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Abstract: Sentiment Analysis on Twitter Data is indeed a challenging problem due to the nature,
diversity and volume of the data. People tend to express their feelings freely, which makes Twitter
an ideal source for accumulating a vast amount of opinions towards a wide spectrum of topics.
This amount of information offers huge potential and can be harnessed to receive the sentiment
tendency towards these topics. However, since no one can invest an infinite amount of time to
read through these tweets, an automated decision making approach is necessary. Nevertheless,
most existing solutions are limited in centralized environments only. Thus, they can only process at
most a few thousand tweets. Such a sample is not representative in order to define the sentiment
polarity towards a topic due to the massive number of tweets published daily. In this work, we
develop two systems: the first in the MapReduce and the second in the Apache Spark framework
for programming with Big Data. The algorithm exploits all hashtags and emoticons inside a tweet,
as sentiment labels, and proceeds to a classification method of diverse sentiment types in a parallel
and distributed manner. Moreover, the sentiment analysis tool is based on Machine Learning
methodologies alongside Natural Language Processing techniques and utilizes Apache Spark’s
Machine learning library, MLlib. In order to address the nature of Big Data, we introduce some
pre-processing steps for achieving better results in Sentiment Analysis as well as Bloom filters to
compact the storage size of intermediate data and boost the performance of our algorithm. Finally,
the proposed system was trained and validated with real data crawled by Twitter, and, through an
extensive experimental evaluation, we prove that our solution is efficient, robust and scalable while
confirming the quality of our sentiment identification.

Keywords: Apache Spark; Big Data; Bloom Filters; Hadoop; MapReduce; Twitter

1. Introduction

Nowadays, users tend to disseminate information through short 140-character messages called
“tweets”, on different aspects on Twitter. Furthermore, they follow other users in order to receive their
status updates. Twitter constitutes a wide spreading instant messaging platform and people use it to
get informed about world news, recent technological advancements, and so on. Inevitably, a variety
of opinion clusters that contain rich sentiment information is formed. Sentiment is defined as “A
thought, view, or attitude, especially one based mainly on emotion instead of reason” [1] and describes
someone’s mood or judge towards a specific entity.
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Knowing the overall sentiment inclination towards a topic may prove extremely useful in certain
cases. For instance, a technological company would like to know what their customers think about the
latest product, in order to receive helpful feedback that will be utilized in the production of the next
device. Therefore, it is obvious that an inclusive sentiment analysis for a time period after the release
of a new product is needed. Moreover, user-generated content that captures sentiment information
has proved to be valuable among many internet applications and information systems, such as search
engines or recommendation systems.

In the context of this work, we utilize hashtags and emoticons as sentiment labels to perform
classification of diverse sentiment types. Hashtags are a convention for putting together additional
context and metadata and are extensively utilized in tweets [2]. Their usage is twofold: they provide
categorization of a message and/or highlight of a topic and they enhance the searching of tweets
that refer to a common subject. A hashtag is created by prefixing a word with a hash symbol (e.g.,
#love). Emoticon refers to a digital icon or a sequence of keyboard symbols that serves to represent a
facial expression, such as :-( for a sad face [3]. Both hashtags and emoticons provide a fine-grained
sentiment learning at tweet level which makes them suitable to be leveraged for opinion mining.

Although the problem of sentiment analysis has been studied extensively during recent years,
and existing solutions suffer from certain limitations. One problem is that the majority of approaches is
bounded in centralized environments. Moreover, sentiment analysis is based on terms of methodology,
natural language processing techniques and machine learning approaches. However, these kinds of
techniques are time-consuming and spare many computational resources [4,5]. Underlying solutions
are neither sufficient nor suitable for opinion mining, since there is a huge mismatch between their
processing capabilities and the exponential growth of available data [4].

As a result, it is prohibitive to process more than a few thousand tweets without exceeding the
capabilities of a single server [2,6–8]. It is more than clear that there is an imperative need to turn to
highly scalable solutions. Cloud computing technologies provide tools and infrastructure to create
such solutions and manage the input data in a distributed way among multiple servers. The most
prominent and notably efficient tool is the MapReduce [9] programming model, developed by Google,
(Googleplex, Mountain View, CA, USA) for processing large-scale data.

In this manuscript, we propose a novel distributed framework implemented in Hadoop [10],
the open source MapReduce implementation [9] as well as in Spark [11], an open source platform that
translates the developed programs into MapReduce jobs. Our algorithm exploits the hashtags and
emoticons inside a tweet, as sentiment labels, in order to avoid the time-intensive manual annotation
task. After that, we perform a feature selection procedure to build the feature vectors of training and
test sets. Additionally, we embody Bloom filters to increase the performance of the algorithm. Finally,
we adjust an existing MapReduce classification method based on AkNN (all-(k)-nearest-neighbor)
queries to perform a fully distributed sentiment classification algorithm. We study various parameters
that can affect the total computation cost and classification performance, such as size of dataset, number
of nodes, increase of k, etc. by performing an extensive experimental evaluation. We prove that our
solution is efficient, robust and scalable and verify the classification accuracy of our approach.

The rest of the manuscript is organized as follows: in Section 2, we discuss related work, as well
as the Machine Learning Techniques implemented in the proposed work. In Section 3, MapReduce
model and Spark framework are presented, while, in Section 4, the Sentiment Analysis Classification
Framework is presented and in following the way that our algorithm works. More specifically, we
explain how to build the feature vectors (for both the training and test dataset). Then, we briefly
describe the Bloom filter integration and finally display the Sentiment Classification Algorithm using
pseudo-code. Section 5 presents the steps of training as well as the two types of datasets for validating
our framework. Moreover, Section 6 presents the evaluation experiments conducted and the results
gathered. Ultimately, Section 7 presents conclusions and draws directions for future work.
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2. Related Work

2.1. Sentiment Analysis and Classification Models

In the last decade, there has been an increasing interest in studies of Sentiment Analysis as well as
emotional models. This is mainly due to the recent growth of data available in the World Wide Web,
especially of those that reflect people’s opinions, experiences and feelings [12]. Early opinion mining
studies focus on document level sentiment analysis concerning movie or product reviews [13,14] and
posts published on web pages or blogs [15].

