conceptual Model Extractor” tool to capture their
designs by extracting their conceptual models. At the hypertext level, the conceptual model of a website
specifies its composition and navigation, i.e., the organization of its front-end interfaces in terms of
pages, made of design elements which are linked to support the user’s navigation and interaction.
Thus, the main task for automatically extracting the conceptual model of a website is to identify the
organization of the front-end design elements that compose the hypertext of its HTML pages.

In the context of a Joomla!-based website, the hypertext of its pages is composed by assembling
a number of predefined structural and navigational design elements, which are called components
and modules. A page is composed by one component, specifying the organization of content in its
main part, and by a set of modules, specifying the organization of content in the peripheral positions.
There is a variety of categories for components and modules, each one providing various types for
interacting with the system (such as forms, confirmation buttons, etc.) and supporting alternative
ways of arranging the content delivered to the end-users (e.g., blogs, lists, etc.). The content that they
publish is extracted from the tables of the website’s underlying database. To specify the hypertext
organization for all the pages of a website, we have developed the “Conceptual Model Extractor” tool,
as depicted in the first phase of Figure 1. This tool parses all of the locally-stored HTML pages of every
website in the collection and identifies their organization as a set of components and modules. In the
HTML code of a page, components and modules can be found as <div> elements having a specific
HTML class attribute value (i.e., <div class = “value”>) which characterizes them and specifies the
exact type of the component-module they represent. The complete list with all the categories of
Joomla! components and modules, along with their characteristic HTML class attribute values are
available in [8]. Thus, by parsing the HTML code of a page and locating the occurrences of these
characteristic values within it, we can recover the page’s organization as a set of Joomla! design
elements. For example, Figure 2a presents the Joomla! design elements identified within a page of the
MMLAB educational website [19], consisting of the “Article” component and a set of modules such as
menus, footer, etc. Once this is done for all of the pages of the websites, we manage to capture their
composition and navigation, i.e., to extract their conceptual models. Then, the next step is to represent
them as graphs, required for facilitating the detection of the recurrent patterns among them in the
next phase.

Algorithms 2017, 10, 28 6 of 16

3.1. Phase 1: Extracting the Conceptual Models of the Websites

In the first phase, we utilize a web crawler which crawls all of the pages of a set of websites in a
target application domain and locally stores them on the user’s computer, thus creating a collection
of domain-specific websites. Then, we utilize the “Conceptual Model Extractor” tool to capture their
designs by extracting their conceptual models. At the hypertext level, the conceptual model of a
website specifies its composition and navigation, i.e., the organization of its front-end interfaces in
terms of pages, made of design elements which are linked to support the user’s navigation and
interaction. Thus, the main task for automatically extracting the conceptual model of a website
is to identify the organization of the front-end design elements that compose the hypertext of its
HTML pages.

In the context of a Joomla!-based website, the hypertext of its pages is composed by assembling
a number of predefined structural and navigational design elements, which are called components
and modules. A page is composed by one component, specifying the organization of content in its
main part, and by a set of modules, specifying the organization of content in the peripheral positions.
There is a variety of categories for components and modules, each one providing various types for
interacting with the system (such as forms, confirmation buttons, etc.) and supporting alternative
ways of arranging the content delivered to the end-users (e.g., blogs, lists, etc.). The content that they
publish is extracted from the tables of the website’s underlying database. To specify the hypertext
organization for all the pages of a website, we have developed the “Conceptual Model Extractor”
tool, as depicted in the first phase of Figure 1. This tool parses all of the locally-stored HTML pages
of every website in the collection and identifies their organization as a set of components and
modules. In the HTML code of a page, components and modules can be found as <div> elements
having a specific HTML class attribute value (i.e., <div class = “value”>) which characterizes them
and specifies the exact type of the component-module they represent. The complete list with all the
categories of Joomla! components and modules, along with their characteristic HTML class attribute
values are available in [8]. Thus, by parsing the HTML code of a page and locating the occurrences
of these characteristic values within it, we can recover the page’s organization as a set of Joomla!
design elements. For example, Figure 2a presents the Joomla! design elements identified within a
page of the MMLAB educational website [19], consisting of the “Article” component and a set of
modules such as menus, footer, etc. Once this is done for all of the pages of the websites, we manage
to capture their composition and navigation, i.e., to extract their conceptual models. Then, the next
step is to represent them as graphs, required for facilitating the detection of the recurrent patterns
among them in the next phase.

Figure 2. (a) The organization of a page in terms of Joomla! design elements (component and
modules); and (b) The equivalent graph representation of the page’s hypertext.

We define the conceptual model of a website as a directed graph of the form G (V, E, fV, fE),
comprising a set of nodes V, a set of edges E, a node labelling function fV: V → ΣV and an edge
labelling function fE: E → ΣE. The function fV assigns labels to the nodes in V from the alphabet ΣV

Figure 2. (a) The organization of a page in terms of Joomla! design elements (component and modules);
and (b) The equivalent graph representation of the page’s hypertext.

Algorithms 2017, 10, 28 7 of 17

We define the conceptual model of a website as a directed graph of the form G (V, E, fV, fE),
comprising a set of nodes V, a set of edges E, a node labelling function fV: V → ΣV and an edge
labelling function fE: E → ΣE. The function fV assigns labels to the nodes in V from the alphabet
ΣV which includes all of the different types of the Joomla! components and modules available in [8].
Similarly, function fE assign labels to the edges in E from the alphabet ΣE = {W_P, P_M, P_C, M_P,
C_P, M_C}. The label W_P denotes the containment of a page in a website, the labels P_M and P_C
denotes the containment of modules and components, respectively, within a page, the labels M_P
and C_P denotes the link from modules and components respectively to a page, and finally the label
M_C denotes the link between modules and/or components. To represent the conceptual models
of the websites as directed graphs, we have developed the “Graph Translator” tool. For example,
Figure 2b presents an instance of a conceptual model graph and particularly the equivalent graph
representation of the page depicted in Figure 2a. These graphs are going to be the input for the graph
mining algorithm of the next phase.

3.2. Phase 2: Mining the Candidate Domain-Specific Design Patterns

The main objective of this phase is to detect the possible design commonalities lying among the
previously-extracted conceptual models, which can probably indicate the existence of domain-specific
design patterns. To this end, we analyze these models in terms of the reusable design fragments used
recurrently in them for supporting common functionality. These fragments are considered as recurrent
patterns consisting of a configuration of Joomla! components and modules which, when located
in a particular layout, may deliver a certain set of information objects to end-users in the context
of supporting a certain task or domain functionality. To capture these fragments, first we perform
a pattern-based analysis of the recovered models in order to identify all the recurrent patterns occurring
in them at hypertext design. Then, we inspect their occurrences in the various websites of the collection
to examine if there is a coexisting recurrence at data level, i.e., if the identified patterns are used to
deliver the same set of information objects types, specified in terms of domain concepts, to end-users
(Figure 1, Phase 2).

