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Abstract: Compressive principal component pursuit (CPCP) recovers a target matrix that is a
superposition of low-complexity structures from a small set of linear measurements. Pervious
works mainly focus on the analysis of the existence and uniqueness. In this paper, we address its
stability. We prove that the solution to the related convex programming of CPCP gives an estimate
that is stable to small entry-wise noise. We also provide numerical simulation results to support our
result. Numerical results show that the solution to the related convex program is stable to small
entry-wise noise under board condition.

Keywords: matrix completion; low-complexity structure; stability analytic; compressive principal
component pursuit

1. Introduction

Recently, there has been a rapidly increasing interest in recovering a target matrix that is a
superposition of low-rank and sparse components from a small set of linear measurements. In many
cases, this problem is shorted for matrix completion [1–3], which arises in a number of fields, such as
medical imaging [4,5], seismology [6], and computer vision [7,8] and Kalman filter [9]. Mathematically,
there exists a large-scale data matrix M = L0 + S0, where L0 is a low-rank matrix, and S0 is a sparse
matrix. One of the important problems here is how to extract the intrinsic low-dimensional structure
from a small set of linear measurements. In a recent paper [10], E. J. Candès et al. proved that most
low-rank matrices and the sparse components can be recovered, provided that the rank of the low-rank
component is not too large, and that the sparse component is reasonably sparse. It is more important
that they proved that these two components can be recovered by solving a simple convex optimization
problem. In [11], John Wright et al. generalized this problem to decompose a matrix into multiple
incoherent components:

minimize
τ

∑
i

λi‖Xi‖(i)

subject to
τ

∑
i

Xi = M ,
(1)

where ‖Xi‖(i) are norms that encourage various types of low-complexity structure. The authors
also provide a sufficient condition that can promise the existence and uniqueness theorem of
compressive principle component pursuit (CPCP). The result in [11] requires that the components are
low-complexity structures.

However, in many applications, the observed measurements are always corrupted by different
kinds of noise which may affect every entry of the data matrix. In order to further complete the theory
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developed in [11], it is necessary to research the stability of CPCP which can guarantee stable and
accurate recovery in the presence of entry-wise noise. In this paper, we make a commendable attempt
in this respect. We denote M as the observing matrix which can decompose into multiple incoherent
components, and assume that

M =
τ

∑
i

Xi,0 + Z0 ,

where Xi,0 are corresponding incoherent components and Z0 is an independent and identically
distributed (i.i.d.) noise. We assume that Z0 is only limited by ‖Z0‖F ≤ δ for some δ > 0. In
order to recover the unknown low-complexity structures, we suggest solving the following relaxed
optimization problem.

minimize
τ

∑
i

λi‖Xi‖(i)

subject to ‖
τ

∑
i

Xi −M‖F ≤ δ

(2)

In this paper, we prove the solution of (2) is stable to small entry-wise noise. The rest of paper is
organized as follows. In Section 2, we show some notations and the main result, which will be proven
in Sections 3 and 4. In Section 3, we give two important lemmas which are an important parts of our
main result. In Section 4, The proof of Theorem 1 will be given. We further provide numerical results
in Section 5 and conclude the paper in Section 6.

2. Notations and Main Results

In this section, we first give some important notions which will be used throughout this paper,
and then provide the main result.

2.1. Notations

We denote the operator norm of matrix by ‖X‖, the Frobenius norm by ‖X‖F, and the nuclear
norm by ‖X‖∗, and denote the dual norm of ‖X‖(i) by ‖X‖∗(i). The Euclidean inner product

between two matrices is defined by the formula 〈X, Y〉 = trace(X∗Y). Note that ‖X‖2
F = 〈X, X〉.

The Cauchy–Schwarz inequality gives 〈X, Y〉 ≤ ‖X‖F‖Y‖F, and it is well known that we also have
〈X, Y〉 ≤ ‖X‖(i)‖Y‖∗(i) (e.g., [1,12]). ‖X‖(i) majorized the Frobenius norm means ‖X‖(i) ≥ ‖X‖F for all
X. Linear transformations which act on the space of matrices are denoted by PTX. It is easy to see that
the operator of PT is a high dimension matrix. The operator norm of the operator is denoted by ‖PT‖.
It should be noted that ‖PT‖ = sup{‖X‖F=1}‖PTX‖F.

