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Abstract: In this paper, to overcome the innate drawbacks of some old methods, we present a new
quintic spline method for integro interpolation. The method is free of any exact end conditions, and it
can reconstruct a function and its first order to fifth order derivatives with high accuracy by only
using the given integral values of the original function. The approximation properties of the obtained
integro quintic spline are well studied and examined. The theoretical analysis and the numerical tests
show that the new method is very effective for integro interpolation.
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1. Introduction

Assume that y = y(x) is an unknown univariate real-valued function over [a, b]. Let:

∆ := {a = x0 < x1 < · · · < xn = b} (1)

be the uniform partition of [a, b] with step length h := b−a
n , and let:

Ij :=
∫ xj+1

xj

y(x)dx (j = 0, 1, . . . , n− 1) (2)

be the known integral values of y = y(x) over the subintervals.
The interpolation function p = p(x) that satisfies:∫ xj+1

xj

p(x)dx = Ij (j = 0, 1, . . . , n− 1)

is called integro interpolation. The problem arises in many fields, such as numerical analysis,
mathematical statistics, environmental science, mechanics, electricity, climatology, oceanography,
and so on. We refer to [1–19] for its applied backgrounds and some recent developments.

In this paper, we will mainly focus on the quintic spline methods; see [2,14,17–19] for the
existing ones.

The method in [2] was based on the quintic Hermite–Birkhoff polynomials. The method was
very complicated because it mainly required solving two linear systems. Furthermore, besides the
integral values (2), the method must use seven additional exact end conditions in terms of y(x0), y

′
(x0),

y
′
(x1), y

′
(xn−1), y

′
(xn), y

′′′
(x0) and y

′′′
(xn). Later, a new algorithm was given in [18] to simplify the

construction of integro quintic spline. It mainly required solving two linear three-diagonal systems.
It was kind of simpler than that of [2]. However, the algorithm needed five special and proper exact
end conditions in terms of y(x0), y

′
(x1), y

′
(xn−1), y

′′′
(x1) and y

′′′
(xn−1). The method in [14] was based

on quintic B-splines. It was also very simple because it took advantage of the good properties of
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quintic B-splines. However, five additional exact end conditions in terms of y(x0), y(x1), y(x2), y(xn−1)

and y(xn) must be provided. In other words, these methods all need exact end conditions. This is
an obvious drawback of them. New simple methods that are not dependent on exact end conditions
are desired.

In [17], we have studied an effective method that was not dependent on any exact end conditions.
We first obtained n + 1 approximate function values at the knots and four approximate boundary
derivative values from the integral values (2) and then used them to study a modified quintic spline
interpolation problem. However, the method also had its own drawbacks. On the one hand, it needed
n + 5 artificial values, which brought higher computational cost; on the other hand, the obtained
quintic spline did not agree with the given integral values (2) over the subintervals. In [19], a local
integro quintic spline method was given. It was also not dependent on exact end conditions and was
able to produce good approximations. However, the obtained local integro quintic spline also did
not agree with the given integral values (2) over the subintervals. Hence, these methods also need
improvements. New attempts on this problem are still necessary.

In this paper, we aim to develop a new effective method to overcome the above-mentioned
drawbacks. We will first construct six artificial end conditions by using a similar technique to [17] and
use them together with the integral values (2) to get a new kind of integro quintic spline; then, we will
theoretically analyze and numerically examine the approximation properties of the new integro quintic
spline. The new method is very effective, and it has the following advantages.

(I) The method is free of any exact end conditions, and it only requires five artificial end conditions,
which can be easily obtained by simple computations from several integral values.

(II) The computational procedure of the method is concise and easy to implement.
(III) The obtained quintic spline agrees with the given integral values (2) over the subintervals.
(IV) The obtained quintic spline can provide satisfactory approximations to y(k)(x), k = 0, 1, 2, 3, 4, 5.

Hence, this method is very applicable for the integro interpolation problem.
The remainder of this paper is organized as follows. In Section 2, we compute some artificial

end conditions by using several integral values; in Section 3, we construct our new integro quintic
spline with five artificial end conditions; the approximation abilities of the integro quintic spline are
theoretically studied in Section 4 and numerically tested in Section 5; finally, we conclude our paper in
Section 6.

2. Artificial End Conditions

In this section, we study some new artificial end conditions for integro interpolation.
It is assumed that y = y(x) is a function of class C7[a, b] throughout this paper. In order to get

the highest error orders, we will use seven boundary integral values to construct some proper linear
combinations of them as the artificial end conditions. By expanding y = y(x) at x = x0 by using the
Taylor formula and computing the integral on [x0, xm], m = 1, 2, . . . , 7, we obtain:

m−1

∑
`=0

I` =
∫ xm

x0

y(x)dx

= y0(mh) +
y
′
0

2!
(mh)2 +

y
′′
0

3!
(mh)3 +

y
′′′
0

4!
(mh)4 (3)

+
y(4)0
5!

(mh)5 +
y(5)0
6!

(mh)6 +
y(6)0
7!

(mh)7 + O(h8).



Algorithms 2017, 10, 32 3 of 17

For ` = 1, 2, . . . , 7, let λ`, ω` and µ` be three parameters, such that:

1 2 3 4 5 6 7
1 22 32 42 52 62 72

1 23 33 43 53 63 73

1 24 34 44 54 64 74

1 25 35 45 55 65 75

1 26 36 46 56 66 76

1 27 37 47 57 67 77





λ1 ω1 µ1

λ2 ω2 µ2

λ3 ω3 µ3

λ4 ω4 µ4

λ5 ω5 µ5

λ6 ω6 µ6

λ7 ω7 µ7


=



1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0


.

Explicitly,

λ1 = 7, λ2 = −21
2

, λ3 =
35
3

, λ4 = −35
4

, λ5 =
21
5

, λ6 = −7
6

, λ7 =
1
7

,

ω1 = −223
20

, ω2 =
879
40

, ω3 = −949
36

, ω4 =
41
2

, ω5 = −201
20

, ω6 =
1019
360

, ω7 = − 7
20

,

µ1 =
319
45

, µ2 = −3929
240

, µ3 =
389
18

, µ4 = −2545
144

, µ5 =
134
15

, µ6 = −1849
720

, µ7 =
29
90

.