3.2.1. Mining the Recurrent Patterns at Hypertext Level

To locate the recurrent patterns (their core specifications along with their starting and termination
variants) occurring among the set of conceptual models, we have reduced the problem of their
identification into the domain of graph mining, and particularly to the subgraph isomorphism problem.
The latter is synopsized in its general form into finding whether the isomorphic image of a subgraph
exists in a larger graph. An example of an isomorphic image of a subgraph is depicted in Figure 3.
The subgraph in Figure 3b is isomorphic to the subgraph in Figure 3a. As we can see, despite the
different configuration of nodes in the two subgraphs, the edges connecting the nodes of the same color
remain the same. The table in Figure 3c contains some sequences of the nodes that are connected in the
subgraphs of Figure 3a,b. For example, a sequence can start from node S, from which one can navigate
to node article category list (ACL) and then navigate to node A, and so on. By observing the node
sequences, one can notice that they can actually reveal the recurrent patterns occurring within a graph,
both their core specifications and their starting and termination variants. Clearly, the identification
of the isomorphic subgraphs within a graph is an alternative way to obtain the identification of the
incorporated recurrent patterns.

Based on this, we attempt to identify the recurrent patterns lying in the set of the recovered
conceptual models, by locating all the isomorphic subgraphs within their equivalent graph
representations. To achieve this, we employ a graph mining algorithm, namely gSpan [20],
which identifies the occurrences of all the recurrent isomorphic subgraph patterns within the conceptual
model graphs. More specifically, gSpan addresses the problem of frequent subgraph mining. Due to
space limitations, we cannot provide a detailed description of how the gSpan works, but we present
an explanatory overview. Intuitively, gSpan traverses the set G of the conceptual model graphs and

Algorithms 2017, 10, 28 8 of 17

finds all the smaller subgraphs g in G that occur frequently. A subgraph g is frequent if its occurrence
frequency in G, denoted as support(g), is no less than a minimum support threshold (minSup).
In a more formal definition, the problem of frequent subgraph mining is to find any subgraph g
into G so that support(g) ≥ minSup. When looking for the occurrences of a subgraph in G, the
algorithm encounters except for its identical occurrences, its isomorphic images, too. In this way, the
conceptual model graphs are analyzed in terms of the frequent subgraphs (representing recurrent
patterns) occurring among them.

Algorithms 2017, 10, 28 7 of 16

which includes all of the different types of the Joomla! components and modules available in [8].
Similarly, function fE assign labels to the edges in E from the alphabet ΣE = {W_P, P_M, P_C, M_P,
C_P, M_C}. The label W_P denotes the containment of a page in a website, the labels P_M and P_C
denotes the containment of modules and components, respectively, within a page, the labels M_P
and C_P denotes the link from modules and components respectively to a page, and finally the label
M_C denotes the link between modules and/or components. To represent the conceptual models of
the websites as directed graphs, we have developed the “Graph Translator” tool. For example,
Figure 2b presents an instance of a conceptual model graph and particularly the equivalent graph
representation of the page depicted in Figure 2a. These graphs are going to be the input for the graph
mining algorithm of the next phase.

3.2. Phase 2: Mining the Candidate Domain-Specific Design Patterns

The main objective of this phase is to detect the possible design commonalities lying among
the previously-extracted conceptual models, which can probably indicate the existence of
domain-specific design patterns. To this end, we analyze these models in terms of the reusable design
fragments used recurrently in them for supporting common functionality. These fragments are
considered as recurrent patterns consisting of a configuration of Joomla! components and modules
which, when located in a particular layout, may deliver a certain set of information objects to
end-users in the context of supporting a certain task or domain functionality. To capture these
fragments, first we perform a pattern-based analysis of the recovered models in order to identify all
the recurrent patterns occurring in them at hypertext design. Then, we inspect their occurrences in
the various websites of the collection to examine if there is a coexisting recurrence at data level, i.e.,
if the identified patterns are used to deliver the same set of information objects types, specified in
terms of domain concepts, to end-users (Figure 1, Phase 2).

3.2.1. Mining the Recurrent Patterns at Hypertext Level

To locate the recurrent patterns (their core specifications along with their starting and
termination variants) occurring among the set of conceptual models, we have reduced the problem
of their identification into the domain of graph mining, and particularly to the subgraph isomorphism
problem. The latter is synopsized in its general form into finding whether the isomorphic image of a
subgraph exists in a larger graph. An example of an isomorphic image of a subgraph is depicted in
Figure 3. The subgraph in Figure 3b is isomorphic to the subgraph in Figure 3a. As we can see, despite
the different configuration of nodes in the two subgraphs, the edges connecting the nodes of the same
color remain the same. The table in Figure 3c contains some sequences of the nodes that are connected
in the subgraphs of Figure 3a,b. For example, a sequence can start from node S, from which one can
navigate to node article category list (ACL) and then navigate to node A, and so on. By observing the
node sequences, one can notice that they can actually reveal the recurrent patterns occurring within
a graph, both their core specifications and their starting and termination variants. Clearly, the
identification of the isomorphic subgraphs within a graph is an alternative way to obtain the
identification of the incorporated recurrent patterns.

Figure 3. (a,b) An example of two isomorphic graphs. (c) The table of node sequences connected in
the isomorphic graphs.

Figure 3. (a,b) An example of two isomorphic graphs; (c) The table of node sequences connected in the
isomorphic graphs.

To apply the gSpan algorithm on the set of conceptual model graphs, we have used the Parsemis
project [21], which supports an implementation of the gSpan algorithm within a graphical environment
for visualizing the identified frequent subgraphs. An example can be found in Figure 4 which presents
an identified subgraph pattern representing one of the most typical ways of browsing large hierarchical
content structures, i.e., the hierarchy of categories and subcategories of an information object, used
in the designs of many educational websites. The pattern consists of a composition of Joomla!
hypertext design elements (components and modules) involving four different pages of an educational
website. More specifically, it consists of an article page publishing content about an information object,
from which users can navigate to a second page which is based on the ACL component and allows
users to quickly scan a list of information items. By selecting a certain list item, users can navigate
to a third page of the same component type (ACL), allowing them to have access to a second list of
information items. Finally, by selecting a specific list item, users can have access to an article page
presenting content about the selected list item.