For any matrix vector x = [Xi], i = 1, 2, . . . , τ, where Xi ∈ Rm×n is i-th matrix. We will consider
two norms of this matrix pair, which can define as ‖x‖� := ∑τ

i λi‖Xi‖(i) and ‖x‖2 := ∑τ
i ‖Xi‖F. In order

to simplify the stability analysis of CPCP, we also define the subspaces (the common component)
γ := [Γi], Γi = (∑τ

l Xl)/τ i = 1, 2, . . . , τ, and (the different component) γ⊥ := [Γ⊥i ], Γ⊥i = Xi − Γi
i = 1, 2, . . . , τ. In order to analyze the behavior of special projection operator, we define the projection
operator PT1 × · · · × PTτ (x) := [PT1(X1), . . . ,PTτ (Xτ)].

we assume that ‖Xi‖(i) i = 1, 2, . . . , τ are decomposable norms. The definition of decomposable
norms is below.

Definition 1 (Decomposable Norms). if there exists a subspace T and a matrix Z satisfying

∂‖ · ‖(X) = {Λ|PTΛ = Z, ‖PT⊥Λ‖∗ ≤ 1} , (3)

where ‖ · ‖∗ denotes the dual norm of ‖ · ‖ and PT⊥ is nonexpansive with respect to ‖ · ‖∗. Then, we say that
the norm ‖ · ‖ is decomposable at X.
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Definition 2 (Inexact Certificate). We say Λ is an (α, β)-inexact certificate for a putative solution
(X1,�, . . . , Xτ,�) to (1.1) with parameters (λ1, . . . , λτ) if for each i, ‖PTi Λ − λiZi‖F ≤ α, and
‖PT⊥i

Λ‖∗(i) < λiβ.

2.2. Main Results

Pertaining to Problem (1), we have the result as follows.

Lemma 1 ([11]). Assume there exists a feasible solution x = (X1, . . . , Xτ) to the optimization Problem (1).
Suppose that each of the norms ‖ · ‖(i) is decomposable at Xi, and that each of the ‖ · ‖(i) majorizes the Frobenius
norm. Then, x is the unique optimal solution if T1, . . . , Tτ are independent subspaces with

‖PTiPTj‖ <
1

τ − 1
∀i 6= j ,

and there exists an (α, β)-inexact certificate Λ̂, with

β +
α
√

τ√
1− (τ − 1)maxij‖PTiPTj‖

× 1
minlλl

≤ 1 .

The main contribution of this paper is the stability analysis of the solution of CPCP; the main
Theorem of [13] can be regarded as a special case of our result (although the main idea of proof
is similar to the paper [13], there are some important differences here). Next, we will provide the
proposed related convex programming (2) is stable from small entry-wise noise under board condition.
The main result of this paper is provided below.

Theorem 1. Assume x� = (X1,�, . . . , Xτ,�), x̂ = (X1, . . . , Xτ) are the solutions of the optimization
Problems (1) and (2), respectively. Suppose that each of the norms ‖ · ‖(i) is decomposable at Xi,�, and
each of the ‖ · ‖(i) majorizes the Frobenius norm. Then, if T1, . . . , Tτ are independent subspaces with

‖PTiPTj‖ <
1

τ − 1
∀i 6= j

and there exists an (α, β)-inexact certificate Λ̂, with

β +
α
√

τ√
1− (τ − 1)maxij‖PTiPTj‖

× 1
minlλl

≤ 1 , (4)

then for any Z0 which is limited by ‖Z0‖F ≤ δ, the solution x̂ to the convex programming (2) obeys

∑
i
‖x̂i − xi,�‖2

2 ≤ C(n, τ, α, β)δ2 , (5)

where C(n, τ, α, β) is a numerical constant only depending upon n, τ, α, β.