Sentiment Analysis is studied in many different levels. In [16], authors implement an unsupervised
learning algorithm that classifies reviews, thus performing document level classification. Due to the
complexity of document level opinion mining, many efforts have been made towards the sentence
level sentiment analysis. The solutions presented in [17–19] examine phrases and assign to each one
of them a sentiment polarity (positive, negative, neutral). A less investigated area is the topic-based
sentiment analysis [20,21] due to the difficulty to provide an adequate definition of topic and how to
incorporate the sentiment factor into the opinion mining task.

The most common approaches to confront the problem of sentiment analysis include machine
learning and/or natural language processing techniques. Pang et al. [22] used Naive Bayes, Maximum
Entropy and Support Vector Machines classifiers so as to analyze sentiment of movie reviews; they
classify movie reviews as positive or negative, and perform a comparison between the methods in
terms of classification performance. Boiy and Moens [23] utilized classification models with the aim of
mining the sentiment out of multilingual web texts. On the other hand, the authors in [24] investigate
the proper identification of semantic relationships between the sentiment expressions and the subject
within online articles. Together with a syntactic parser and a sentiment lexicon, their approach manages
to augment the accuracy of sentiment analysis within web pages and online articles. Furthermore,
the method described in [25] defines a set of linguistic rules together with a new opinion aggregation
function to detect sentiment orientations in online product reviews.

Nowadays, Twitter has received much attention for sentiment analysis, as it provides a source
of massive user-generated content that captures a wide aspect of published opinions. In [26], tweets
referring to Hollywood movies are analyzed. They focused on classifying the tweets and in following
on analyzing the sentiment about Hollywood movies in different parts of the world. Other studies that
investigate the role of emoticons on sentiment analysis of tweets are the ones in [27,28]. In both works,
Lexicons of Emoticons are used to enhance the quality of the results. Authors in [29] propose a system
that uses an SVM (Support Vector Machine) classifier alongside a rule-based classifier so as to improve
the accuracy of the system. In [30], the authors proceed with a two-step classification process. In the
first step, they separate messages as subjective and objective, and, in the second step, they distinguish
the subjective tweets as positive or negative.

There is a lot of research interest in studying different types of information dissemination processes
on large graphs and social networks. Naveed et al. [31] analyze tweet posts and forecasts for
a given post and the likelihood of being retweeted on its content. Authors indicate that tweets
containing negative emoticons are more likely to be retweeted than tweets with positive emoticons.
Agarwal et al. [6] investigate the use of a tree kernel model for detecting sentiment orientation in
tweets. A three-step classifier is proposed in [8] that follows a target-dependent sentiment classification
strategy. Moreover, a graph-based model is proposed in [2] to perform opinion mining in Twitter data
from a topic-based perspective. A more recent approach [27] builds a sentiment and emoticon lexicon
to support multidimensional sentiment analysis of Twitter data.

In addition, several works in the SemEval competitions addressed the task of classifying the
sentiment of tweets with hundreds of participants [32–35]. The evaluations are intended to explore the
nature of meaning in language, as meaning is intuitive to humans and so transferring those intuitions
to computational analysis has proved elusive. Moreover, other learning methods were implemented in
Hadoop for classifying the polarity of tweets, e.g., the large-scale formulation of the Support Vector
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Machine learning algorithm as presented in [36,37]. Another similar work is introduced in [38], where
authors propose techniques to speed up the computation process for sentiment analysis. Specifically,
they use tweet subjectivity in order to select the right training samples, and, in the following, they
introduce the concept of EFWS (Effective Word Score) of a tweet that is derived from polarity scores
of frequently used words, e.g., an additional heuristic that can be used to speed up the sentiment
classification with standard machine learning algorithms. They achieve overall accuracies of around
80% for a training dataset of 100K tweets, a result very similar to our proposed manuscript.

Previous works regarding emotional content are the ones in [39,40]; they presented various
approaches for the automatic analysis of tweets and the recognition of the emotional content of each
tweet based on Ekman emotion model, where the existence of one or more out of the six basic human
emotions (Anger, Disgust, Fear, Joy, Sadness and Surprise) is specified. Moreover, a cloud-based
architecture was proposed in [41] where authors aim at creating a sentiment analysis tool for Twitter
data based on Apache Spark cloud framework. The proposed system was trained and validated with
real data crawled by Twitter and in following results are compared with the ones from real users.
In addition, in [42], a novel method for Sentiment Learning in the Spark framework is presented;
the proposed algorithm exploits the hashtags and emoticons inside a tweet, as sentiment labels,
and proceeds to a classification procedure of diverse sentiment types in a parallel and distributed
manner. The approach in [7] evaluates the contribution of different features (e.g., n-grams) together
with a kNN classifier. Authors take advantage of the hashtags and smileys in tweets to define sentiment
classes and to avoid manual annotation. In this paper, we adopt this approach and greatly extend it to
support the analysis of large-scale Twitter data. A large-scale solution is presented in [43] where the
authors build a sentiment lexicon and classify tweets using a MapReduce algorithm and a distributed
database model. Although the accuracy of the method is good, it suffers from the time-consuming
construction of the sentiment lexicon.

2.2. Machine Learning Techniques

In the proposed manuscript, we utilized three classification algorithms in order to implement
the Sentiment Analysis Tool. The three algorithms utilized are Naive Bayes, Logistic Regression and
Decision Trees.

Naive Bayes is a simple multiclass classification algorithm based on the application of Bayes
theorem. Each instance of the problem is represented as a feature vector, and it is assumed that the
value of each feature is independent of the value of any other feature. One of the advantages of this
algorithm is that it can be trained very efficiently, as it needs only a single pass to the training data.
Initially, the conditional probability distribution of each feature given class is computed, and then
Bayes theorem is applied to predict the class label of an instance.

Logistic Regression is a regression model where the dependent variable can take one out of a
fixed number of values. It utilizes a logistic function to measure the relationship between the instance
class and the features extracted from the input. Although widely used for binary classification, it can
be extended to solve multiclass classification problems.

Decision Trees make up a classification algorithm that is based on a tree structure whose
leaves represent class labels while branches represent combinations of features that result in the
aforementioned classes. Essentially, it executes a recursive binary partitioning of the feature space.
Each step is selected greedily, aiming for the optimal choice for the given step by maximizing the
information gain.

3. Cloud Computing Preliminaries

3.1. MapReduce Model

MapReduce is a programming model that enables the process of large datasets on a cluster
using a distributed and parallel algorithm [9]. The data processing in MapReduce is based on input
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data partitioning; the partitioned data is executed by a number of tasks in many distributed nodes.
A MapReduce program consists of two main procedures, Map() and Reduce() respectively, and is
executed in three steps: Map, Shuffle and Reduce. In the Map phase, input data is partitioned and
each partition is given as an input to a worker that executes the map function. Each worker processes
the data and outputs key-value pairs. In the Shuffle phase, key-value pairs are grouped by key and
each group is sent to the corresponding Reducer.