Algorithms 2017, 10, 28 8 of 16

Based on this, we attempt to identify the recurrent patterns lying in the set of the recovered
conceptual models, by locating all the isomorphic subgraphs within their equivalent graph
representations. To achieve this, we employ a graph mining algorithm, namely gSpan [20], which
identifies the occurrences of all the recurrent isomorphic subgraph patterns within the conceptual
model graphs. More specifically, gSpan addresses the problem of frequent subgraph mining. Due to
space limitations, we cannot provide a detailed description of how the gSpan works, but we present
an explanatory overview. Intuitively, gSpan traverses the set G of the conceptual model graphs and
finds all the smaller subgraphs g in G that occur frequently. A subgraph g is frequent if its occurrence
frequency in G, denoted as support(g), is no less than a minimum support threshold (minSup). In a
more formal definition, the problem of frequent subgraph mining is to find any subgraph g into G so
that support(g) ≥ minSup. When looking for the occurrences of a subgraph in G, the algorithm
encounters except for its identical occurrences, its isomorphic images, too. In this way, the conceptual
model graphs are analyzed in terms of the frequent subgraphs (representing recurrent patterns)
occurring among them.

To apply the gSpan algorithm on the set of conceptual model graphs, we have used the Parsemis
project [21], which supports an implementation of the gSpan algorithm within a graphical
environment for visualizing the identified frequent subgraphs. An example can be found in Figure 4
which presents an identified subgraph pattern representing one of the most typical ways of browsing
large hierarchical content structures, i.e., the hierarchy of categories and subcategories of an
information object, used in the designs of many educational websites. The pattern consists of a
composition of Joomla! hypertext design elements (components and modules) involving four
different pages of an educational website. More specifically, it consists of an article page publishing
content about an information object, from which users can navigate to a second page which is based
on the ACL component and allows users to quickly scan a list of information items. By selecting a
certain list item, users can navigate to a third page of the same component type (ACL), allowing them
to have access to a second list of information items. Finally, by selecting a specific list item, users can
have access to an article page presenting content about the selected list item.

Figure 4. A frequent subgraph detected in the conceptual models of educational websites.

The Parsemis tool provides the identified subgraphs in a TXT file containing the configuration
of the Joomla! design elements that compose each subgraph, as well as their occurrences, in the set of
graphs. We process this file in a way similar with the one presented in the example of Figure 3c (based
on the sequences of the connected nodes in the subgraphs) and identify the core specifications and
the starting and ending variants of each pattern.

Figure 4. A frequent subgraph detected in the conceptual models of educational websites.

Algorithms 2017, 10, 28 9 of 17

The Parsemis tool provides the identified subgraphs in a TXT file containing the configuration of the
Joomla! design elements that compose each subgraph, as well as their occurrences, in the set of graphs.
We process this file in a way similar with the one presented in the example of Figure 3c (based on
the sequences of the connected nodes in the subgraphs) and identify the core specifications and the
starting and ending variants of each pattern.

3.2.2. Inspecting Data Level: Identifying Patterns Supporting Common Functionality

In order to verify that the identified recurrent patterns are used in the various websites for
supporting common domain functionality (so that they can be considered as candidate domain-specific
patterns), we additionally have to examine whether the recurrence of the design elements at the
hypertext level of the websites goes with a coexisting recurrence at their data level. To achieve this,
it is necessary to inspect all of the occurrences of these patterns on the websites in the collection in order
to examine whether a recurrent hypertext pattern, i.e., a certain configuration of Joomla! components
and modules, is used particularly (intentionally) for delivering a certain set of information objects
types to the end-users and, thus, performing a certain domain functionality.

To achieve this, we apply a WordNet-based semantic similarity measurement technique [22] on
the contents published by the pages involved in a pattern among its occurrences, which computes
the degree of their semantic similarity and detects the common semantic concepts (i.e., information
objects) to which they refer. The content published by the various components and modules of a page
is extracted from the tables of the website’s database. Thus, to examine for a given recurrent pattern
whether there is a coexisting recurrence at the data level, ideally, we have to examine from which
database tables the corresponding Joomla! components and modules (that make up the pattern) among
its occurrences extract content. If they publish content from the same tables, then there is a high
possibility of identifying a reusable design pattern for implementing common functionality. However,
in this work we assume that we do not have access to the database of a website, since this is the
common scenario in real-life websites. Based on this, we attempt to examine if there is a recurrence
at the data level, by computing the semantic similarity of the content published by the pattern’s
corresponding Joomla! design elements among its occurrences. The rationale behind this is that the
contents of the pages that come from the same database’s table usually have a very close semantic
relation. So, if the pattern’s occurrences among the various websites in the collection are semantically
close, we can assume that they could probably derive content from the same database tables, and infer
that the pattern is used for supporting common functionality, which can be specified by capturing the
common semantic concepts to which these occurrences refer.

To compute the semantic similarity of the published contents between two pattern occurrences,
we have defined two metrics, the “SemSimScore” and the “AverageSemSimScore”. On the grounds that
the main content of a page, indicative of its semantics, is published by the page’s underlying component,
the “SemSimScore” metric addresses the semantic similarity measurement of the content published
by the Joomla! components that are involved in a pattern. This is why there are empty cells for the
“SemSimScore” computations in Table 1, when it comes to measure semantic similarity among content
published by modules. Given two contents, the “SemSimScore” metric determines how similar the
meaning of two contents is. The higher the score, the more similar the meaning of the two contents is,
increasing the possibility that there is also a recurrence at the content displayed by the pattern between
its occurrences. Then, the “AverageSemSimScore” computes the average value of the individual
“SemSimScore” values between the pattern occurrences. For every computation of the “SemSimScore”
metric among two given contents, we also detect the common semantic concept to which these contents
refer and we consider it as a domain concept representing the common information object that they
deliver to end-users. This way, we can express the common functionality supported by the two pattern
occurrences as the configuration that is formed by the individual domain concepts computed for
these occurrences. By computing the pairwise computations among all of the occurrences of a given
pattern, we can determine which is the most recurrent configuration of domain concepts among its

Algorithms 2017, 10, 28 10 of 17

occurrences and consider it as the common domain functionality supported by the pattern. In Table 1,
we can see an example of computing the semantic similarity between the occurrences of the pattern
presented in Figure 4 for browsing the hierarchy of categories and subcategories of information
items in educational websites. To verify that this pattern is actually used for supporting common
functionality, we inspect its occurrences to examine if there is also a recurrence at the content it delivers
to the end-users. In Table 1, we can see three occurrences of the pattern Occ.1, Occ.2, and Occ.3 in
two different educational websites. By comparing the semantic similarity of the content published by
the pattern’s corresponding components for Occ.1 and Occ.2, they have an AverageSemSimScore of
75%, which means that they are semantically close. Furthermore, the common functionality supported
by these two pattern occurrences is to support user navigation to the following configuration of domain
concepts: {University, Departments, Staff, Professor}. Similarly, the AverageSemSimScore for Occ.1
and Occ.3 is 58%, implying that the content published in these two occurrences is not semantically
highly related and, thus, that there is not a recurrence at the data level. By computing all the pairwise
computations among the occurrences of this pattern in the various websites, we can identify that
the previous identified configuration of domain concepts is one of the most recurrent ones and, thus,
we can assume that the domain functionality supported by this pattern is to allow user navigation to
this specific set of domain concepts.