3. Main Lemmas

In this section, we present two main lemmas which are used to obtain Theorem 1. The paper [11]
states that:

Lemma 2 ([11]). Suppose T1, . . . , Tτ are independent subspaces of Rm×n and Z1 ∈ T1, . . . , Zτ ∈ Tτ , under
the other conditions of Lemma 1. Then, the below equations

PTi ∆ = λiZi −PTi Λ, i = 1, . . . , τ
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have a solution ∆ ∈ T1 + · · ·+ Tτ obeying

‖∆‖F ≤
√

α2τ

1− (τ − 1)maxi 6=j‖PTiPTi‖
.

In order to bound the behavior of the norm of ‖x‖�, we have the first main lemma that is used to
obtain Theorem 1.

Lemma 3. Assume ‖PTiPTj‖ <
1

τ−1 ∀i 6= j. Suppose there exists an (α, β)-inexact certificate Λ̂ satisfying
Lemma 1. Then, for any perturbation h = [Hi] obeying ∑i Hi = 0

‖x0 + h‖� ≥ ‖x0‖� +
τ

∑
i=1

(λi − Cα − λiβ)‖PT⊥i
Hi‖(i) ,

wherein, let Cα =

√
α2τ

1−(τ−1)maxi 6=j‖PTi
PTi
‖ . It is easy to see that under the hypothesis of Lemma 1, the

coefficients of ‖PT⊥i
Hi‖(i) satisfy λi − Cα − λiβ > 0.

Proof. According to the property of convex function, for any subgradients z = [Zi] ∈ ∂‖x0‖�, we
can obtain

‖x0 + h‖� ≥ ‖x‖� +
τ

∑
i=1

λi < Zi, Hi > .

Now, because the norm of the subgradients is decomposable at Xi, there exists Λ, Zi, α, and
β obeying ‖PTi Λ − λiZi‖F ≤ α, and ‖PT⊥i

Λ‖∗(i) < λiβ. Let ∆i := PTi ∆ = λiZi − PTi Λ ∈ Ti (see
Lemma 2). Note that

Λ + ∆i + PT⊥i
(λiZi −Λ) = Λ + λiZi −PTi Λ + PT⊥i

λiZi −PT⊥i
Λ

= λiZi + PT⊥i
λiZi

= λiZi ,

where the second equation obeys Zi ∈ Ti. According to the above equation, we will continue bounding
∑τ

i=1 λi < Zi, Hi >.

τ

∑
i=1

λi < Zi, Hi > =
τ

∑
i=1

< Λ + ∆i + PT⊥i
(λiZi −Λ), Hi >

=
τ

∑
i=1

< Λ, Hi > +
τ

∑
i=1

< PTi ∆, Hi > +
τ

∑
i=1

< PT⊥i
(λiZi −Λ), Hi >

= < Λ, i = 1τ Hi > +
τ

∑
i=1

< ∆,PTi Hi > +
τ

∑
i=1

< λiZi −Λ,PT⊥i
Hi >

=
τ

∑
i=1

< ∆, Hi > −
τ

∑
i=1

< ∆,PT⊥i
Hi > +

τ

∑
i=1

< λiZi −Λ,PT⊥i
Hi >

≥
τ

∑
i=1

< λiZi −Λ,PT⊥i
Hi > −

τ

∑
i=1
‖∆‖F‖PT⊥i

Hi‖F

≥
τ

∑
i=1

< λiZi −Λ,PT⊥i
Hi > −

τ

∑
i=1
‖∆‖F‖PT⊥i

Hi‖(i)

With the definition of duality, there exists Ẑi ∈ ∂‖Xi,0‖(i) with ‖Ẑi‖∗(i) ≤ 1 such that
< Z∗i ,PT⊥i

Hi >= ‖PT⊥i
Hi‖(i). Moreover, with the Cauchy–Schwarz inequality, we have

| < Λ,PT⊥i
Hi > | = | < PT⊥i

Λ,PT⊥i
Hi > | ≤ ‖PT⊥i

Λ‖∗(i)‖PT⊥i
Hi‖(i) .
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Let Zi = Ẑi. Then, we can obtain:

< λiZi −Λ,PT⊥i
Hi > ≥ (λi − ‖PT⊥i

Λ‖∗(i))‖PT⊥i
Hi‖(i) .