A user can define their own Map and Reduce functions depending on the purpose of their
application. The input and output formats of these functions are simplified as key-value pairs. Using
this generic interface, the user can solely focus on his own problem. He does not have to care how
the program is executed over the distributed nodes about fault tolerant issues, memory management,
etc. The architecture of MapReduce model is depicted in Figure 1. Apache Hadoop is a popular open
source implementation of the Map Reduce model.

Figure 1. Architecture of MapReduce model.

3.2. Spark Framework

Apache Spark Framework [11,44] is a newer framework built in the same principles as Hadoop.
While Hadoop is ideal for large batch processes, it drops in performance in certain scenarios, as in
iterative or graph based algorithms. Another problem of Hadoop is that it does not cache intermediate
data for faster performance, but, instead, it flushes the data to the disk between each step. In contrast,
Spark maintains the data in the workers’ memory, and, as a result, it outperforms Hadoop in algorithms
that require many operations. It is a unified stack of multiple closely integrated components and
overcomes the issues of Hadoop. In addition, it has a Directed Acyclic Graph (DAG) execution engine
that supports cyclic data flow and in-memory computing. As a result, it can run programs up to 100x
faster than Hadoop in memory, or 10x faster on disk. Spark offers APIs (Application Programming
Interface) in Scala, Java, Python and R and can operate on Hadoop or standalone while using HDFS
(Hadoop Distributed File System), Cassandra or HBase. The architecture of Apache Spark Framework
is depicted in Figure 2.
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Figure 2. The Spark stack.

3.3. MLlib

Spark’s ability to perform well on iterative algorithms makes it ideal for implementing Machine
Learning Techniques as, at their vast majority, Machine Learning algorithms are based on iterative
jobs. MLlib [45] is Apache Spark’s scalable machine learning library and is developed as part of the
Apache Spark Project. MLlib contains implementations of many algorithms and utilities for common
Machine Learning techniques such as Clustering, Classification, and Regression.

4. Sentiment Analysis Classification Framework

In the beginning of this section, we define some notation used throughout this paper and then
provide a formal definition of the confronted problem. After that, we introduce the features that we use
to build the feature vector. Finally, we describe our Spark algorithm using pseudo-code and proceed
to a step by step explanation. Table 1 lists the symbols and their meanings.

Table 1. Symbols and their meanings.

Symbol Meaning

H set of hashtags
E set of emoticons
T training set
TT test set
L set of sentiment labels of T
p set of sentiment polarities of TT
C AkNN classifier
w f weight of feature f
N f number of times feature f appears in a tweet
count( f ) count of feature f in corpus
f r f frequency of feature f in corpus
FC upper bound for content words
FH lower bound for high frequency words
M f maximal observed value of feature f in corpus
h fi i-th hash function
FT feature vector of T
FTT feature vector of TT
V set of matching vectors
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Assume a set of hashtags H = {h1, h2, . . . , hn} and a set of emoticons E = {em1, em2, . . . , emm}
associated with a set of tweets T = {t1, t2, . . . , tl} (training set). Each t ∈ T carries only one sentiment
label from L = H ∪ E. This means that tweets containing more than one label from L are not candidates
for T, since their sentiment tendency may be vague. However, there is no limitation on the number
of hashtags or emoticons a tweet can contain, as long as they are non-conflicting with L. Given a
set of unlabelled tweets TT = {tt1, tt2, . . . , ttk} (test set), we aim to infer the sentiment polarities
p = {p1, p2, . . . , pk} for TT, where pi ∈ L ∪ {neu} and neu means that the tweet carries no sentiment
information. We build a tweet-level classifier C and adopt a kNN strategy to decide the sentiment
tendency ∀tt ∈ TT. We implement C by adapting an existing MapReduce classification algorithm
based on AkNN queries [46], as described in Subsection 4.3.

4.1. Feature Description

In this subsection, we present in detail the features used in order to build classifier C. For each
tweet, we combine its features in one feature vector. We apply the features proposed in [7] with some
necessary modifications. The reason for these alterations is to adapt the algorithm to the needs of
large-scale processing in order to achieve an optimal performance.

4.1.1. Word and N-Gram Features

Each word in a tweet is treated as a binary feature. Respectively, a sequence of 2–5 consecutive
words in a sentence is regarded as a binary n-gram feature. If f is a word or n-gram feature, then

w f =
N f

count( f )
(1)

is the weight of f in the feature vector, N f is the number of times f appears in the tweet and count( f )
declares the count of f in the Twitter corpus. Consequently, rare words and n-grams have a higher
weight than common words and have a greater effect on the classification task. Moreover, if we
encounter sequences of two or more punctuation symbols inside a tweet, we consider them as word
features. Unlike what authors propose in [7], we do not include the substituted meta-words for
URLs, references and hashtags (URL, REF and TAG respectively) as word features (see and Section 4).
Additionally, the common word RT, which means “retweet”, does not constitute a feature. The reason
for omission of these words from the feature list lies in the fact that they appear in the majority of
tweets inside the dataset. Therefore, their contribution as features is negligible, whilst they lead to a
great computation burden during the classification task.

4.1.2. Pattern Features

We apply the pattern definitions given in [47] for automated pattern extraction. The words are
divided into three categories: high-frequency words (HFWs), content words (CWs) and regular words
(RWs). Assume a word f and its corpus frequency f r f ; if f r f > FH , then f is considered to be a HFW.
On the other hand, if f r f < FC, then f is considered to be a CW. The rest of the words are characterized
as RWs. The word frequency is estimated from the training set rather than from an external corpus.
In addition, we treat as HFWs all consecutive sequences of punctuation characters as well as URL,
REF, TAG and RT meta-words for pattern extraction, since they play an important role in pattern
detection. We define a pattern as an ordered sequence of HFWs and slots for content words. The upper
bound for FC is set to 1000 words per million and the lower bound for FH is set to 10 words per million.
In contrary to [47], where FH is set to 100 words per million, we provide a smaller lower bound since
the experimental evaluation produced better results. Observe that the FH and FC bounds allow overlap
between some HFWs and CWs. To address this issue, we follow a simple strategy as described next:
if f r f ∈

(
FH , FH+FC

2

)
the word is classified as HFW; otherwise, if f r f ∈

[
FH+FC

2 , FC

)
, the word is
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classified as CW. More strategies can be explored, but this is out of the scope of this paper and is left
for future work.