Table 1. Measuring the semantic similarity among pattern’s occurrences in the various websites of
the collection.

PATTERN MENU
[Module]

ARTICLE
[Component]

CATEGORY LIST
[Component]

CATEGORY LIST
[Component]

ARTICLE
[Component]

Occ.1 Top Menu AUTH
University Departments in AUTH

Academic
staff—Department of

Informatics

Professor Mr.
Papadopoulos

Occ.2 Main Menu Piraeus
University

Undergraduate
Studies—Departments

Academic
Staff—Department of

Electronics Engineering

Professor Mrs.
Rammou

SemSimScore
Occ.1–2 85% 75% 70% 70%

Common Semantic
Concept University Departments Staff Professor

AverageSemSimScore Occ1.–Occ.2 75%

Occ.3 Top Menu AUTH
University Departments in AUTH Undergraduate Studies Databases—Course

Description

SemSimScore
Occ.1-3 100% 100% 10% 23%

Common Semantic
Concept University Departments Education Course

AverageSemSimScore Occ1.–Occ.3 58%

In this way, we can obtain a safe estimation about the recurrence at the organization of information
objects in the pages of the websites among the occurrences of the identified patterns. We compute
the AverageSemSimScore metric for all the occurrences of the identified patterns (core specification
and variants) and we select and store in a “Candidate Patterns Repository” only the ones having
an AverageSemSimScore over 70%.

The use of domain concepts for identifying the reusable design solutions lying among the designs
of the various websites in the collection is the main contribution of this work to the methodology
presented in [7]. Previously in [7], we solely used the “SemSimScore” and the “AverageSemSimScore”
metrics for measuring whether the contents of the pages involved in a pattern among its occurrences
are semantically close and, thus, assume that they possibly deliver the same information object types to
end-users, i.e., support common functionality. However, we were not able to capture which of these are
information object types so that we can understand the purpose behind the use of the patterns in the

Algorithms 2017, 10, 28 11 of 17

context of the target domain. In other words, we could capture cases in which the use of a pattern in
the designs of the various websites was implying common functionality, but we could not express this
functionality in terms of domain-specific objects so that to make it easier for developers to understand
the context in which the identified patterns can be applied. To achieve this in [7], we had to manually
inspect the pattern occurrences in order to be able to find out for which type of content (i.e., information
objects) they are used to deliver to end-users in the educational domain.

To overcome this problem, in the current work, we came up with the idea of the domain concepts
allowing us to automatically identify the common information objects to which the pattern refers
among its various occurrences, and thus understand the domain functionality supported by the pattern.
This way, we can express the various domain functionalities as a set of domain concepts reflecting the
common information objects of the domain.

3.3. Evaluation of Pattern Variants Consistent Use

In this final step, we focus on evaluating the consistent use of the identified patterns throughout
the conceptual models of the various websites. Patterns which are consistently used probably result
in high design quality, facilitating end-users to identify typical patterns of interactions with the
system for performing common functionalities. This results in predictable navigation behavior and,
thus, high design quality. On the other hand, patterns which are not used consistently may cause
serious design inconsistencies. To this end, we calculate some metrics to evaluate whether the patterns
stored in the repository are used consistently throughout the set of conceptual models. These metrics
are called start-point metric (SPM) and end-point metric (EPM) and, intuitively, they compute the
statistical variance of the occurrences of the starting and termination variants of a pattern throughout
the conceptual models. SPM is defined as follows, and EPM is defined in an analogous way:

SPM = σ2/σ2
BC (1)

where σ2 is the statistical variance of the N starting variants occurrences, which is calculated according
to the Equation (2):

σ2 =
1
N

N

∑
i=0

(
pi −

1
N

)2
(2)

where pi is the percentage of occurrences for the i-th pattern variant. σ2
BC is, instead, the best case

variance and it is calculated by Equation (2), assuming that only one variant has been coherently
used throughout the models. More details about the metric’s definition can be found in [13]. We have
also specified a measurement scale which defines a mapping between the numerical results obtained
through the calculus method of the SPM-EPM metrics and a set of (predefined) meaningful and discrete
values, expressing different consistency levels (Table 2).

Table 2. The measurement scale for the EPM and SPM metrics.

EPM-SPM Range Measurement Scale Value

0 ≤ SPM < 0.2 Insufficient
0.2 ≤ SPM < 0.4 Weak
0.4 ≤ SPM < 0.6 Discrete
0.6 ≤ SPM < 0.8 Good
0.8 ≤ SPM ≤ 1 Optimum

4. The Case Study

In the context of this work, we have focused on the domain of educational websites and, thus,
we have applied the proposed methodology on a collection of websites in this domain. This resulted
in the identification of a set of domain-specific design patterns specifically tailored for the educational
domain, which are stored in a central pattern repository available at [8]. Here, we present a number

Algorithms 2017, 10, 28 12 of 17

of these patterns in order to illustrate the potential of our approach and particularly the way
in which the detected patterns can help developers during the design of educational websites.
Our dataset is composed by a number of educational websites that have been developed by our
team, such as the MMLAB website, and a set of educational websites derived from the official Joomla!
Community Showcase website catalogue. The list of the websites that we have included in our dataset
is available at [8]. In the following sections, we provide a short description of the educational domain
and some examples of the patterns that we have identified for this area.

4.1. Domain Description

The educational websites have an increasingly important role to the admissions and marketing
practices of colleges and universities, due to their ability to rapidly communicate a significant amount
of content to a vast audience. They tend to be large, complex, and content-heavy websites that serve
diverse audiences and, thus, the organization of their navigation and content can be a difficult task. In fact,
educational websites must be designed in such a way that it enables end-users to recognize typical
navigational patterns for quickly and effectively locating the information that they are looking for.