Combining with the inequalities above, we can obtain

‖x0 + h‖� ≥ ‖x0‖� +
τ

∑
i=1

(λi − ‖∆‖F − ‖PT⊥i
Λ‖∗(i))‖PT⊥i

Hi‖(i)

≥ ‖x0‖� +
τ

∑
i=1

(λi − Cα − λiβ)‖PT⊥i
Hi‖(i) .

The Lemma 3 is established.

For bounding the behavior of ∑i ‖x̂i − xi,�‖2
F, we have to bound the projection operator

PT1 × · · · × PTτ (x). Therefore, we have the second main lemma that will be used to obtain Theorem 1.

Lemma 4. Assume that ‖PTiPTj‖ <
1

τ−1 ∀i 6= j. For any matrix vector x = [Xi], we have

‖Pγ(PT1 × · · · × PTτ )(x)‖2
F ≥

1−maxi
1
2 ∑j 6=i(‖PTiPTj‖+ ‖PTjPTi‖)

τ
‖PT1 × · · · × PTτ (x)‖2

F .

It is easy to see that under the hypothesis of ‖PTiPTj‖ < 1
τ−1 ∀i 6= j, the constant

1−maxi
1
2 ∑j 6=i(‖PTi

PTj
‖+‖PTj

PTi
‖)

τ2 is strictly greater than zero.

Proof. With respect to any matrix x = [Xi], we have Pγ(x) = [Γi], where Γi = (∑τ
l=1 Xl)/τ. It is easy

to see that ‖Pγ(x)‖2
F = 1

τ ‖∑τ
l=1 Xl‖2

F. Then, we have

‖Pγ(PT1 × · · · × PTτ )(x)‖2
F =

1
τ
‖

τ

∑
i=1
PTi Xi‖2

F

=
1
τ
(

τ

∑
i=1

(‖PTi Xi‖2
F + ∑

j 6=i
< PTi Xi,PTj Xj >)) .

Note that

< PTi Xi,PTj Xj > = < PTi Xi,PTiPTj Xj >

≥ −‖PTiPTj‖‖PTi Xi‖F‖PTj Xj‖F .

Together with ‖PTiPTj‖ <
1

τ−1 ∀i 6= j, we have

‖Pγ(PT1 × · · · × PTτ )(x)‖2
F ≥ 1

τ
(

τ

∑
i=1
‖PTi Xi‖2

F −∑
j 6=i
‖PTiPTj‖‖PTi Xi‖F‖PTj Xj‖F))

≥ 1
τ
(

τ

∑
i=1

(‖PTi Xi‖2
F −∑

j 6=i

‖PTiPTj‖
2

(‖PTi Xi‖2
F + ‖PTj Xj‖2

F))

=
1
τ

τ

∑
i=1

(1− 1
2 ∑

j 6=i
(‖PTiPTj‖+ ‖PTjPTi‖))‖PTi Xi‖2

F

≥
1−maxi

1
2 ∑j 6=i(‖PTiPTj‖+ ‖PTjPTi‖)

τ
(∑

i
‖PTi Xi‖2

F)

≥
1−maxi

1
2 ∑j 6=i(‖PTiPTj‖+ ‖PTjPTi‖)

τ
‖PT1 × · · · × PTτ (x)‖2

F ,
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where in the second inequality, we have used the inequity that for any x, y, 2xy ≤ (x2 + y2). Therefore,
Lemma 4 is established.

4. Proof of Theorem 1

In this section, we will provide the proof of Theorem 1. Our main proof is based on two elementary
and important properties of x̂, which is the solution of Problem (2). First, note that x0 is also a feasible
solution to Problem (2) and x̂ is the optimum solution; therefore, we can obtain ‖x̂‖� ≤ ‖x0‖�. Second,
according to triangle inequality, we can obtain

‖x̂− x0‖2 = ‖x̂−M− (x0 −M)‖2

≤ ‖x̂−M‖2 + ‖x0 −M‖2

≤ 2δ .

(6)

Let x̂ = x0 + h, where h = [Hi]. According to the definition of subspace of γ, we denote
hγ := Pγ(h), hγ⊥ := Pγ⊥(h) for short. Our main aim is to bound ‖h‖2 = ‖x̂ − x0‖2, which can be
rewritten as

‖h‖2
2 = ‖hγ‖2

2 + ‖hγ⊥‖2
2

= ‖hγ‖2
2 + ‖PT1 × · · · × PTτ hγ⊥‖2

2

+‖PT⊥1
× · · · × PT⊥τ

hγ⊥‖2
2 .