By using (4) and using these parameters λ`, ω` and µ`, ` = 1, 2, . . . , 7, as the linear combination
coefficients, we obtain:

7

∑
m=1

(λm

m−1

∑
`=0

I`)

=
1

420
(1089I0 − 1851I1 + 2559I2 − 2341I3 + 1334I4 − 430I5 + 60I6) (4)

= y0h + O(h8),

7

∑
m=1

(ωm

m−1

∑
`=0

I`)

=
1

360
(−938I0 + 3076I1 − 4835I2 + 4655I3 − 2725I4 + 893I5 − 126I6) (5)

=
1
2

y
′
0h2 + O(h8),

7

∑
m=1

(µm

m−1

∑
`=0

I`)

=
1

720
(967I0 − 4137I1 + 7650I2 − 7910I3 + 4815I4 − 1617I5 + 232I6) (6)

=
1
6

y
′′
0 h3 + O(h8).

Similarly, we also can get some corresponding results at the right end point. Based on (5)–(7) and
the corresponding results at the right end point, let:

ŷ0 =
1

420h
(1089I0 − 1851I1 + 2559I2 − 2341I3 + 1334I4 − 430I5 + 60I6) , (7)

ŷ
′
0 =

1
180h2 (−938I0 + 3076I1 − 4835I2 + 4655I3 − 2725I4 + 893I5 − 126I6) , (8)

ŷ
′′
0 =

1
120h3 (967I0 − 4137I1 + 7650I2 − 7910I3 + 4815I4 − 1617I5 + 232I6) , (9)
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and:

ŷn =
1

420h
(1089In−1 − 1851In−2 + 2559In−3 − 2341In−4 + 1334In−5 − 430In−6 + 60In−7) , (10)

ŷ
′
n =

1
180h2 (938In−1 − 3076In−2 + 4835In−3 − 4655In−4 + 2725In−5 − 893In−6 + 126In−7) , (11)

ŷ
′′
n =

1
120h3 (967In−1 − 4137In−2 + 7650In−3 − 7910In−4 + 4815In−5 − 1617In−6 + 232In−7) . (12)

It is straightforward to prove that:

ŷ0 − y0 = O(h7), ŷ
′
0 − y

′
0 = O(h6), ŷ

′′
0 − y

′′
0 = O(h5), (13)

ŷn − yn = O(h7), ŷ
′
n − y

′
n = O(h6), ŷ

′′
n − y

′′
n = O(h5). (14)

Let θn = ŷn +
1
10 h2ŷ

′′
n, by using (10) and (12); then, we get:

θn =
1

8400h
(28549In−1 − 65979In−2 + 104730In−3 − 102190In−4 + 60385In−5 − 19919In−6 + 2824In−7) (15)

and it holds:

θn −
(

yn +
1
10

h2y
′′
n

)
= O

(
h7
)

. (16)

In the next section, (7)–(9), (11) and (15) will be used as the artificial end conditions for integro
interpolation; see (18) and (19).

3. Integro Quintic Spline Interpolation with Five Artificial End Conditions

In this section, we will use the given integral values (2) and the artificial end conditions in Section 2
to construct an integro quintic spline. Five additional independent conditions are needed. To use the
results of (10) and (12) sufficiently, we will directly use the hybrid result of (15).

We look for the quintic spline s, which satisfies the following conditions:∫ xj+1

xj

s(x)dx = Ij, j = 0, 1, . . . , n− 1, (17)

s(a) = ŷ0, s
′
(a) = ŷ

′
0, s

′′
(a) = ŷ

′′
0 , (18)

and:
s(b) +

1
10

h2s
′′
(b) = θn, s

′
(b) = ŷ

′
n. (19)

It belongs to the spline space of C4 quintic piecewise polynomial functions on the uniform
partition ∆ (1), so s can be expressed as a linear combination of the quintic B-splines associated with
the extended partition of ∆ (1) with knots a + ih, −5 ≤ i ≤ n + 5, i.e.,:

s =
n+2

∑
i=−2

ciBi,

where (see, e.g., [6,14,20,21]):

Bi (x) =
1

120h5



(x− xi−3)
5 , if x ∈ [xi−3, xi−2) ,

(x− xi−3)
5 − 6 (x− xi−2)

5 , if x ∈ [xi−2, xi−1) ,
(x− xi−3)

5 − 6 (x− xi−2)
5 + 15 (x− xi−1)

5 , if x ∈ [xi−1, xi) ,
(xi+3 − x)5 − 6 (xi+2 − x)5 + 15 (xi+1 − x)5 , if x ∈ [xi, xi+1) ,
(xi+3 − x)5 − 6 (xi+2 − x)5 , if x ∈ [xi+1, xi+2) ,
(xi+3 − x)5 , if x ∈ [xi+2, xi+3) ,
0, otherwise.
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For the sake of completeness, we give in Table 1 the values of Bi at the knots in (xi−3, xi+3).
Furthermore, we have the following integro properties:∫ xi−2

xi−3

Bi (x) dx =
∫ xi+3

xi+2

Bi(x)dx =
1

720
h, (20)∫ xi−1

xi−2

Bi (x) dx =
∫ xi+2

xi+1

Bi(x)dx =
57

720
h, (21)∫ xi

xi−1

Bi (x) dx =
∫ xi+1

xi

Bi(x)dx =
302
720

h, (22)∫ xj+1

xj

Bi (x) dx = 0, j ≥ i + 3 or j ≤ i− 4. (23)

Table 1. The values of B(k)
i , k = 0, 1, 2, 3, 4, at the knots lying in the interior of the support of Bi.

x xi−2 xi−1 xi xi+1 xi+2

Bi
1

120
26
120

66
120

26
120

1
120

B
′

i
1

24h
10

24h 0 − 10
24h − 1

24h

B
′′

i
1

6h2
2

6h2 − 6
6h2

2
6h2

1
6h2

B(3)
i

1
2h3 − 2

2h3 0 2
2h3 − 1

2h3

B(4)
i

1
h4 − 4

h4
6
h4 − 4

h4
1
h4

From (17) and (23), we have:

∫ xj+1

xj

s(x)dx =
j+3

∑
i=j−2

ci

∫ xj+1

xj

Bi(x)dx = Ij.