In the context of educational websites, the most common types of end-users include prospective,
current, and international students along with the institution’s staff and faculty, as well as alumni,
donors, etc. Furthermore, the most common types of information objects appearing on the pages
of educational websites include studies, courses, research, publications, admissions, academic staff,
university campus, etc. The patterns that we have detected by applying the methodology on a collection
of educational websites represent the navigational architectures that are commonly used in their
designs for supporting various user tasks.

4.2. Domain-Specific Design Patterns for Educational Websites

In this section, we present some of the domain-specific design patterns that we have identified in
this case study. We have classified these patterns into three main categories based on their common
design characteristics concerning their layout, navigation structure, and functionality. Examples of
patterns included in these categories along with a short category description are provided below.

Layout Category: this category includes patterns that provide developers with standard
compositions of Joomla! components and modules which are widely used in educational websites for
browsing the various information objects appearing in educational websites. Additionally, in many
cases, these compositions specify page templates, capturing the most common ways of organizing
the various Joomla! front-end interface elements in order to form a page. For example, Figure 5
presents two of the most commonly used templates in the website collection for specifying the layout
of the homepage.

Algorithms 2017, 10, 28 12 of 16

4.1. Domain Description

The educational websites have an increasingly important role to the admissions and marketing
practices of colleges and universities, due to their ability to rapidly communicate a significant amount
of content to a vast audience. They tend to be large, complex, and content-heavy websites that
serve diverse audiences and, thus, the organization of their navigation and content can be a difficult
task. In fact, educational websites must be designed in such a way that it enables end-users to
recognize typical navigational patterns for quickly and effectively locating the information that they
are looking for.

In the context of educational websites, the most common types of end-users include prospective,
current, and international students along with the institution’s staff and faculty, as well as alumni,
donors, etc. Furthermore, the most common types of information objects appearing on the pages of
educational websites include studies, courses, research, publications, admissions, academic staff,
university campus, etc. The patterns that we have detected by applying the methodology on a
collection of educational websites represent the navigational architectures that are commonly used
in their designs for supporting various user tasks.

4.2. Domain-Specific Design Patterns for Educational Websites

In this section, we present some of the domain-specific design patterns that we have identified
in this case study. We have classified these patterns into three main categories based on their common
design characteristics concerning their layout, navigation structure, and functionality. Examples of
patterns included in these categories along with a short category description are provided below.

Layout Category: this category includes patterns that provide developers with standard
compositions of Joomla! components and modules which are widely used in educational websites
for browsing the various information objects appearing in educational websites. Additionally, in
many cases, these compositions specify page templates, capturing the most common ways of
organizing the various Joomla! front-end interface elements in order to form a page. For example,
Figure 5 presents two of the most commonly used templates in the website collection for specifying
the layout of the homepage.

Figure 5. Templates for the homepage of educational websites. (a) A template for publishing the main
content of the homepage in blog layout format. (b) A template for publishing the main content of the
homepage in the form of an article.

The first template in Figure 5a consists of the featured articles component for publishing the
main content of the homepage in the form of a blog presenting an overview of a number of articles,
and a set of modules, such as banners, menu, latest articles module, etc., for supporting the navigation
to other pages of the website. As you can see, except for the main navigation supported by the top
menu, the use of banners on the homepage is a very popular way for supporting common user tasks,
such as to provide direct navigation to pages which are of common interest, e.g., the available

Figure 5. Templates for the homepage of educational websites. (a) A template for publishing the main
content of the homepage in blog layout format; (b) A template for publishing the main content of the
homepage in the form of an article.

Algorithms 2017, 10, 28 13 of 17

The first template in Figure 5a consists of the featured articles component for publishing the main
content of the homepage in the form of a blog presenting an overview of a number of articles, and a set
of modules, such as banners, menu, latest articles module, etc., for supporting the navigation to other
pages of the website. As you can see, except for the main navigation supported by the top menu,
the use of banners on the homepage is a very popular way for supporting common user tasks, such as
to provide direct navigation to pages which are of common interest, e.g., the available undergraduate
and postgraduate studies in a university website, etc. Furthermore, many educational websites
include custom HTML modules in their homepage, usually for displaying logos acting as links to
external websites and, additionally, a latest articles modules for allowing users to quickly browse the
most recently published articles. The second page template in Figure 5b consists of an article page
usually displaying a welcome message to visitors and a number of modules, such as custom HTML,
menus, etc., for accessing other website pages. The main purpose of both templates is to support the
efficient navigation of users from the homepage to other pages in order to easily and rapidly locate the
information they are looking for, since the homepage is the starting point for navigating throughout
the entire website. The key difference of the second template is that, instead of using banners for direct
navigation to the pages publishing important information, it makes use of extra menus. These menus
group sets of pages, which are at the same hierarchical level of the website hierarchy, allow users
to access them by following the corresponding link. This template is used mainly in websites with
deep content hierarchical structures. Moreover, the use of breadcrumbs in this template is very crucial
(showing a link for each level of the website, from the homepage to the current page) since it helps
users orient themselves and understand the website structure.

Another example of a template involving more than one page is depicted in Figure 6 which
presents a commonly used pattern for supporting the user’s navigation among the hierarchy of
categories and subcategories of information objects. It consists of four pages: the first page presents
content about an information item, from which users can navigate to a second page displaying a list
of its categories. Then, by selecting a list item users can have access to a third page of the same type
displaying a list with the subcategories of the selected category and, finally, by selecting a list item,
users can navigate to a fourth article page displaying information about the selected subcategory.
Both of the pages in Figure 6 that present a list with the categories and subcategories include a most
read articles module in order to allow users navigate to the most frequently visited pages, shortening
the navigation path to them and acting as a mechanism for navigating backward and forward through
the website pages, regardless of the hierarchical level to which these pages belong.

Algorithms 2017, 10, 28 13 of 16

undergraduate and postgraduate studies in a university website, etc. Furthermore, many educational
websites include custom HTML modules in their homepage, usually for displaying logos acting as
links to external websites and, additionally, a latest articles modules for allowing users to quickly
browse the most recently published articles. The second page template in Figure 5b consists of an
article page usually displaying a welcome message to visitors and a number of modules, such as
custom HTML, menus, etc., for accessing other website pages. The main purpose of both templates
is to support the efficient navigation of users from the homepage to other pages in order to easily and
rapidly locate the information they are looking for, since the homepage is the starting point for
navigating throughout the entire website. The key difference of the second template is that, instead
of using banners for direct navigation to the pages publishing important information, it makes use of
extra menus. These menus group sets of pages, which are at the same hierarchical level of the website
hierarchy, allow users to access them by following the corresponding link. This template is used
mainly in websites with deep content hierarchical structures. Moreover, the use of breadcrumbs in
this template is very crucial (showing a link for each level of the website, from the homepage to the
current page) since it helps users orient themselves and understand the website structure.