(7)

Combining with (4), we have

‖hγ‖2
2 = ∑

i
‖

∑τ
j=1 Hj

τ
‖2

2 ≤
4δ2

τ

Therefore, it is necessary to bound the other two terms on the right-hand-side of (5). We will
bound the second and third terms, respectively.

Norm equivalence theorem tells us that every two norms on a finite dimensional normed space are
equivalent, which implies that there exists two constants C(n, τ) ≥ c(n, τ) > 0 satisfying

c(n, τ)‖x‖2 ≤ ‖x‖� ≤ C(n, τ)‖x‖2 . (8)

A. Estimate the third term of (5) Let Λ be a dual certificate obeying Lemma 1. Then, using
triangle inequality, we have

‖x0 + h‖2 ≥ ‖x0 + hγ⊥‖2 − ‖hγ‖2 . (9)

Combining with Lemma 3, we can obtain

‖x0 + hγ⊥‖2 ≥ ‖x0‖d +
τ

∑
i=1

(λi − Cα − λiβ)‖PT⊥i
Hi‖(i)

≥ ‖x0‖d + (1− Cα
1

miniλi
− β)

τ

∑
i=1

λi‖PT⊥i
HΓ⊥

i ‖(i)

≥ ‖x0 + h‖d + (1− Cα
1

miniλi
− β)

τ

∑
i=1

λi‖PT⊥i
HΓ⊥

i ‖(i) ,
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wherein, to get the third inequality, we used the fact ‖x̂‖d ≤ ‖x0‖d. For simplification, let

C1(α, β) ,
(

1− Cα
1

miniλi
− β

)
> 0 .

Therefore, we have

‖x0 + hγ⊥‖2 ≥ ‖x0 + h‖d + C1(α, β)
τ

∑
i=1

λi‖PT⊥i
HΓ⊥

i ‖(i) .

Combining with (7), we can obtain

C1(α, β)
τ

∑
i=1

λi‖PT⊥i
HΓ⊥

i ‖(i) ≤ ‖hγ‖2 .

Then

τ

∑
i=1

λi‖PT⊥i
HΓ⊥

i ‖(i) ≤ C2(α, β)‖hγ‖2 , (10)

where C2(α, β) = 1/C1(α, β). We will estimate the third term of (5). Using triangle inequality, we have

‖PT⊥1
× · · · × PT⊥τ

hΓ⊥‖2 ≤ ∑
i
‖PT⊥i

HΓ⊥
i ‖F

≤ 1
c(n, τ)

τ

∑
i=1

λi‖PT⊥i
HΓ⊥

i ‖(i)

≤ C2(α, β)

c(n, τ)
‖hγ‖2

≤ C(n, τ, α, β)δ ,

where C(n, τ, α, β) := 2C2(α,β)
c(n,τ)

√
τ

. The second inequality is set up by (6); the fourth inequality is obtained

by (8); the last one is obtained by the fact ‖hγ‖2 ≤ 2δ√
τ

. Therefore, we can obtain

‖PT⊥1
× · · · × PT⊥τ

(hΓ⊥)‖2
2 ≤ C2(n, τ, α, β)δ2 , (11)

which implies that the third term of (5) can bound by Cδ.

B. Estimate the second term of (5) According to Lemma 4, we can obtain

‖Pγ(PT1 × · · · × PTτ )(h
γ⊥)‖2

2 ≥
1−maxi

1
2 ∑j 6=i(‖PTiPTj‖+ ‖PTjPTi‖)

τ

‖PT1 × · · · × PTτ (h
γ⊥)‖2

2

= Ĉ(τ, α, β)‖PT1 × · · · × PTτ (h
γ⊥)‖2

2 ,

where Ĉ(τ, α, β) :=
1−maxi

1
2 ∑j 6=i(‖PTi

PTj
‖+‖PTj

PTi
‖)

τ . Note that

0 = Pγ(hγ⊥)

= PγPT1 × · · · × PTτ hγ⊥ + PγPT⊥1
× · · · × PT⊥τ

hγ⊥ .
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Therefore,

‖PγPT1 × · · · × PTτ hγ⊥‖2 = ‖PγPT⊥1
× · · · × PT⊥τ

hγ⊥‖2

≤ ‖PT⊥1
× · · · × PT⊥τ

hγ⊥‖2 .