Hence, for j = 0, 1, . . . , n− 1, by using (20)–(22), we get:

h
720

(cj−2 + 57cj−1 + 302cj + 302cj+1 + 57cj+2 + cj+3) = Ij. (24)

Since s(a) = ŷ0, it holds:

c−2 + 26c−1 + 66c0 + 26c1 + c2 = 120ŷ0.

The condition s
′
(a) = ŷ

′
0 provides the equality:

−c−2 − 10c−1 + 10c1 + c2 = 24hŷ
′
0.

Similarly, from s
′′
(a) = ŷ

′′
0 , it follows that:

c−2 + 2c−1 − 6c0 + 2c1 + c2 = 6h2ŷ
′′
0 .

Taking into account that s(b) + 1
10 h2s

′′
(b) = θn, we get:

1
120

(cn−2 + 26cn−1 + 66cn + 26cn+1 + cn+2)

+
h2

10
· 1

6h2 (cn−2 + 2cn−1 − 6cn + 2cn+1 + cn+2) = θn,
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that is:

1
40

(cn−2 + 10cn−1 + 18cn + 10cn+1 + cn+2) = θn. (25)

Finally, from s
′
(b) = ŷ

′
n, it follows that:

−cn−2 − 10cn−1 + 10cn+1 + cn+2 = 24hŷ
′
n.

Therefore, we get the linear system:
AC = Y, (26)

where

A =



1 26 66 26 1
−1 −10 0 10 1
1 2 −6 2 1
1 57 302 302 57 1

1 57 302 302 57 1
. . . . . . . . . . . . . . . . . .

1 57 302 302 57 1
1 57 302 302 57 1

1 10 18 10 1
−1 −10 0 10 1


(n+5)×(n+5)

, (27)

and:
C = (c−2, c−1, c0, c1, · · · , cn+1, cn+2)

T ,

Y = (120ŷ0, 24hŷ
′
0, 6h2ŷ

′′
0 ,

720
h

I0, · · · ,
720

h
In−1, 40θn, 24hŷ

′
n)

T .

Theorem 1. The coefficient matrix A (27) is invertible.

Proof. We will prove that the determinant of matrix A is nonzero. We will perform some proper
elementary transformations to A in order to verify |A| 6= 0. Let C(i) denote the i-th column and R(i)
denote the i-th row of a matrix obtained by an elementary row or column transformation.

We first perform n + 4 elementary column transformations to A.

Step 1: For i = n + 4, n + 3, . . . , 1, C(i) := C(i)− C(i + 1).

Then, we get:

A1 =



16 −15 41 25 1
0 −1 −9 9 1
−8 9 −7 1 1
0 1 56 246 56 1

0 1 56 246 56 1
. . . . . . . . . . . . . . .

1 56 246 56 1
1 56 246 56 1
0 1 9 9 1
0 −1 −9 9 1


(n+5)×(n+5)

.

We continue to perform the following elementary row transformations to A1.

Step 2: R(3) := 2
3 R(3) + 1

3 R(1);
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Step 3: R(3) := R(3) + R(2), and R(n + 4) := R(n + 4)− R(n + 5);
Step 4: R(4) := R(4) + R(2), and R(n + 3) := R(n + 3)− R(n + 5);
Step 5: R(5) := R(5)− 1

47 R(4), and R(n + 2) := R(n + 2)− 1
47 R(n + 3);

Step 6: R(3) ⇀↽ R(4), and R(n + 4) ⇀↽ R(n + 3).

Thus, we get:

A2 =



16 −15 41 25 1 0 0
0 −1 −9 9 1 0 0
0 0 47 255 57 1 0
0 0 0 18 2 0 0

2377
47

11505
47

2631
47 1

1 56 246 56 1
1 56 246 56 1

. . .
. . .

. . .
. . .

. . .
1 56 246 56 1

1 56 246 56 1
1 2631

47
11505

47
2377
47

0 0 2 18 0 0
0 1 57 255 47 0
0 0 −1 −9 9 1


(n+5)×(n+5)

.

By the basic knowledge of linear algebra, we have:

|A2| = 16× (−1)× 47× |Cnn| × 47× 1,

where Cnn is the central block matrix of A2. Cnn is strictly diagonally dominant, and so, |Cnn| 6= 0.
It implies that |A2| 6= 0 and, hence, |A| 6= 0. In other words, A (27) is invertible, and the theorem
is proven.

Theorem 1 guarantees the existence and uniqueness of the integro quintic spline s =
n+2
∑

i=−2
ciBi(x)

determined by (17)–(19). It can be constructed as follows:

(I): Compute ŷ0, ŷ
′
0, ŷ

′′
0 , ŷ

′
n and θn by using (7)–(9), (11) and (15), respectively;

(II): Solve the system (26) to get cj, j = −2,−1, 0, . . . , n + 2.

Evidently, the new method is free of exact end conditions and is easy to implement. Furthermore,
the obtained quintic spline s satisfies the conditions given in (2).

4. Approximation Properties

In this section, we study the approximation properties of the integro quintic spline s obtained in
Section 3.

For k = 0, 1, . . . , 5, we use y(k)j to denote y(k)(xj), j = 0, 1, . . . , n. For k = 0, 1, 2, 3, 4, we use sj, mj,

Mj, Tj and Fj to denote s(k)(xj), j = 0, 1, . . . , n. In addition, we define:

Wj :=
Fj+1 − Fj−1

2h

in order to approximate y(5)(xj), j = 1, 2, . . . , n− 1. For j = 0, 1, . . . , n,

sj =
1

120
(cj−2 + 26cj−1 + 66cj + 26cj+1 + cj+2),

mj =
1

24h
(−cj−2 − 10cj−1 + 10cj+1 + cj+2),

Mj =
1

6h2 (cj−2 + 2cj−1 − 6cj + 2cj+1 + cj+2),

Tj =
1

2h3 (−cj−2 + 2cj−1 − 2cj+1 + cj+2),

Fj =
1
h4 (cj−2 − 4cj−1 + 6cj − 4cj+1 + cj+2).
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Moreover,

Wj =
1

2h5 (−cj−3 + 4cj−2 − 5cj−1 + 5cj+1 − 4cj+2 + cj+3), j = 1, 2, . . . , n− 1.