Another example of a template involving more than one page is depicted in Figure 6 which
presents a commonly used pattern for supporting the user’s navigation among the hierarchy of
categories and subcategories of information objects. It consists of four pages: the first page presents
content about an information item, from which users can navigate to a second page displaying a list
of its categories. Then, by selecting a list item users can have access to a third page of the same type
displaying a list with the subcategories of the selected category and, finally, by selecting a list item,
users can navigate to a fourth article page displaying information about the selected subcategory.
Both of the pages in Figure 6 that present a list with the categories and subcategories include a most
read articles module in order to allow users navigate to the most frequently visited pages, shortening
the navigation path to them and acting as a mechanism for navigating backward and forward
through the website pages, regardless of the hierarchical level to which these pages belong.

Generally speaking, the patterns of this category promote the consistent use of standard page
structures used as templates for assisting designers in the predictability of user navigation. After all,
consistency across website pages and page design elements enforces a coherent design style,
improving the ease of use of a website while, at the same time, the users can enjoy a more intuitive
user experience by reducing the number of unexpected variations in the page layout.

Figure 6. A typical pattern for browsing the hierarchy of categories and subcategories of
information objects.

Navigation Category: this category includes patterns which correspond to reusable navigation
structures used in the various website designs for providing access to various sets of domain
concepts, i.e., information objects. For example, Figure 7a presents the most common way for
browsing the various types of end-users (i.e., students, alumni, and parents) which is realized with
the use of a menu having links to the pages of the corresponding user category. Except for the
commonly used types of end-users, we have also identified a pattern variant, including a link to a
page publishing information about the visitor user type, occurring in a very small number of websites
in the collection. Similarly, Figure 7b presents a commonly used pattern on the home page of
educational websites for supporting the navigation to the pages publishing information about the
undergraduate and postgraduate studies and campus life. This is realized by using four banners on

Figure 6. A typical pattern for browsing the hierarchy of categories and subcategories of information objects.

Generally speaking, the patterns of this category promote the consistent use of standard page
structures used as templates for assisting designers in the predictability of user navigation. After all,
consistency across website pages and page design elements enforces a coherent design style, improving
the ease of use of a website while, at the same time, the users can enjoy a more intuitive user experience
by reducing the number of unexpected variations in the page layout.

Navigation Category: this category includes patterns which correspond to reusable navigation
structures used in the various website designs for providing access to various sets of domain
concepts, i.e., information objects. For example, Figure 7a presents the most common way for browsing

Algorithms 2017, 10, 28 14 of 17

the various types of end-users (i.e., students, alumni, and parents) which is realized with the use of
a menu having links to the pages of the corresponding user category. Except for the commonly used
types of end-users, we have also identified a pattern variant, including a link to a page publishing
information about the visitor user type, occurring in a very small number of websites in the collection.
Similarly, Figure 7b presents a commonly used pattern on the home page of educational websites
for supporting the navigation to the pages publishing information about the undergraduate and
postgraduate studies and campus life. This is realized by using four banners on the home page
which navigate users to the corresponding pages. We have also identified a pattern variant including
a link to a page publishing content about the summer school which is available on some of the
collected websites.

Algorithms 2017, 10, 28 14 of 16

the home page which navigate users to the corresponding pages. We have also identified a pattern
variant including a link to a page publishing content about the summer school which is available on
some of the collected websites.

Figure 7. Reusable navigation structures for educational websites.

Another example is depicted in Figure 8 presenting the use of a “fat” footer for providing users
with a mechanism for quick access to specific sections of the website, bypassing the navigational
structure. An occurrence of this pattern can be found on the website of the Graduate School of Arts
and Sciences [23] in which the footer contains links to pages which are frequently used by users.

Figure 8. An example of a fat footer.

To understand the importance of using domain concepts, I should mention that in our previous
work in [7] we could not automatically identify the concept to which the pages in the example of
Figures 7 and 9 refer. We could only identify the recurrence occurring at the hypertext level, i.e., a
menu providing links to four other website pages. In this work, we can capture these concepts by
locating the domain concepts computed in Section 3.2.2 among the pattern’s occurrences. It must be
clear that, except for the organization of the hypertext elements, we are now able to provide
end-users with design guidelines on how to organize the content (expressed by the appropriate
domain concepts) on the website pages.

Domain functionality: this category includes patterns that we have identified to be used for
supporting common user browsing activities within the context of educational websites, i.e., to
provide end-users access to common sets of information objects types. For example, Figure 9 presents
a pattern consisting of four pages specifying their organization for allowing users to access the
following set of information objects: {University, Faculties, Departments, Studies}. In other words,
the navigation purpose of this pattern is to allow users browsing from the university page to another
page publishing a list of all the available faculties in the university, from which users can navigate to
another page publishing a list of all the departments in a specific faculty, from which users can finally
navigate to a page publishing information about the available studies in a specific department. In the
patterns of this category, except for their structural and navigational aspect, we focus mainly on their
semantic aspect.

Figure 7. Reusable navigation structures for educational websites.

Another example is depicted in Figure 8 presenting the use of a “fat” footer for providing users
with a mechanism for quick access to specific sections of the website, bypassing the navigational
structure. An occurrence of this pattern can be found on the website of the Graduate School of Arts
and Sciences [23] in which the footer contains links to pages which are frequently used by users.

Algorithms 2017, 10, 28 14 of 16

the home page which navigate users to the corresponding pages. We have also identified a pattern
variant including a link to a page publishing content about the summer school which is available on
some of the collected websites.

Figure 7. Reusable navigation structures for educational websites.

Another example is depicted in Figure 8 presenting the use of a “fat” footer for providing users
with a mechanism for quick access to specific sections of the website, bypassing the navigational
structure. An occurrence of this pattern can be found on the website of the Graduate School of Arts
and Sciences [23] in which the footer contains links to pages which are frequently used by users.

Figure 8. An example of a fat footer.