We seek for patterns containing 2–6 HFWs and 1–5 slots for CWs. Moreover, we require patterns to
start and to end with an HFW, thus a minimal pattern is of the form [HFW][CW slot][HFW]. Additionally,
we allow approximate pattern matching in order to enhance the classification performance. Approximate
pattern matching resembles exact matching, with the difference that an arbitrary number of RWs can
be inserted between the pattern components. Since the patterns can be quite long and diverse, exact
matches are not expected in a regular base. Therefore, we permit approximate matching in order to
avoid large sparse feature vectors. The weight wp of a pattern feature p is defined as in Equation (1) in
case of exact pattern matching and as

wp =
α · Np

count(p)
(2)

in the case of approximate pattern matching, where α = 0.1 in all experiments.

4.1.3. Punctuation Features

The last feature type is divided into five generic features as follows: (1) tweet length in words;
(2) number of exclamation mark characters in the tweet; (3) number of question mark characters in the
tweet; (4) number of quotes in the tweet; and (5) number of capital/capitalized words in the tweet.
The weight wp of a punctuation feature p is defined as

wp =
Np

Mp ·
(

Mw + Mng + Mpa
)

/3
, (3)

where Np is the number of times feature p appears in the tweet, Mp is the maximal observed value of
p in the Twitter corpus and Mw, Mng, Mpa declare the maximal values for word, n-gram and pattern
feature groups, respectively. Therefore, wp is normalized by averaging the maximal weights of the
other feature types.

4.2. Bloom Filter Integration

Bloom filters are data structures proposed by Bloom [48] for checking element membership in
any given set. A Bloom filter is a bit vector of length z, where initially all the bits are set to 0. We can
map an element into the domain between 0 and z− 1 of the Bloom filter, using q independent hash
functions h f1, h f2, ..., h fq. In order to store each element e into the Bloom filter, e is encoded using the q
hash functions and all bits having index positions h f j(e) for 1 ≤ j ≤ q are set to 1.

Bloom filters are quite useful and are primary used to compress the storage space needed for
the elements, as we can insert multiple objects inside a single Bloom filter. In the context of this
work, we employ Bloom filters to transform our features into bit vectors. In this way, we manage to
boost the performance of our algorithm and slightly decrease the storage space needed for feature
vectors. Nevertheless, it is obvious that the usage of Bloom filters may impose errors when checking
for element membership, since two different elements may end up having exactly the same bits set to
1. The error probability is lessened as the number of bits and hash functions used grows. As shown in
the experimental evaluation, the side effects of Bloom filters are of minor importance.

4.3. kNN Classification Algorithm

In order to assign a sentiment label for each tweet in TT, we apply a kNN strategy. Initially, we
build the feature vectors for all tweets inside the training and test datasets (FT and FTT , respectively).
Then, for each feature vector u in FTT , we find all the feature vectors in V ⊆ FT that share at least
one word/n-gram/pattern feature with u (matching vectors). After that, we calculate the Euclidean
distance d(u, v), ∀v ∈ V and keep the k lowest values, thus forming Vk ⊆ V and each vi ∈ Vk has an
assigned sentiment label Li, 1 ≤ i ≤ k. Finally, we assign u the label of the majority of vectors in Vk.
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If no matching vectors exist for u, we assign a “neutral” label. We build C by adjusting an already
implemented AkNN classifier in MapReduce to meet the needs of opinion mining problems.

4.4. Algorithmic Description

In this subsection, we describe in detail the sentiment classification process as initially implemented
in the Hadoop framework. We adjust an already implemented MapReduce AkNN classifier to meet the
needs of opinion mining problem. Our approach consists of a series of four MapReduce jobs, with
each job providing input to the next one in the chain. These MapReduce jobs are summarized in the
following subsections Pseudo-codes are available in a technical report in [49].

Furthermore, as the next step in the specific subsection, we consider the implementation of the
sentiment classification algorithm in the Spark framework. The approach consists of a single Spark
program that runs in parallel. The logical flow of our solution can be divided, as previously, into the
abovementioned four consecutive steps:

• Feature Extraction: Extract the features from all tweets in T and TT,
• Feature Vector Construction: Build the feature vectors FT and FTT, respectively,
• Distance Computation: For each vector u ∈ FTT find the matching vectors (if any exist) in FT,
• Sentiment Classification: Assign a sentiment label ∀tt ∈ TT.

The records provided as input to our algorithm have the format <tweet_id, class, text >, where
class refers either to a sentiment label for tweets in T either to a no-sentiment flag for tweets in TT.
In the following subsections, we describe each MapReduce job separately and analyze the Map and
Reduce functions that take place in each one of them.

4.4.1. Feature Extraction

In this MapReduce job of Algorithm 1, we extract the features, as described in Subsection 3.1,
of tweets in T and TT and calculate their weights. The output of the job is an inverted index, where
the key is the feature itself and the value is a list of tweets that contain it. In the MapReduce Job 1
pseudo-code, we sum up the Map and Reduce functions of this process.

Algorithm 1: MapReduce Job 1

1: Input: T and TT records
2: function MAP(k1, v1)
3: t_id = getId(v1); class = getClass(v1);
4: f eatures = getFeatures(v1);
5: for all f ∈ f eatures do // BF is BloomFilter
6: output(BF( f .text),< t_id, f .count, class >);
7: end for
8: end function

9: function REDUCE(k2, v2)
10: f eature_ f req = 0;
11: for all v ∈ v2 do
12: f eature_ f req = f eature_ f req + v.count;
13: end for
14: l = List{};
15: for all v ∈ v2 do
16: weight = v.count/ f eature_ f req;
17: l.add(newRecord(v.t_id, weight, v.class));
18: end for
19: output(k2, l);
20: end function

The Map function takes as input the records from T and TT and extracts the features of tweets.
Afterwards, for each feature, it outputs a key-value record, where the feature itself is the key and
the value consists of the id of the tweet, the class of the tweet and the number of times the feature
appears inside the sentence. The Reduce function receives the key-value pairs from the Map function
and calculates the weight of a feature in each sentence. Then, it forms a list l with the format
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< t1, w1, c1 : ... : tx, wx, cx >, where ti is the id of the i-th tweet, wi is the weight of the feature for this
tweet and ci is its class. For each key-value pair, the Reduce function outputs a record where the
feature is the key and the value is list l.