By using (24), (25) and the above results, we can get some important relations between sj, mj, Mj,
Tj, Fj, Wj and Ij of the integro quintic spline. We list the relations as follows.

(Set I)

347m0 + 1044m1 + 225m2 + 4m3 =
1
h2 (120I2 + 1110I1 − 690I0)−

540
h

s0 − 54hM0; (28)

for j = 2, 3, . . . , n− 2,

mj−2 + 56mj−1 + 246mj + 56mj+1 + mj+2 =
30
h2 (−Ij−2 − 9Ij−1 + 9Ij + Ij+1); (29)

4mn−3 + 225mn−2 + 1044mn−1 + 347mn =
1
h2 (690In−1 − 1110In−2 − 120In−3) +

540
h

θn. (30)

(Set II)
For j = 0, 1, . . . , n− 3,

Tj =
2

3h2 (28mj + 245mj+1 + 56mj+2 + mj+3) +
20
h4 (10Ij − 9Ij+1 − Ij+2); (31)

for j = 3, 4, . . . , n,

Tj =
2

3h2 (mj−3 + 56mj−2 + 245mj−1 + 28mj)−
20
h4 (10Ij−1 − 9Ij−2 − Ij−3). (32)

(Set III)

s1 = −s0 +
1

18h
(47I0 − 10I1 − I2) +

h
540

(−61m0 + 363m1 + 57m2 + m3); (33)

s2 = s0 +
1

3h
(−8I0 + 8I1) +

h
9
(m0 − 8m1 + m2); (34)

for j = 3, 4, . . . , n,
sj = −sj−3 +

1
18h (47Ij−3 − 58Ij−2 + 47Ij−1)

+ h
540 (−61mj−3 + 423mj−2 − 423mj−1 + 61mj).

(35)

(Set IV)

M0 = ŷ
′′
0 =

10
h3 I0 −

10
h2 s0 −

13
3h

m0 −
2

3h
m1 −

h
9

T0 +
h

36
T1; (36)

for j = 1, 2, . . . , n,

Mj = −10
h3 Ij−1 +

10
h2 sj−1 +

7
3h

mj−1 +
8

3h
mj −

h
18

Tj−1 +
5h
36

Tj. (37)

(Set V)

F0 = −120
h5 I0 +

120
h4 s0 +

40
h3 m0 +

20
h3 m1 −

11
3h

T0 −
4

3h
T1; (38)

for j = 1, 2, . . . , n,

Fj =
120
h5 Ij−1 −

120
h4 sj−1 −

40
h3 mj−1 −

20
h3 mj +

5
3h

Tj−1 +
10
3h

Tj. (39)

(Set VI)

W1 =
60
h6 (I0 + I1)−

60
h5 (s0 + s1)−

10
h4 (2m0 + 3m1 + m2) +

1
6h2 (11T0 + 9T1 + 10T2); (40)
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for j = 2, 3, . . . , n− 1,

Wj =
60
h6 (Ij − Ij−2)−

60
h5 (sj − sj−2)−

20
h4 (mj −mj−2)

−10
h4 (mj+1 −mj−1) +

5
6h2 (−Tj−2 − 2Tj−1 + Tj + 2Tj+1). (41)

Theorem 2. Let s be the integro quintic spline determined by (17)–(19) with the artificial end conditions given
in Section 2. For j = 0, 1, . . . , n, we have:

sj = yj + O(h6), (42)

mj = y
′
j + O(h6), (43)

Mj = y
′′
j + O(h4), (44)

Tj = y
′′′
j + O(h4), (45)

Fj = y(4)j + O(h2). (46)

For j = 1, 2, . . . , n− 1, we have:
Wj = y(5)j + O(h2). (47)

Proof. We first prove (43). We define e
′
j := m

′
j − y

′
j, j = 0, 1, . . . , n. From (28) and (13), we get:

347e
′
0 + 1044e

′
1 + 225e

′
2 + 4e

′
3

= (347m0 + 1044m1 + 225m2 + 4m3)− (347y
′
0 + 1044y

′
1 + 225y

′
2 + 4y

′
3)

=
1
h2 (120I2 + 1110I1 − 690I0)−

540
h

ŷ0 − 54hŷ
′′
0 − (347y

′
0 + 1044y

′
1 + 225y

′
2 + 4y

′
3)

=
1
h2 {−1800I0 + 990(I0 + I1) + 120(I0 + I1 + I2)}

−540
h

(y0 + O(h7))− 54h(y
′′
0 + O(h5))

−(347y
′
0 + 1044y

′
1 + 225y

′
2 + 4y

′
3)

(continue to expand it at x0 by using (4) and the Taylor formula)

= O(h6).

Similarly, from (30) and (14), it follows that:

4e
′
n−3 + 225e

′
n−2 + 1044e

′
n−1 + 347e

′
n = O(h6).

Besides, for j = 2, 3, . . . , n− 2, from (29), it follows that:

e
′
j−2 + 56e

′
j−1 + 246e

′
j + 56e

′
j+1 + e

′
j+2

= (mj−2 + 56mj−1 + 246mj + 56mj+1 + mj+2)− (y
′
j−2 + 56y

′
j−1 + 246y

′
j + 56y

′
j+1 + y

′
j+2)

=
30
h2 (−Ij−2 − 9Ij−1 + 9Ij + Ij+1)− (y

′
j−2 + 56y

′
j−1 + 246y

′
j + 56y

′
j+1 + y

′
j+2)

=
30
h2 {8Ij−2 − 18(Ij−2 + Ij−1) + 8(Ij−2 + Ij−1 + Ij) + (Ij−2 + Ij−1 + Ij + Ij+1)}

−(y′j−2 + 56y
′
j−1 + 246y

′
j + 56y

′
j+1 + y

′
j+2)

(continue to expand it at xj−2 by using a similar formula of (4) and the Taylor formula)

= O(h6).
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Take into account:
e
′
0 = m0 − y

′
0 = ŷ

′
0 − y

′
0 = O(h6),

e
′
n = mn − y

′
n = ŷ

′
n − y

′
n = O(h6),

we get: 

1
347 1044 225 4

1 56 246 56 1
. . .

