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Abstract:



We present efficient sequential and parallel algorithms for the maximum sum (MS) problem, which is to maximize the sum of some shape in the data array. We deal with two MS problems; the maximum subarray (MSA) problem and the maximum convex sum (MCS) problem. In the MSA problem, we find a rectangular part within the given data array that maximizes the sum in it. The MCS problem is to find a convex shape rather than a rectangular shape that maximizes the sum. Thus, MCS is a generalization of MSA. For the MSA problem, [image: there is no content] time parallel algorithms are already known on an [image: there is no content] 2D array of processors. We improve the communication steps from [image: there is no content] to n, which is optimal. For the MCS problem, we achieve the asymptotic time bound of [image: there is no content] on an [image: there is no content] 2D array of processors. We provide rigorous proofs for the correctness of our parallel algorithm based on Hoare logic and also provide some experimental results of our algorithm that are gathered from the Blue Gene/P super computer. Furthermore, we briefly describe how to compute the actual shape of the maximum convex sum.
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1. Introduction


We face a challenge to process a big amount of data in the age of information explosion and big data [1]. As the end of Moore’s law comes in sight, however, the extra computing power is unlikely obtained from a single processor computer [2]. Parallel computing is obviously a direction to faster computation. However, efficient utilization of the parallel architecture is not an effortless task. New algorithms often need to be designed for specific problems on specific hardware.



In this paper, we investigate the maximum subarray (MSA) problem and the maximum convex sum (MCS) problem, the latter being a generalization of the former. We design efficient parallel algorithms for both problems and an improved sequential algorithm for the MCS problem.



The MSA problem is to find a rectangular subarray in the given two-dimensional (2D) data array that maximizes the sum in it. This problem has wide applications from image processing to data mining. An example application from image processing is to find the most distinct spot, such as brightest or darkest, in the given image. If all pixel values are non-negative, solving the MSA problem will return the trivial solution of the whole array. Thus, we normalize the input image (e.g., by subtracting the mean value), such that the relatively brighter spots will have positive sums, while the relatively darker spots will have negative sums. Then, solving the MSA problem on the normalized image can give us the brightest spot in the image. In data mining, suppose we spread the sales amounts of some product on a two-dimensional array classified by customer ages and annual income. Then, after normalizing the data, the maximum subarray corresponds to the most promising customer range.



We now consider the MCS problem that maximizes the sum in a convex shape. The definition of the word “convex” is not exactly the same as that in geometry. We define the convex shape as the joining of a W-shape and an N-shape, where W stands for widening and N for narrowing. We call this shape the [image: there is no content]-convex shape or [image: there is no content]-shape for short. In W, the top boundary goes up or stays horizontal when scanned from left to right, and the bottom boundary goes down or stays horizontal. Fukuda et al. defines a more general rectilinear shape [3], but for simplicity, we only consider the [image: there is no content]-shape. The paper is mainly devoted to computing the maximum sum, and one section is devoted to the computation of the explicit convex shape that provides the sum.



We give an example to illustrate how solving the MCS problem can provide a much more accurate data analysis compared to solving the MSA problem. We compared the size of the hole in the ozone layer over Antarctica between 2006 and 2011 by solving both the MSA problem and the MCS problem on the normalized input images (Figure 1a,d, respectively) of the Antarctic region. Figure 1b,e is from solving the MSA problem on the input images, while Figure 1c,f is from solving the MCS problem on the same set of input images. Solving the MCS problem clearly provides a much more accurate representation of the ozone hole. The numeric value returned by the MCS is also 22%~24% greater than that by the MSA on both occasions. Intuitively similar gains from the [image: there is no content]-shape compared to the rectangular shape can be foreseen for other types of data analysis.


Figure 1. Ozone hole identified by the maximum subarray (MSA) and maximum convex sum (MCS) algorithms (Courtesy of NASA).
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In this paper, we assume that the input data array is an [image: there is no content] square two-dimensional (2D) array. It is a straightforward exercise to extend the contents of this paper to [image: there is no content] rectangular 2D input data arrays.



The typical algorithm for the MSA problem by Bentley [4] takes [image: there is no content] time on a sequential computer. This has been improved to a slightly sub-cubic time bound by Tamaki and Tokuyama [5] and also Takaoka [6]. For the MCS problem, an algorithm with [image: there is no content] time is given by Fukuda et al. [3], and an algorithm with a sub-cubic time bound is not known.