4.4.2. Feature Vector Construction

In this step, we build the feature vectors FT and FTT needed for the subsequent distance computation
process. To achieve this, we combine all features of a tweet into one single vector. Moreover, ∀tt ∈ TT
we generate a list (training) of tweets in T that share at least one word/n-gram/pattern feature.
The Map and Reduce functions are outlined in the following Algorithm 2.

Algorithm 2: MapReduce Job 2

1: Input: Features F from tweets
2: function MAP(k1, v1)
3: f = getFeature(v1); t_list = getTweetList(v1);
4: test = training = List{};
5: for all t ∈ t_list do
6: output(t.t_id,< f , t.weight >);
7: if t.class 6= NULL then
8: training.add(newRecord(t.t_id, t.class));
9: else

10: test.add(newRecord(t.t_id, t.class));
11: end if
12: end for
13: for all t ∈ test do
14: output(t.t_id, training);
15: end for
16: end function

17: function REDUCE(k2, v2)
18: f eatures = training = List{};
19: for all v ∈ v2 do
20: if v instanceOf List then
21: training.addAll(v);
22: else
23: f eatures.add(v);
24: end if
25: end for
26: if training.size() > 0 then
27: output(k2,< training, f eatures >);
28: else
29: output(k2, f eatures);
30: end if
31: end function

Initially, the Map function separates ∀ f ∈ F, the tweets that contain f into two lists—training and
test, respectively. In addition, ∀ f ∈ F it outputs a key-value record, where the key is the tweet id that
contains f and the value consists of f and weight of f . Next, ∀v ∈ test generates a record where the
key is the id of v and the value is the training list. The Reduce function gathers key-value pairs with the
same key and build FT and FTT. For each tweet t ∈ T (tt ∈ TT), it outputs a record where key is the id
of t (tt) and the value is its feature vector (feature vector together with the training list).

4.4.3. Distance Computation

In Algorithm 3, we create pairs of matching vectors between FT and FTT and compute their
Euclidean distance. The Map and Reduce functions are depicted in the pseudo-code that follows.

For each feature vector u ∈ FTT, the Map function outputs all pairs of vectors v in training list of u.
The output key-value record has as its key the id of v and the value consists of the class of v, the id of
u and the u itself. Moreover, the Map function outputs all feature vectors in FT. The Reduce function
concentrates ∀v ∈ FT all matching vectors in FTT and computes the Euclidean distances between pairs
of vectors. The Reduce function produces key-value pairs where the key is the id of u and the value is
comprised of the id of v, its class and the Euclidean distance d(u, v) between the vectors.
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Algorithm 3: MapReduce Job 3

1: Input: Feature Vectors FT and FTT
2: function MAP(k1, v1)
3: t_ids = getTrainingIds(v1); v = getVector(v1);
4: t_id = getId(v1);
5: if t_ids.size() > 0 then
6: for all u ∈ t_ids do
7: output(u.t_id,< u.class, t_id, v >);
8: end for
9: else

10: output(t_id, v);
11: end if
12: end function

13: function REDUCE(k2, v2)
14: ttv = List{}; tv = NULL
15: for all v ∈ v2 do
16: if v.class 6= NULL then
17: ttv.add(v);
18: else
19: tv = v;
20: end if
21: end for
22: for all tt ∈ ttv do
23: ouput(tt.t_id,< tv.t_id, tv.class, d(tt, tv) >);
24: end for
25: end function

4.4.4. Sentiment Classification

This is the final step of our proposed approach. In this job, we aggregate for all feature vectors u in
the test set, the k vectors with the lowest Euclidean distance to u, thus forming Vk. Then, we assign to u
the label (class) l ∈ L of the majority of Vk, or the neu label if Vk = ∅. The Algorithm 4 is given below.

Algorithm 4: MapReduce Job 4

1: Input: Feature Vectors in the test set
2: function MAP(k1, v1)
3: t_id = getTweetId(v1); val = getValue(v1);
4: output(t_id, val);
5: end function

6: function REDUCE(k2, v2)
7: l_k = getKNN(v2);
8: H = HashMap < Class, Occurences > {};
9: H = findClassOccur(l_k);

10: max = 0; maxClass = null;
11: for all entry ∈ H do
12: if entry.occur > max then
13: max = entry.occur;
14: maxClass = entry.class;
15: end if
16: end for
17: output(k2, maxClass);
18: end function

The Map function is very simple and it just dispatches the key-values pairs it receives to the Reduce
function. For each feature vector u in the test set, the Reduce function keeps the k feature vectors with
the lowest distance to v and then estimates the prevailing sentiment label l (if exists) among these
vectors. Finally, it assigns the label l to u.

4.5. Preprocessing and Features

We examined both Binary and Ternary Classification on different datasets. On the Binary
Classification case, we focus on the way that the dataset size affects the results, while in the Ternary
Classification case, the focus is given on the impact of the different features of the feature vector given
as an input to the classifier.
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Regarding datasets we used for measuring our proposed algorithms’ accuracy, a preprocessing
step is utilized so as to discard all irrelevant data. Occurrences of usernames and URLs are replaced by
special tags and each tweet is finally represented as a vector that consists of the following features:

• Unigrams, which are frequencies of words occurring in the tweets.
• Bigrams, which are frequencies of sequences of two words occurring in the tweets.
• Trigrams, which are frequencies of sequences of three words occurring in the tweets.
• Username, which is a binary flag that represents the existence of a user mention in the tweet.
• Hashtag, which is a binary flag that represents the existence of a hashtag in the tweet.
• URL, which is a binary flag that represents the existence of a URL in the tweet.
• POS Tags, where we used the Stanford NLT MaxEnt Tagger [50] to tag the tokenized tweets and

the following are counted:

1. Number of Adjectives,
2. Number of Verbs,
3. Number of Nouns,
4. Number of Adverbs,
5. Number of Interjections.

5. Implementation

In this section, we conduct a series of experiments to evaluate the performance of our method
under many different perspectives. More precisely, we take into consideration the effect of k and Bloom
filters, the space compaction ratio, the size of the dataset and the number of nodes in the performance
of our solution.