. . .
. . .

. . .
. . .

1 56 246 56 1
4 225 1044 347

1





e
′
0

e
′
1

e
′
2
...

e
′
n−2

e
′
n−1
e
′
n


=



O(h6)
O(h6)
O(h6)

...
O(h6)
O(h6)
O(h6)


.

The coefficient matrix is strictly diagonally dominant. The infinity norm of its inverse is bounded.
Hence, (43) is proven.

By using (31) and (43), we get:

Tj − y
′′′

j =
2

3h2 (28(y
′

j + O(h6)) + 245(y
′

j+1 + O(h6)) + 56(y
′

j+2 + O(h6))

+(y
′

j+3 + O(h6))) +
20
h4 (10Ij − 9Ij+1 − Ij+2)− y

′′′

j

= O(h4), j = 0, 1, . . . , n− 3.

It shows that (45) holds for j = 0, 1, . . . , n− 3. Similarly, by using (32) and (43), we get that (45)
holds for j = n− 2, n− 1, n.

From (13), it follows that s0 = ŷ0 = y0 + O(h7). By using (33)–(35), (43) and (45), we get
sj − yj = O(h6), j = 1, 2, . . . , n. Therefore, (42) is proven.

From (13), it follows that M0 = ŷ
′′
0 = y

′′
0 + O(h5). Moreover, by using (37), (42), (43) and (45),

we have:

Mj − y
′′

j = −10
h3 Ij−1 +

10
h2 (yj−1 + O(h6)) +

7
3h

(y
′

j−1 + O(h6))

+
8

3h
(y
′

j + O(h6))− h
18

(y
′′′

j−1 + O(h4)) +
5h
36

(y
′′′

j + O(h4))− y
′′

j

= O(h4), j = 1, 2, . . . , n.

Therefore, (44) is proven. In addition, (46) and (47) can be proven similarly by using (38)–(41) and
(42), (43) and (45).

Theorem 2 shows that the new integro quintic spline has super convergence in locally
approximating y(k)j , k = 1, 3, 5, and full convergence in locally approximating y(k)j , k = 0, 2, 4.

Theorem 3. Let s be the integro quintic spline determined by (17)–(19) with the artificial end conditions given
in Section 2; we have:

‖s(k)(x)− y(k)(x)‖∞ = O(h6−k), k = 0, 1, 2, 3, 4, 5, (48)

where ‖ · ‖∞ := max
a≤x≤b

| · |, and s(5)(x) is defined as follows:

s(5)(x) =
Fj+1 − Fj

h
, xj < x < xj+1, j = 0, 1, 2, . . . , n− 1,

s(5)(x0) =
F1 − F0

h
,

s(5)(xn) =
Fn − Fn−1

h
,

s(5)(xj) = Wj, j = 1, 2, . . . , n− 1.
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Proof. By using (46), for x ∈ (xj, xj+1), j = 0, 1, 2, . . . , n− 1,

s(5)(x)− y(5)(x) =
Fj+1 − Fj

h
− y(5)(x)

=
y(4)j+1 − y(4)j

h
− y(5)(x) + O(h)

= y(5)(ξ j)− y(5)(x) + O(h)

= y(6)(ηj)(ξ j − x) + O(h)

= O(h),

where ηj, ξ j ∈ (xj, xj+1). Moreover, we have s(5)(x0) − y(5)0 = O(h), s(5)(xn) − y(5)n = O(h) and

s(5)(xj)− y(5)j = O(h2), j = 1, 2, . . . , n− 1. Hence,

‖s(5)(x)− y(5)(x)‖∞ = O(h).

Next, for x ∈ [xj, xj+1], j = 0, 1, 2, . . . , n− 1,

s(4)(x)− y(4)(x) = (Fj +
Fj+1 − Fj

h
(x− xj))− (y(4)j + y(5)j (x− xj) + O(h2))

= O(h2) + (
Fj+1 − Fj

h
− y(5)j )(x− xj)

= O(h2).

Hence, we get
‖s(4)(x)− y(4)(x)‖∞ = O(h2).

The others also can be proven similarly. We omit the proof.

Theorem 3 shows that the new integro quintic spline has full convergence in globally
approximating y(k)(x), k = 0, 1, . . . , 5.

5. Numerical Tests

In this section, we test the approximation properties of the new integro quintic spline. Our tests
are performed by MATLAB.

We take:
y1 = ex, x ∈ [0, 1],

and:

y2 =

 sin x, if x ∈ [−0.5, 0) ,

x− x3

3!
+

x5

5!
− x7

7!
, if x ∈ [0, 0.5] ,

as two illustrative examples. Furthermore, y1 will be used in the comparison of our method with some
other methods.

The absolute errors at the knots are defined as follows:

Ek(xi, n) := |y(k)(xi)− s(k)(xi)|, k = 0, 1, 2, 3, 4, i = 0, 1, . . . , n,

and:

E5(xi, n) := |y(5)(xi)−
s(4)(xi+1)− s(4)(xi−1)

2h
|, i = 1, 2, . . . , n− 1.
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The numerical convergence orders of the absolute errors at the knots are defined by:

Ok(xi, n1, n2) :=
log(Ek(xi, n1)/Ek(xi, n2))

log(n2/n1)
, k = 0, 1, . . . , 5.

Tables 2–7 show the absolute errors Ek(xi, n) of y(k)1 (x) at the chosen knots and the numerical

convergence orders Ok(xi, n1, n2), where n = 10, 20, 40, k = 0, 1, . . . , 5. The results of y(k)2 (x) are given
in Tables 8–13.