To understand the importance of using domain concepts, I should mention that in our previous
work in [7] we could not automatically identify the concept to which the pages in the example of
Figures 7 and 9 refer. We could only identify the recurrence occurring at the hypertext level, i.e., a
menu providing links to four other website pages. In this work, we can capture these concepts by
locating the domain concepts computed in Section 3.2.2 among the pattern’s occurrences. It must be
clear that, except for the organization of the hypertext elements, we are now able to provide
end-users with design guidelines on how to organize the content (expressed by the appropriate
domain concepts) on the website pages.

Domain functionality: this category includes patterns that we have identified to be used for
supporting common user browsing activities within the context of educational websites, i.e., to
provide end-users access to common sets of information objects types. For example, Figure 9 presents
a pattern consisting of four pages specifying their organization for allowing users to access the
following set of information objects: {University, Faculties, Departments, Studies}. In other words,
the navigation purpose of this pattern is to allow users browsing from the university page to another
page publishing a list of all the available faculties in the university, from which users can navigate to
another page publishing a list of all the departments in a specific faculty, from which users can finally
navigate to a page publishing information about the available studies in a specific department. In the
patterns of this category, except for their structural and navigational aspect, we focus mainly on their
semantic aspect.

Figure 8. An example of a fat footer.

To understand the importance of using domain concepts, I should mention that in our previous
work in [7] we could not automatically identify the concept to which the pages in the example of
Figures 7 and 9 refer. We could only identify the recurrence occurring at the hypertext level, i.e., a menu
providing links to four other website pages. In this work, we can capture these concepts by locating
the domain concepts computed in Section 3.2.2 among the pattern’s occurrences. It must be clear that,
except for the organization of the hypertext elements, we are now able to provide end-users with
design guidelines on how to organize the content (expressed by the appropriate domain concepts) on
the website pages.

Algorithms 2017, 10, 28 15 of 17

Algorithms 2017, 10, 28 15 of 16

Figure 9. A pattern for supporting access to the available studies of a specific department of a certain
faculty in a university website.

The main benefit of using the identified domain-specific design patterns is the increased design
reuse in future designs of educational websites. Developers can rely on commonly used design
practices for the educational websites domain and have access to design guidelines guiding them on
how to organize the content and navigation of their educational websites.

5. Conclusions and Future Work

In this paper, we have presented a model-driven approach for mining domain-specific design
patterns from a set of concrete website designs in a target application domain. The key concept is to
analyze the designs of various websites in a particular domain in order to detect the possible design
commonalities among them which represent partitions of the domain implying the existence of
domain-specific design patterns. Based on this, the proposed methodology analyzes the conceptual
models of the collected websites in terms of the reusable design fragments used repeatedly in them
for supporting common functionalities within the domain context. These fragments can be used as
building blocks for producing future designs. We focus on the domain of educational websites and
present the domain-specific design patterns that we have identified for this domain. Most of the work
presented here can be also applied to websites built by using other CMSs, such as the Drupal [10] and
the WordPress [24] platforms, with slight, straightforward modifications. These modifications
concern mainly the adaptation of the web crawler that we have used in Phase I so that it can be able
to recognize the structural and navigational design elements into the HTML code of websites built
on other CMSs and, thus, extract their conceptual model.

Once the conceptual model of a website is extracted, the two other phases of the methodology
remain the same. By applying the methodology on a particular application domain, developers can
gain important information regarding its design specificities and have access to a set of consistently
used methods of organizing and displaying information to end-users. In the future, we plan to
explore more application domains, and, thus, to come up with useful design guidelines for building
successful Joomla!-based domain-specific websites.

Author Contributions: Vassiliki Gkantouna and Giannis Tzimas participated in the concept, the design and the
implementation of the methodology. They also performed the experiments and prepared the manuscript in
order to present the identified domain-specific design patterns.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. Design Patterns: Elements of Reusable Object-Oriented Software;
Addison-Wesley: Reading, MA, USA, 1995.

2. Yahoo Design Pattern Library. Available online: https://developer.yahoo.com/ypatterns (accessed on 15
November 2016).

3. Patterns Catalog. Available online: http://hillside.net/patterns/patterns-catalog (accessed on 15 November
2016).

4. Hypermedia Design Patterns Repository. Available online: http://wiki.c2.com/
?HypermediaDesignPatternsRepository (accessed on 15 November 2016).

5. Patterns in Interaction Design, the Carrousel Pattern. Available online: http://welie.com/patterns/
showPattern.php?patternID=carrousel (accessed on 23 January 2017).

Figure 9. A pattern for supporting access to the available studies of a specific department of a certain
faculty in a university website.

Domain functionality: this category includes patterns that we have identified to be used for
supporting common user browsing activities within the context of educational websites, i.e., to provide
end-users access to common sets of information objects types. For example, Figure 9 presents
a pattern consisting of four pages specifying their organization for allowing users to access the
following set of information objects: {University, Faculties, Departments, Studies}. In other words,
the navigation purpose of this pattern is to allow users browsing from the university page to another
page publishing a list of all the available faculties in the university, from which users can navigate to
another page publishing a list of all the departments in a specific faculty, from which users can finally
navigate to a page publishing information about the available studies in a specific department. In the
patterns of this category, except for their structural and navigational aspect, we focus mainly on their
semantic aspect.

The main benefit of using the identified domain-specific design patterns is the increased design
reuse in future designs of educational websites. Developers can rely on commonly used design
practices for the educational websites domain and have access to design guidelines guiding them on
how to organize the content and navigation of their educational websites.

5. Conclusions and Future Work

In this paper, we have presented a model-driven approach for mining domain-specific design
patterns from a set of concrete website designs in a target application domain. The key concept is
to analyze the designs of various websites in a particular domain in order to detect the possible
design commonalities among them which represent partitions of the domain implying the existence of
domain-specific design patterns. Based on this, the proposed methodology analyzes the conceptual
models of the collected websites in terms of the reusable design fragments used repeatedly in them
for supporting common functionalities within the domain context. These fragments can be used as
building blocks for producing future designs. We focus on the domain of educational websites and
present the domain-specific design patterns that we have identified for this domain. Most of the work
presented here can be also applied to websites built by using other CMSs, such as the Drupal [10]
and the WordPress [24] platforms, with slight, straightforward modifications. These modifications
concern mainly the adaptation of the web crawler that we have used in Phase I so that it can be able to
recognize the structural and navigational design elements into the HTML code of websites built on
other CMSs and, thus, extract their conceptual model.

Once the conceptual model of a website is extracted, the two other phases of the methodology
remain the same. By applying the methodology on a particular application domain, developers can
gain important information regarding its design specificities and have access to a set of consistently
used methods of organizing and displaying information to end-users. In the future, we plan to explore
more application domains, and, thus, to come up with useful design guidelines for building successful
Joomla!-based domain-specific websites.