Our cluster includes four computing nodes (VMs), each one of which has four 2.4 GHz CPU
processors, 11.5 GB of memory, 45 GB hard disk and the nodes are connected by 1 gigabit Ethernet. On
each node, we install an Ubuntu 14.04 operating system (Canonical Ltd., London, UK), Java 1.8.0_66
with a 64-bit Server VM, as well as Hadoop 1.2.1 and Spark 1.4.1 (for the different outcomes). One of
the VMs serves as the master node and the other three VMs as the slave nodes. Moreover, we apply
the following changes to the default Spark configurations: we use 12 total executor cores (four for each
slave machine), and we set the executor memory equal to 8 GB and the driver memory to 4 GB.

5.1. Our Datasets for Evaluating MapReduce versus Spark Framework

We evaluate our method using two Twitter datasets (one for hashtags and one for emoticons) that
we have collected through the Twitter Search API [51] between November 2014 to August 2015. We
have used four human non-biased judges to create a list of hashtags and a list emoticons that express
strong sentiment (e.g., #amazed and :(). Then, we proceed to a cleaning task to exclude from the
lists the hashtags and emoticons that either were abused by Twitter users (e.g., #love) or returned a
very small number of tweets. We ended up with a list of 13 hashtags (i.e., H = {#amazed, #awesome,
#beautiful, #bored, #excited, #fun, #happy, #lol, #peace, #proud, #win, #wow, #wtf}) and a list of four
emoticons (i.e., E = { :), :(, xD, <3}).

We preprocessed the datasets that we collected and kept only the English tweets which contained
five or more proper English words. To identify the proper English word, we used an available
WN-based English dictionary and do not include two or more hashtags or emoticons from the
aforementioned lists. Moreover, during preprocessing, we have replaced URL links, hashtags and
references by URL/REF/TAG meta-words as stated in [7]. The final hashtags dataset contains
942, 188 tweets (72,476 tweets for each class) and the final emoticons dataset contains 1, 337, 508 tweets
(334,377 tweets for each class). The size of the hashtags dataset is 102.78 MB and the size of the
emoticons dataset is 146.4 MB. In both datasets, hashtags and emoticons are used as sentiment labels
and, for each sentiment label, there is an equal amount of tweets. Finally, in order to produce
non-sentiment datasets, we used the Sentiment140 API [52,53] and the dataset used in [54], which is
publicly available [55]. We fed the no hashtags/emoticons tweets contained in this dataset into the
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Sentiment140 API and kept the set of neutral tweets. We produced two non-sentiment datasets by
randomly sampling 72.476 and 334.377 tweets from the neutral dataset. These datasets are used for the
binary classification experiments (see Section 4.1).

We assess the classification performance of our algorithm using the 10-fold cross validation
method and measuring the harmonic f-score. For the Bloom filter construction, we use 999 bits and
three hash functions. In order to avoid a significant amount of computations that greatly affect the
running performance of the algorithm, we define a weight threshold w = 0.005 for feature inclusion
in the feature vectors. In essence, we eliminate the most frequent words that have no substantial
contribution to the final outcome.

5.2. Open Datasets for Evaluating Machine Learning Techniques in Spark Framework

5.2.1. Binary Classification

For the Binary Classification, we used a dataset [56] of 1, 578, 627 pre-classified tweets as Positive
or Negative. We split the original dataset into segments of 1000, 2000, 5000, 10,000, 15,000, 20,000 and
25,000 tweets. Then, for each segment, all metadata were discarded and each tweet was transformed
to a vector of unigrams; unigrams are the frequencies of each word in the tweets.

5.2.2. Ternary Classification

Regarding Ternary Classification, we used two datasets [57] that were merged into one, which
eventually consists of 12,500 tweets. In the original datasets, each row contains the tweet itself,
the sentiment, and other metadata related to the corresponding tweet. During the preprocessing,
all irrelevant data were discarded, and we only used the actual text of the tweet, as well as the
label that represents the sentiment, positive, negative or neutral. Each tweet is then tokenized and
processed. Then, the ratios of the aforementioned numbers to the total number of tokens of each tweet
are computed.

6. Results and Evaluation

6.1. Our Datasets for Evaluating MapReduce versus Spark Framework

6.1.1. Classification Performance

In this subsection, we measure the classification performance of our solution using the
classification accuracy. We define classification accuracy as acc = |CT|/|TT|, where |CT| is the number
of test set tweets that were classified correctly and |TT| is the cardinality of TT. We present the results
of two experimental configurations, the multi-class classification and the binary classification. Under
the multi-class classification setting, we attempt to assign a single sentiment label to each of the vectors
in the test set. In the binary classification experiment, we check if a sentence is suitable for a specific
label or does not carry any sentiment inclination. As stated and in [7], the binary classification is a
useful application and can be used as a filter that extracts sentiment sentences from a corpus for further
processing. Moreover, we measure the influence of Bloom filters in the classification performance.
The value k for the kNN classifier is set to 50. The results of the experiments are displayed in Table 2.
In the case of binary classification, the results depict the average score for all classes.
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Table 2. Classification results for emoticons and hashtags (BF stands for Bloom filter and NBF for no
Bloom filter).

Framework MapReduce Spark

Setup BF NBF Random Baseline BF NBF Random Baseline

Binary Emoticons 0.77 0.69 0.5 0.77 0.76 0.5
Binary Hashtags 0.74 0.53 0.5 0.73 0.71 0.5
Multi-class Emoticons 0.55 0.56 0.25 0.59 0.56 0.25
Multi-class Hashtags 0.32 0.33 0.08 0.37 0.35 0.08

Looking at the outcome in Table 2, we observe that the performance of multi-class classification in
not very good, despite being way above the random baseline. We also observe that the results with
and without the Bloom filters are almost the same. Thus, we deduce that, for multi-class classification,
the Bloom filters marginally affect the classification performance. Furthermore, the outcome for
emoticons is significantly better than hashtags which is expected due to the lower number of sentiment
types. This behavior can also be explained by the ambiguity of hashtags and some overlap of
sentiments. In the case of binary classification, there is a notable difference between the results
with and without Bloom filters. These results may be somewhat unexpected but can be explicated
when we take a look in Table 3. Table 3 presents the fraction of test set tweets that are classified as
neutral because of the Bloom filters and/or the weight threshold w (no matching vectors are found).
Notice that the integration of Bloom filters leads to a bigger number of tweets with no matching vectors.
Obviously, the excluded tweets have an immediate effect on the performance of the kNN classifier in
the case of binary classification. This happens since the number of tweets in the cross fold validation
process is noticeably smaller compared to the multi-class classification. Overall, the results for binary
classification with Bloom filters confirm the usefulness of our approach.