The numerical convergence orders in these tables accord with the theoretical expectation.
By Theorem 2, E0(xi, n) and E1(xi, n) are of sixth order convergent (see Tables 2, 3, 8 and 9 for the
numerical convergence orders), E2(xi, n) and E3(xi, n) are of fourth order convergent (see Tables 4, 5,
10 and 11 for the numerical convergence orders), E4(xi, n) and E5(xi, n) are of second order convergent
(see Tables 6, 7, 12 and 13 for the numerical convergence orders).

Table 2. The absolute errors of the function values of y1 at the knots and the numerical
convergence orders.

xi E0(xi, 10) E0(xi, 20) E0(xi, 40) O0(xi, 10, 20) O0(xi, 10, 40)

0.0 1.711× 10−8 1.141× 10−10 7.632× 10−13 7.2 7.2
0.1 2.512× 10−9 4.480× 10−12 2.887× 10−15 9.1 9.8
0.2 7.533× 10−10 1.627× 10−12 7.105× 10−15 8.9 8.3
0.3 4.974× 10−10 1.433× 10−12 1.998× 10−15 8.4 8.9
0.4 3.287× 10−10 1.351× 10−12 1.799× 10−14 7.9 7.1
0.5 4.105× 10−10 1.277× 10−12 5.107× 10−15 8.3 8.1
0.6 2.701× 10−10 1.187× 10−12 5.773× 10−15 7.8 7.7
0.7 2.914× 10−10 1.075× 10−12 1.954× 10−14 8.1 6.9
0.8 3.233× 10−10 7.208× 10−13 1.643× 10−14 8.8 7.1
0.9 2.535× 10−9 4.620× 10−12 3.108× 10−15 9.1 9.7
1.0 2.403× 10−8 2.195× 10−10 1.720× 10−12 6.8 6.9

Table 3. The absolute errors of the first order derivatives of y1 at the knots and the numerical
convergence orders.

xi E1(xi, 10) E1(xi, 20) E1(xi, 40) O1(xi, 10, 20) O1(xi, 10, 40)

0.0 8.837× 10−7 1.181× 10−8 1.599× 10−10 6.2 6.2
0.1 7.198× 10−8 1.782× 10−10 6.932× 10−13 8.7 8.4
0.2 1.321× 10−8 5.626× 10−12 9.104× 10−15 11.2 10.1
0.3 3.138× 10−9 3.064× 10−12 6.535× 10−13 10.0 6.1
0.4 4.357× 10−10 3.753× 10−12 2.014× 10−13 6.9 5.5
0.5 6.093× 10−10 4.163× 10−12 2.633× 10−13 7.2 5.5
0.6 6.225× 10−10 4.451× 10−12 4.776× 10−13 7.1 5.1
0.7 4.399× 10−9 4.471× 10−12 1.275× 10−13 9.9 7.5
0.8 1.839× 10−8 1.034× 10−11 2.132× 10−13 10.8 8.1
0.9 1.020× 10−7 3.315× 10−10 9.912× 10−13 8.3 8.3
1.0 1.300× 10−6 2.363× 10−8 3.788× 10−10 5.8 5.8



Algorithms 2017, 10, 32 13 of 17

Table 4. The absolute errors of the second order derivatives of y1 at the knots and the numerical
convergence orders.

xi E2(xi, 10) E2(xi, 20) E2(xi, 40) O2(xi, 10, 20) O2(xi, 10, 40)

0.0 2.647× 10−5 7.099× 10−7 1.949× 10−8 5.2 5.2
0.1 4.869× 10−7 1.820× 10−9 3.831× 10−10 8.1 5.1
0.2 2.978× 10−7 1.957× 10−9 4.236× 10−10 7.2 4.7
0.3 5.713× 10−7 3.211× 10−9 5.213× 10−10 7.5 5.0
0.4 1.569× 10−7 4.450× 10−9 3.785× 10−10 5.1 4.3
0.5 5.861× 10−7 5.800× 10−9 6.002× 10−10 6.7 4.9
0.6 9.784× 10−8 7.297× 10−9 7.447× 10−10 3.7 3.5
0.7 6.007× 10−7 8.972× 10−9 5.578× 10−10 6.1 5.0
0.8 1.011× 10−7 1.108× 10−8 7.138× 10−10 3.2 3.5
0.9 7.946× 10−7 1.825× 10−8 8.472× 10−10 5.4 4.9
1.0 4.041× 10−5 1.462× 10−6 4.772× 10−8 4.8 4.8

Table 5. The absolute errors of the third order derivatives of y1 at the knots and the numerical
convergence orders.

xi E3(xi, 10) E3(xi, 20) E3(xi, 40) O3(xi, 10, 20) O3(xi, 10, 40)

0.0 5.275× 10−4 2.780× 10−5 1.471× 10−6 4.2 4.2
0.1 7.466× 10−5 1.054× 10−6 5.170× 10−9 6.1 6.8
0.2 1.955× 10−5 2.196× 10−8 2.435× 10−9 9.8 6.4
0.3 5.064× 10−6 3.244× 10−8 2.362× 10−9 7.3 5.5
0.4 4.352× 10−7 3.852× 10−8 2.592× 10−10 3.5 5.3
0.5 1.209× 10−6 4.265× 10−8 5.388× 10−9 4.8 3.9
0.6 6.714× 10−7 4.702× 10−8 1.748× 10−9 3.8 4.2
0.7 7.116× 10−6 4.759× 10−8 1.095× 10−9 7.2 6.3
0.8 2.705× 10−5 4.163× 10−8 4.917× 10−9 9.3 6.1
0.9 1.027× 10−4 1.950× 10−6 9.570× 10−9 5.7 6.6
1.0 8.400× 10−4 6.182× 10−5 4.229× 10−6 3.8 3.8

Table 6. The absolute errors of the fourth order derivatives of y1 at the knots and the numerical
convergence orders.

xi E4(xi, 10) E4(xi, 20) E4(xi, 40) O4(xi, 10, 20) O4(xi, 10, 40)