Algorithms 2017, 10, 28 16 of 17

Author Contributions: Vassiliki Gkantouna and Giannis Tzimas participated in the concept, the design and the
implementation of the methodology. They also performed the experiments and prepared the manuscript in order
to present the identified domain-specific design patterns.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. Design Patterns: Elements of Reusable Object-Oriented Software;
Addison-Wesley: Reading, MA, USA, 1995.

2. Yahoo Design Pattern Library. Available online: https://developer.yahoo.com/ypatterns (accessed on
15 November 2016).

3. Patterns Catalog. Available online: http://hillside.net/patterns/patterns-catalog (accessed on 15 November 2016).
4. Hypermedia Design Patterns Repository. Available online: http://wiki.c2.com/

?HypermediaDesignPatternsRepository (accessed on 15 November 2016).
5. Patterns in Interaction Design, the Carrousel Pattern. Available online: http://welie.com/patterns/

showPattern.php?patternID=carrousel (accessed on 23 January 2017).
6. Arango, R.G. Prieto-Diaz, Introduction and overview: Domain analysis concepts and research directions.

In Domain Analysis and Software Systems Modeling; Prieto-Diaz, R., Arango, G., Eds.; IEEE Press: New York,
NY, USA, 1991; pp. 9–32.

7. Gkantouna, V.; Tzimas, V.; Tampakas, B.; Tsaknakis, J. Mining Domain-Specific Design Patterns.
In Proceedings of the AIAI, Thessaloniki, Greece, 16–18 September 2016.

8. Domain-Specific Patterns for CMS. Available online: http://alkistis.ceid.upatras.gr/research/modeling/
domainspecificpatterns (accessed on 15 November 2016).

9. Joomla! CMS Website. Available online: http://community.joomla.org (accessed on 15 November 2016).
10. Drupal CMS Website. Available online: https://www.drupal.org/ (accessed on 15 November 2016).
11. A Pattern Library for Interaction Design. Available online: http://www.welie.com/patterns (accessed on

15 November 2016).
12. UI Patterns. Available online: http://ui-patterns.com/patterns/miscellaneous/list (accessed on

15 November 2016).
13. Fraternali, P.; Matera, M.; Maurino, A. WQA: An XSL Framework for Analyzing the Quality of

Web Applications. In Proceedings of the 2nd International Workshop on Web-Oriented Software
Technologies—IWWOST’02, Malaga, Spain, 10–14 June 2002.

14. Lucca, G.A.; Fasolino, A.R.; Tramontana, P. Recovering interaction design patterns in web applications.
In Proceedings of the Ninth European Conference on Software Maintenance and Reengineering, Manchester,
UK, 21–23 March 2005.

15. Rekhisa, S.; Bouassidaa, N.; Bouaziza, R.; Duvalletb, C.; Sadegb, B. A new method for constructing and
reusing domain specific design patterns: Application to RT domain. J. King Saud Univ. Comput. Inf. Sci. 2016.
[CrossRef]

16. Rekhis, S.; Bouassida, N.; Duvallet, C.; Bouaziz, R.; Sadeg, B. A Process to derive Domain-Specific Patterns:
Application to the Real-Time Domain. In Proceedings of the Advances in Databases and Information Systems,
Novi Sad, Serbia, 20–24 September 2010.

17. Montero, S.; Dıaz, P.; Aedo, I. A semantic representation for domain-specific patterns. In Proceedings of the
International Symposium on Metainformatics, Salzburg, Austria, 15–18 September 2004.

18. Kim, D.; France, R.B.; Ghosh, S. A UML-based Language for Specifying Domain-Specific Patterns. J. Visual
Lang. Comput. 2004, 15, 265–289. [CrossRef]

19. MMLAB Educational Website. Available online: http://mmlab.ceid.upatras.gr/en/ (accessed on
15 November 2016).

20. Yan, X.; Han, J. gSpan: Graph-based substructure pattern mining. In Proceedings of the ICDM’02,
Washington, DC, USA, 9–12 December 2002.

21. Philippsen, M. ParSeMiS—The Parallel and Sequential Mining Suite. Available online: https://www2.cs.
fau.de/EN/research/zold/ParSeMiS/index.html (accessed on 15 November 2016).

https://developer.yahoo.com/ypatterns
http://hillside.net/patterns/patterns-catalog
http://wiki.c2.com/?HypermediaDesignPatternsRepository
http://wiki.c2.com/?HypermediaDesignPatternsRepository
http://welie.com/patterns/showPattern.php?patternID=carrousel
http://welie.com/patterns/showPattern.php?patternID=carrousel
http://alkistis.ceid.upatras.gr/research/modeling/domainspecificpatterns
http://alkistis.ceid.upatras.gr/research/modeling/domainspecificpatterns
http://community.joomla.org
https://www.drupal.org/
http://www.welie.com/patterns
http://ui-patterns.com/patterns/miscellaneous/list
http://dx.doi.org/10.1016/j.jksuci.2016.04.004
http://dx.doi.org/10.1016/j.jvlc.2004.01.004
http://mmlab.ceid.upatras.gr/en/
https://www2.cs.fau.de/EN/research/zold/ParSeMiS/index.html
https://www2.cs.fau.de/EN/research/zold/ParSeMiS/index.html

Algorithms 2017, 10, 28 17 of 17

22. Simpson, T.; Dao, T. WordNet-Based Semantic Similarity Measurement. Available online: http://
www.codeproject.com/Articles/11835/WordNet-based-semantic-similarity-measurement (accessed on
15 November 2016).

23. The Graduate School of Arts and Sciences (GSAS) Website. Available online: https://gsas.harvard.edu/
(accessed on 15 November 2016).

24. Wordpress CMS Website. Available online: https://wordpress.org/ (accessed on 23 January 2017).

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.codeproject.com/Articles/11835/WordNet-based-semantic-similarity-measurement
http://www.codeproject.com/Articles/11835/WordNet-based-semantic-similarity-measurement
https://gsas.harvard.edu/
https://wordpress.org/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	The Methodology
	Phase 1: Extracting the Conceptual Models of the Websites
	Phase 2: Mining the Candidate Domain-Specific Design Patterns
	Mining the Recurrent Patterns at Hypertext Level
	Inspecting Data Level: Identifying Patterns Supporting Common Functionality

	Evaluation of Pattern Variants Consistent Use

	The Case Study
	Domain Description
	Domain-Specific Design Patterns for Educational Websites

	Conclusions and Future Work