Table 3. Fraction of tweets with no matching vectors (BF for Bloom filter and NBF for no Bloom filter).

Setup BF NBF

Binary Emoticons 0.08 0.06
Binary Hashtags 0.05 0.03
Multi-class Emoticons 0.05 0.02
Multi-class Hashtags 0.05 0.01

6.1.2. Effect of k

In this subsection, we attempt to alleviate the problem of low classification performance for binary
classification without Bloom filters. To achieve this we measure the effect of k in the classification
performance of the algorithm. We test four different configurations where k ∈ {50, 100, 150, 200}.
The outcome of this experimental evaluation is demonstrated in Table 4. For both binary and
multi-class classification, increasing k affects slightly (or not at all) the harmonic f-score when we
embody Bloom filters. On the contrary (without Bloom filters), there is a great enhancement in the
binary classification performance for hashtags and emoticons and a smaller improvement in case of
multi-class classification. The inference of this experiment, is that larger values of k can provide a great
impulse in the performance of the algorithm when not using Bloom filters. However, larger values
of k mean more processing time. Thus, Bloom filters manage to improve the binary classification
performance of the algorithm and at the same time they reduce the total processing cost.
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Table 4. Effect of k in classification performance (BF for Bloom filter and NBF for no Bloom filter).

Framework MapReduce Spark

Setup k = 50 k = 100 k = 150 k = 200 k = 50 k = 100 k = 150 k = 200

Binary Emoticons BF 0.77 0.77 0.78 0.78 0.77 0.77 0.77 0.78
Binary Emoticons NBF 0.69 0.75 0.78 0.79 0.76 0.77 0.78 0.78
Binary Hashtags BF 0.74 0.75 0.75 0.75 0.73 0.73 0.73 0.74
Binary Hashtags NBF 0.53 0.62 0.68 0.72 0.71 0.72 0.73 0.74
Multi-class Emoticons BF 0.55 0.55 0.55 0.55 0.59 0.59 0.59 0.59
Multi-class Emoticons NBF 0.56 0.58 0.6 0.6 0.56 0.58 0.58 0.59
Multi-class Hashtags BF 0.32 0.32 0.32 0.32 0.37 0.37 0.37 0.38
Multi-class Hashtags NBF 0.33 0.35 0.37 0.37 0.35 0.36 0.37 0.38

6.1.3. Space Compression

As stated and above, the Bloom filters can compact the space needed to store a set of elements,
since more than one object can be stored to the bit vector. In this subsection, we elaborate on this aspect
and present the compression ratio in the feature vectors when exploiting Bloom filters (in the way
presented in Section 4.2) in our framework. The outcome of this measurement is depicted in Table 5.

Concerning MapReduce implementation, in all cases, the Bloom filters manage to minimize the
storage space required for the feature vectors by a fraction between 15%–20%. On the other hand, for
Spark implementation, the Bloom filters manage to marginally minimize the storage space required
for the feature vectors (up to 3%) and, in one case (multi-class hashtags), the decrease in the required
space is significant (almost 9%). According to the analysis made so far, the importance of Bloom filters
in our solution is twofold. They manage to both preserve a good classification performance, despite
any errors they impose, and compact the storage space of the feature vectors.

There are two reasons for these small differences. First of all, in each Bloom filter, we store only
one feature (instead of more) because of the nature of our problem. Secondly, we keep in our minds a
Bloom filter object instead of a String object. However, the size that each object occupies in the main
memory is almost the same (Bloom filter is slightly smaller). Since the size of our input is not very big,
we expect this gap to increase for larger datasets that will produce significantly more space-consuming
feature vectors. Consequently, we deduce that Bloom filters can be very beneficial when dealing with
large-scale sentiment analysis data that generate an exceeding amount of features during the feature
vector construction step.

Table 5. Space compression of feature vectors (in MB).

Framework MapReduce Spark

Setup BF NBF BF NBF

Binary Emoticons 98 116.76 1605.8 1651.4
Binary Hashtags 98 116.78 403.3 404
Multi-class Emoticons 776.45 913.62 3027.7 3028
Multi-class Hashtags 510.83 620.1 2338.8 2553

6.1.4. Running Time

In this final experiment, we compare the running time for multi-class and binary classification
while also measuring the scalability of our approach. Initially, we calculate the execution time in
all cases in order to detect if the Bloom filters speed up or slow down the running performance
of our algorithm. The results when k = 50 are presented in Table 6 for MapReduce and Spark
implementation. It is worth noting that, in the majority of cases, Bloom filters slightly boost the
execution time performance. Especially for the multi-class hashtags and binary emoticons cases,
the level of time reduction reaches 17%. Despite needing more preprocessing time to produce the
features with Bloom filters, in the end, they pay off since the feature vector is smaller in size. Moreover,
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observe that these configurations have the biggest compaction ratio according to Table 5. According to
the analysis made so far, the importance of Bloom filters in our solution is threefold. They manage to
preserve a good classification performance, despite probable errors, slightly compact the storage space
of the feature vectors and enhance the running performance of our algorithm.

Table 6. Running time (in seconds).

Framework MapReduce Spark

Setup BF NBF BF NBF

Binary Emoticons 1312 1413 445 536
Binary Hashtags 521 538 113 123
Multi-class Emoticons 1737 1727 747 777
Multi-class Hashtags 1240 1336 546 663

6.1.5. Scalability and Speedup

In this final experiment, we investigate the scalability and speedup of our approach. We test the
scalability only for the multi-class classification case since the produced feature vector is much bigger
compared to the binary classification case. We create new chunks smaller in size that are a fraction F
of the original datasets, where F ∈ {0.2, 0.4, 0.6, 0.8, 1}. Moreover, we set the value of k to 50. Table 7
presents the scalability results of our approach. From the outcome, we deduce that our algorithm
scales almost linearly as the data size increases in all cases. This proves that our solution is efficient,
robust, scalable and therefore appropriate for big data sentiment analysis.

Table 7. Scalability (in seconds).