0.0 6.139× 10−3 5.105× 10−4 2.006× 10−5 3.6 4.0
0.1 1.166× 10−3 2.577× 10−4 5.397× 10−5 2.2 2.2
0.2 1.219× 10−3 2.171× 10−4 5.919× 10−5 2.5 2.0
0.3 1.414× 10−3 2.406× 10−4 6.602× 10−5 2.6 2.1
0.4 8.417× 10−4 2.700× 10−4 7.006× 10−5 1.6 1.8
0.5 1.806× 10−3 3.026× 10−4 8.012× 10−5 2.6 2.2
0.6 1.046× 10−3 3.387× 10−4 8.963× 10−5 1.6 1.7
0.7 2.303× 10−3 3.783× 10−4 9.521× 10−5 2.6 2.2
0.8 5.430× 10−4 4.165× 10−4 1.067× 10−4 0.4 1.1
0.9 5.952× 10−3 3.446× 10−4 1.174× 10−4 4.1 2.8
1.0 1.311× 10−2 2.204× 10−3 3.719× 10−4 2.6 2.6
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Table 7. The absolute errors of the fifth order derivatives of y1 at the knots and the numerical
convergence orders.

xi E5(xi, 10) E5(xi, 20) E5(xi, 40) O5(xi, 10, 20) O5(xi, 10, 40)

0.1 3.494× 10−2 2.340× 10−3 3.900× 10−6 3.9 6.5
0.2 1.086× 10−2 1.096× 10−4 6.875× 10−5 6.6 3.6
0.3 4.136× 10−3 2.740× 10−4 4.483× 10−5 3.9 3.3
0.4 5.293× 10−4 3.101× 10−4 6.563× 10−5 0.8 1.5
0.5 1.727× 10−3 3.430× 10−4 1.049× 10−4 2.3 2.0
0.6 5.522× 10−4 3.787× 10−4 6.581× 10−5 0.5 1.5
0.7 5.874× 10−3 4.064× 10−4 8.943× 10−5 3.9 3.0
0.8 1.453× 10−2 1.946× 10−4 1.241× 10−4 6.2 3.4
0.9 5.871× 10−2 4.198× 10−3 1.931× 10−5 3.8 5.7

Table 8. The absolute errors of the function values of y2 at the knots and the numerical
convergence orders.

xi E0(xi, 10) E0(xi, 20) E0(xi, 40) O0(xi, 10, 20) O0(xi, 10, 40)

−0.5 1.224× 10−8 9.184× 10−11 7.080× 10−13 7.1 7.0
−0.4 1.748× 10−9 4.632× 10−12 1.765× 10−14 8.6 8.2
−0.3 5.906× 10−10 2.425× 10−12 1.460× 10−14 7.9 7.6
−0.2 3.360× 10−10 2.273× 10−12 5.940× 10−15 7.2 7.8
−0.1 2.934× 10−10 2.220× 10−12 1.117× 10−14 7.0 7.3
0.0 2.761× 10−10 2.167× 10−12 6.559× 10−15 7.0 7.6
0.1 2.586× 10−10 2.116× 10−12 6.231× 10−15 6.9 7.6
0.2 2.150× 10−10 2.057× 10−12 4.469× 10−15 6.7 7.7
0.3 4.428× 10−11 1.895× 10−12 4.385× 10−15 4.5 6.6
0.4 1.225× 10−9 4.481× 10−13 2.498× 10−15 11.4 9.4
0.5 1.194× 10−8 9.321× 10−11 7.356× 10−13 7.0 6.9

Table 9. The absolute errors of the first order derivatives of y2 at the knots and the numerical
convergence orders.

xi E1(xi, 10) E1(xi, 20) E1(xi, 40) O1(xi, 10, 20) O1(xi, 10, 40)

−0.5 6.342× 10−7 9.518× 10−9 1.470× 10−10 6.0 6.0
−0.4 5.069× 10−8 1.374× 10−10 7.450× 10−14 8.5 9.6
−0.3 9.230× 10−9 4.217× 10−12 2.941× 10−13 11.0 7.4
−0.2 2.200× 10−9 2.199× 10−12 7.871× 10−14 9.9 7.3
−0.1 3.042× 10−10 2.467× 10−12 1.760× 10−13 6.9 5.3
0.0 3.641× 10−10 2.618× 10−12 1.416× 10−13 7.1 5.6
0.1 3.119× 10−10 2.557× 10−12 5.085× 10−14 6.9 6.2
0.2 2.242× 10−9 2.245× 10−12 6.439× 10−15 9.9 9.2
0.3 9.406× 10−9 4.439× 10−12 1.124× 10−13 11.0 8.1
0.4 5.172× 10−8 1.459× 10−10 4.774× 10−14 8.4 10.0
0.5 6.482× 10−7 1.013× 10−8 1.584× 10−10 6.0 5.9
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Table 10. The absolute errors of the second order derivatives of y2 at the knots and the numerical
convergence orders.

xi E2(xi, 10) E2(xi, 20) E2(xi, 40) O2(xi, 10, 20) O2(xi, 10, 40)

−0.5 1.909× 10−5 5.731× 10−7 1.765× 10−8 5.0 5.0
−0.4 1.899× 10−7 1.429× 10−8 4.735× 10−10 3.7 4.3
−0.3 3.931× 10−7 1.135× 10−8 3.656× 10−10 5.1 5.0
−0.2 2.668× 10−7 1.039× 10−8 2.035× 10−10 4.6 5.1
−0.1 2.939× 10−7 9.536× 10−9 1.882× 10−10 4.9 5.3
0.0 2.761× 10−7 8.669× 10−9 1.213× 10−10 4.9 5.5
0.1 2.583× 10−7 7.801× 10−9 5.797× 10−11 5.0 6.0
0.2 2.853× 10−7 6.926× 10−9 2.573× 10−12 5.3 8.3
0.3 1.572× 10−7 5.933× 10−9 3.983× 10−11 4.7 5.9
0.4 3.659× 10−7 2.799× 10−9 1.204× 10−10 7.0 5.7
0.5 2.010× 10−5 6.285× 10−7 1.954× 10−8 4.9 5.0

Table 11. The absolute errors of the third order derivatives of y2 at the knots and the numerical
convergence orders.

xi E3(xi, 10) E3(xi, 20) E3(xi, 40) O3(xi, 10, 20) O3(xi, 10, 40)