Taking the previous two inequalities, we have

‖PT1 × · · · × PTτ hγ⊥‖2 ≤
‖PγPT⊥1

×···×P
T⊥τ

hγ⊥‖2
√

Ĉ(τ,α,β)

≤
‖P

T⊥1
×···×P

T⊥τ
hγ⊥‖2

√
Ĉ(τ,α,β)

≤ C(n, τ, α, β)δ ,

(12)

where C(n, τ, α, β) is an appropriate constant. Combining with (9), we can obtain

‖h‖2
2 = ‖hΓ‖2

2 + ‖PT1 × · · · × PTτ hΓ⊥‖2
2

+‖PT⊥1
× · · · × PT⊥τ

hΓ⊥‖2
2

≤ Ĉ(n, τ, α, β)δ2 .

Therefore, Theorem 1 is established.

Remark 1. if τ = 2, then Theorem 1 will degrade to the main result of [13].

5. Numerical Results

In this section, numerical experiments with varieties of the value of parameter σ, parameter
ρs, and rank r are given. For each setting of parameters, we show the average errors over 10 trials.
Our implementation was realized with MATLAB. All the computational results were obtained on a
desktop computer with a 2.27-GHz CPU (Intel(R) Core(TM) i3) and 2 GB of memory. Without loss of
generality, we assume that τ = 2. In [13], the authors certified this result with Accelerated Proximal
Gradient (APG) by numerical experiments. In our numerical experiments, we will provide that this
result is also proper with Principal Component Pursuit by Alternating Direction Method (PCP-ADM).
In our simulations, our matrix is generated by the formulation as: M = L0 + S0 + N0, and a rank-r
matrix L0 is a product L0 = XYT , where X and Y are m× r and n× r matrices in which entries are
independently sampled from a N (0; 1) distribution. According to PCP-ADM, we can generate S0 by
choosing a support set of size ks = ρsmn uniformly at random, and set S0 = PΩE. Noise component
N0 is generated with entries independently sampled from a N (0; σ) distribution. Without loss of
generality, we set m = n = 200 and ρs = 0.01, and other parameters which PCP-ADM requires are the
same as parameters of PCP-ADM [10]. Here we briefly interpret PCP-ADM. In [10], in order to stably
recover X̂ = (L̂; Ŝ), the ADM method operates on the augmented Lagrangian

l(L, S, Y) = ‖L‖∗ + λ‖S‖1+ < Y, M− L− S > +
µ

2
‖M− L− S‖2

F .

The details of the PCP-ADM can be found in [14,15].
In our simulations, the stopping criterion of the PCP-ADM algorithm can be

‖L + S−M‖F
‖M‖F

≤ tolerance

or the maximum iteration number (kmax = 500). In order to estimate the errors, we use the
root-mean-squared (RMS) error as ‖L̂− L0‖F/n, ‖Ŝ− S0‖F/n for the low-rank component and the
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sparse component, respectively. Figure 1 shows the RMS errors’ variation with different values of
σ2. It is noted that the RMS error grows approximately linearly with the noise level in Figure 1.
This phenomenon verifies Theorem 1 by numerical experiments with PCP-ADM (this phenomenon
also exists in [13] with APG, which is very different from PCP-ADM in principle).

Figure 1. Root-mean-squared (RMS) errors as a function of σ2 with r = 10; ρs = 0.01; n = 200.
PCP-ADM: Principal Component Pursuit by Alternating Direction Method.

6. Conclusions

In this paper, we have investigated the the stability of CPCP. Our main contribution is the proof
of Theorem 1, which implies the solution to the related convex programming (1.2) is stable to small
entrywise noise under board condition. It is an extension of the result in [13], which only allows τ = 2.
Moreover, in the numerical experiments, we have investigated the performance of the PCP-ADM
algorithm. Numerical results showed that it is stable to small entrywise noise.
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