Framework MapReduce Spark

1-1 Fraction F 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
Multi-class Emoticons BF 636 958 1268 1421 1737 178 305 490 605 747
Multi-class Emoticons NBF 632 1009 1323 1628 1727 173 326 453 590 777
Multi-class Hashtags BF 537 684 880 1058 1240 151 242 324 449 546
Multi-class Hashtags NBF 520 698 905 1135 1336 135 242 334 470 663

Finally, we estimate the effect of the number of computing nodes for Spark implementation.
We test three different cluster configurations and the cluster consists of N ∈ {1, 2, 3} slave nodes each
time. Once again, we test the cluster configurations against the emoticons dataset in the multi-class
classification case when k = 50. Table 8 presents the speedup results of our approach. We observe
that the total running time of our solution tends to decrease as we add more nodes to the cluster.
Due to the increment of the number of computing nodes, the intermediate data are decomposed to
more partitions that are processed in parallel. As a result, the amount of computations that each node
undertakes decreases respectively.

These results prove once again that our solution is efficient, robust, scalable and therefore
appropriate for big data sentiment analysis.

Table 8. Speedup (in seconds).

Number of Slave Nodes 1 2 3

Multi-class Emoticons BF 1513 972 747
Multi-class Emoticons NBF 1459 894 777
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6.2. Open Datasets for Evaluating Machine Learning Techniques in Spark Framework

The results of our work are presented in the following Tables 9–13. F-Measure is used as the
evaluation metric of the different algorithms. For the binary classification problem (Table 9), we
observe that Naive Bayes performs better than Logistic Regression and Decision Trees. It is also
obvious that the dataset size plays a rather significant role for Naive Bayes, as the F-Measure value
rises from 0.572 for a dataset of 1000 tweets to 0.725 for the dataset of 25,000 tweets. On the contrary,
the performance of Logistic Regression and Decision Trees is not heavily affected by the amount of the
tweets in the dataset.

Regarding ternary classification, Naive Bayes outperforms the other two algorithms as well, as it
can be seen in Table 10, with Linear Regression following in the results. Interestingly, unigrams seem
to be the feature that boosts the classification performance more than all of the other features that we
examine, while the highest performance is observed for the vectors excluding trigrams. Moreover,
the binary field representing the existence of a hashtag in the tweet affects the results, as, in all the
experiments, the performance records smaller values without it. It can also be observed that all three
algorithms perform better for positive and negative tweets than they do for neutral messages.

Table 9. F-Measure for Binary Classification for different dataset sizes.

Dataset Size Decision Trees Logistic Regression Naive Bayes

1.000 0.597 0.662 0.572
5.000 0.556 0.665 0.684
10.000 0.568 0.649 0.7
15.000 0.575 0.665 0.71
20.000 0.59 0.651 0.728
25.000 0.56 0.655 0.725

Table 10. F-Measure for Ternary Classification for 12,500 tweets.

Classifier Positive Negative Neutral Total

Decision Trees 0.646 0.727 0.557 0.643
Logistic Regression 0.628 0.592 0.542 0.591

Naive Bayes 0.717 0.75 0.617 0.696

Table 11. F-Measure for Ternary Classification for Decision Trees for 12,500 tweets.

Features Positive Negative Neutral Total

Complete Feature Vector 0.646 0.727 0.557 0.643
w/o Unigrams 0.57 0.681 0.549 0.597
w/o Bigrams 0.647 0.729 0.557 0.644
w/o Trigrams 0.646 0.728 0.557 0.644
w/o User 0.646 0.727 0.557 0.643
w/o Hashtag 0.639 0.601 0.529 0.594
w/o URL 0.64 0.615 0.554 0.606
w/o POS Tags 0.659 0.729 0.56 0.65
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Table 12. F-Measure for Ternary Classification for Logistic Regression for 12,500 tweets.

Features Positive Negative Neutral Total

Complete Feature Vector 0.628 0.592 0.542 0.591
w/o Unigrams 0.596 0.457 0.451 0.51
w/o Bigrams 0.616 0.6 0.546 0.59
w/o Trigrams 0.649 0.623 0.572 0.618
w/o User 0.625 0.6 0.54 0.592
w/o Hashtag 0.612 0.591 0.526 0.58
w/o URL 0.613 0.598 0.537 0.585
w/o POS Tags 0.646 0.585 0.512 0.587

Table 13. F-Measure for Ternary Classification for Naive Bayes for 12,500 tweets.

Features Positive Negative Neutral Total

Complete Feature Vector 0.717 0.75 0.617 0.696
w/o Unigrams 0.628 0.602 0.537 0.592
w/o Bigrams 0.714 0.769 0.629 0.705
w/o Trigrams 0.732 0.77 0.643 0.716
w/o User 0.718 0.751 0.618 0.698
w/o Hashtag 0.721 0.739 0.608 0.692
w/o URL 0.72 0.748 0.619 0.697
w/o POS Tags 0.716 0.748 0.617 0.695

7. Conclusions

In the context of this work, we have presented a tool that analyzes microblogging messages
regarding their sentiment using machine learning techniques. This novel distributed framework was
implemented in Hadoop as well as in Spark. Our algorithm exploits the hashtags and emoticons inside
a tweet, as sentiment labels, and proceeds to a classification procedure of diverse sentiment types in
a parallel and distributed manner. In addition, we utilize Bloom filters to compact the storage size
of intermediate data and boost the performance of our algorithm. In addition, some classification
algorithms are implemented in the Apache Spark cloud framework using Apache Spark’s Machine
Learning library, entitled MLlib. Through an extensive experimental evaluation, we prove that our
system is efficient, robust and scalable.

In the near future, we plan to extend and improve our framework by exploring more features that
may be added in the feature vector and will increase the classification performance. Furthermore, we
wish to explore more strategies for FH and FC bounds in order to achieve better separation between
the HFWs and CWs. One other future work will be the experimentation with different clusters so as
to better evaluate Hadoop’s and Spark’s performance in regards to time and scalability. In addition,
we plan to investigate the effect of different Bloom filter bit vector sizes, in classification performance
and storage space compression. Moreover, we plan to compare the classification performance of our
solution with other classification methods, such as Naive Bayes or Support Vector Machines.

Another future consideration is the adoption of aforementioned heuristics (e.g., the occurrence
of emoticons) for handling complex semantic issues, such as irony that is typical of messages in
Twitter. Such similar works are the ones in [58–61]. The corresponding studies investigate the
automatic detection of irony based on lexical features as well as the adoption of lexical and pragmatic
factors on machine learning effectiveness for identifying sarcastic utterances. Finally, we plan on
creating an online service that takes advantage of Spark Streaming, which is an Apache Spark library
for manipulating streams of data that provides users with real-time analytics about sentiments of
requested topics.
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