−0.5 3.940× 10−4 2.394× 10−5 1.498× 10−6 4.0 4.0
−0.4 5.180× 10−5 8.104× 10−7 5.789× 10−10 5.9 8.2
−0.3 1.362× 10−5 1.640× 10−8 4.348× 10−9 9.6 5.8
−0.2 3.555× 10−6 2.343× 10−8 2.673× 10−9 7.2 5.1
−0.1 3.114× 10−7 2.567× 10−8 8.109× 10−11 3.6 5.9
0.0 7.246× 10−7 2.607× 10−8 2.454× 10−9 4.7 4.1
0.1 3.225× 10−7 2.594× 10−8 1.845× 10−9 3.6 3.7
0.2 3.624× 10−6 2.396× 10−8 1.008× 10−9 7.2 5.9
0.3 1.387× 10−5 1.768× 10−8 2.106× 10−9 9.6 6.3
0.4 5.279× 10−5 8.602× 10−7 6.609× 10−10 5.9 8.1
0.5 4.043× 10−4 2.555× 10−5 1.637× 10−6 3.9 3.9

Table 12. The absolute errors of the fourth order derivatives of y2 at the knots and the numerical
convergence orders.

xi E4(xi, 10) E4(xi, 20) E4(xi, 40) O4(xi, 10, 20) O4(xi, 10, 40)

−0.5 5.824× 10−3 7.682× 10−4 1.098× 10−4 2.9 2.8
−0.4 1.743× 10−3 7.014× 10−5 2.500× 10−5 4.6 3.0
−0.3 1.364× 10−4 1.006× 10−4 1.931× 10−5 0.4 1.4
−0.2 6.769× 10−5 8.285× 10−5 1.238× 10−5 −0.3 1.2
−0.1 3.940× 10−4 6.240× 10−5 7.654× 10−6 2.6 2.8
0.0 3.315× 10−4 4.161× 10−5 2.369× 10−6 2.9 3.5
0.1 2.691× 10−4 2.078× 10−5 3.074× 10−6 3.6 3.2
0.2 5.980× 10−4 7.186× 10−8 8.315× 10−6 13.0 3.0
0.3 5.313× 10−4 1.816× 10−5 1.326× 10−5 4.8 2.6
0.4 2.448× 10−3 1.408× 10−5 1.853× 10−5 7.4 3.5
0.5 5.332× 10−3 7.329× 10−4 1.119× 10−4 2.8 2.7
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Table 13. The absolute errors of the fifth order derivatives of y2 at the knots and the numerical
convergence orders.

xi E5(xi, 10) E5(xi, 20) E5(xi, 40) O5(xi, 10, 20) O5(xi, 10, 40)

−0.4 2.797× 10−2 2.832× 10−3 1.036× 10−3 3.3 2.3
−0.3 7.801× 10−3 2.489× 10−4 2.683× 10−4 4.9 2.4
−0.2 2.854× 10−3 1.320× 10−4 7.551× 10−6 4.4 4.2
−0.1 3.345× 10−4 2.027× 10−4 3.936× 10−5 0.7 1.5
0.0 1.042× 10−3 2.083× 10−4 5.694× 10−5 2.3 2.0
0.1 3.340× 10−4 2.081× 10−4 5.359× 10−5 0.7 1.3
0.2 2.978× 10−3 2.027× 10−4 4.824× 10−5 3.8 2.9
0.3 7.583× 10−3 9.012× 10−5 5.461× 10−5 6.3 3.5
0.4 2.765× 10−2 1.876× 10−3 2.563× 10−5 3.8 5.0

Moreover, all of the absolute errors in these tables are very satisfactory and well accepted.
Making a further observation on these tables, we find that the errors at the inner knots are much
better than the errors at the left endpoint and the right endpoint. The numerical phenomenon is
natural and reasonable, because we only make use of n integral values (2) and do not make use of
any exact end conditions. It shows that the influence of the artificial end conditions on the inner
errors is limited. In fact, the inner approximation errors are mainly determined by the given n integral
values in (2), while the boundary errors are mainly effected by the artificial end conditions. It is
checked that our inner errors of y1 in Tables 2–6 are similar to the ones in [2,14,18], which are obtained
by using five or seven additional exact end conditions. It shows that our new method can obtain
satisfactory approximation results by using fewer data than the methods in [2,14,18]. The performance
is very encouraging.

Finally, we give some discussion on fifth order derivative approximation. We remark that we use:

Wi =
s(4)(xi+1)− s(4)(xi−1)

2h
=

Fi+1 − Fi−1

2h

to approximate y(5)(xi) in this paper, i = 1, 2, . . . , n− 1. See Tables 7 and 13 for our numerical results
of the fifth order derivatives. Take y1 as a comparison example. See Table 14 for the comparison of the
maximum absolute errors of the fifth order derivatives y(5)1 (xi) obtained by our current method and the
methods in [18,19]. Obviously, our results are very accurate and surprising because they are obtained
by only using the integral values (2) with no exact end conditions, while the results of [18] are obtained
by using the integral values (2) and five additional exact end conditions (y(x0), y

′
(x1), y

′
(xn−1), y

′′′
(x1)

and y
′′′
(xn−1)), as well. Hence, our approximation method for the fifth order derivatives at the inner

knots is more preferable.

Table 14. Comparison of the maximum absolute errors of the fifth order derivatives of y1.

n = 10 n = 20 n = 40

Current Method 5.871× 10−2 1.752× 10−2 5.021× 10−3

[18] 1.365× 10−1 6.794× 10−2 3.427× 10−2

[19] 3.15× 10−1 1.49× 10−1 7.15× 10−2

6. Conclusions

In this paper, an effort that is different from the ones in [1,2,13–19] is made to construct a new
kind of integro quintic spline without exact end conditions. The demands of exact end conditions
in many old methods, such as [1,2,14,15,18], for integro interpolation have been relaxed and deleted
in the new method. The good feature makes the current method possess wider applications than
many other methods. Moreover, the method is easy to apply, and the obtained integro quintic spline



Algorithms 2017, 10, 32 17 of 17

has satisfactory approximation abilities in approximating a function and its first order to fifth order
derivatives. Hence, the new method is very effective for integro interpolation.
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