Takaoka discussed a parallel implementation to solve the MSA problem on a PRAM [6]. Bae and Takaoka implemented a range of parallel algorithms for the MSA problem on an [image: there is no content] 2D mesh array architecture based on the row-wise or column-wise prefix sum [7,8,9]. A parallel algorithm for the MSA problem was also implemented on the BSP/CGMarchitecture, which has more local memory and communication capabilities with remote processors [10].



In this paper, we implement algorithms for the MSA and MCS problems based on the column-wise prefix sum on the 2D mesh architecture, as shown by Figure 2. This architecture is also known as a systolic array, where each processing unit has a constant number of registers and is permitted to only communicate with directly-connected neighbours. This seemingly inflexible architecture is well suited to be implemented on ASICs or FPGAs.


Figure 2. Two-dimensional architecture.
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Our most efficient parallel algorithms complete the computation in [image: there is no content] communication steps for the MSA problem and [image: there is no content] communication steps for the MCS problem, respectively. In each step, all cells execute a constant number of statements in parallel. Thus, our algorithms are cost optimal with respect to the cubic time sequential algorithms [3,4].



We give a formal proof for the parallel algorithm for computing the maximum W (a part of computing the MCS problem). The proof is based on the space-time invariants defined on the architecture.



In a 2D array architecture, some processors to the right are sitting idle in the early stage of computation waiting for inputs to arrive. This is because the data only flows from left to right and from up to down (Figure 2). If appropriate, we attempt to maximize the throughput by extending data flows to operate in four directions. This technique reduces the number of communication steps by a constant factor.



Algorithms are given by pseudocode.




2. Parallel Algorithms for the MSA Problem


In this section, we improve parallel algorithms for the MSA problem on a mesh array and achieve the optimal n communication steps. Furthermore, we show how the programming techniques in this section lead to efficient parallel algorithms for the MCS problem in the later sections.



2.1. Sequential Algorithm


The computation in Algorithm 1 [8] proceeds with the strip of the array from position k to position i. See Figure 3. The variable [image: there is no content] is the sum of array elements in the j-th column from position k to position i in array a. The variable [image: there is no content], called a prefix-sum, is the sum of the strip from Position 1 to position j. Within this strip, variable j sweeps to compute [image: there is no content] by adding [image: there is no content] to [image: there is no content]. Then, the prefix sum of this strip from Position 1 to position j is computed by adding [image: there is no content] to [image: there is no content]. The variable [image: there is no content] is the minimum prefix sum of this strip from Position 1 to position j. If the current [image: there is no content] is smaller than [image: there is no content], [image: there is no content] is replaced by it. [image: there is no content] is the maximum sum in this strip so far found from Position 1 to position j. It is computed by taking the maximum of [image: there is no content] and [image: there is no content], expressed by [image: there is no content] in the figure. After the computation for this strip is over, the global solution, S, is updated by [image: there is no content]. This computation is done for all possible i and k, taking [image: there is no content] time.


Figure 3. Strip-based sequential computation.
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	Algorithm 1 MSA: sequential.



	
	1:

	
for [image: there is no content]do




	2:

	
    [image: there is no content]




	3:

	
end for




	4:

	
[image: there is no content];




	5:

	
for [image: there is no content] to n do




	6:

	
    for [image: there is no content] to n do




	7:

	
        [image: there is no content];




	8:

	
    end for




	9:

	
    for i←k to n do




	10:

	
        for [image: there is no content] to n do




	11:

	
           [image: there is no content]




	12:

	
           [image: there is no content]




	13:

	
           [image: there is no content] };




	14:

	
           [image: there is no content];




	15:

	
           [image: there is no content];




	16:

	
        end for




	17:

	
        if [image: there is no content]then




	18:

	
           [image: there is no content]




	19:

	
        end if




	20:

	
    end for




	21:

	
end for













2.2. Parallel Algorithm 1


Algorithm 2 is a parallel adaptation of Algorithm 1. The following program is executed by a processing unit at the [image: there is no content] grid point, which we refer to as [image: there is no content]. Each [image: there is no content] is aware of its position [image: there is no content]. Data flow is from left to right and from top to bottom. The control signals are fired at the left border and propagate right. When the signal arrives at [image: there is no content], it accumulates the column sum “[image: there is no content]”, the sum “[image: there is no content]” and updates the minimum prefix sum “[image: there is no content]”, etc. Figure 4 illustrates the information available to [image: there is no content] at step k. At step [image: there is no content], [image: there is no content] will have computed the maximum sum. We assume that all corresponding instructions in all cells are executed at the same time, that is they are synchronized. We will later make some comments on asynchronous computation.


Figure 4. Illustration for Algorithm 2: The coverage of [image: there is no content] at step k.
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	Algorithm 2 MSA Parallel 1.



	   Initialization

	1:

	
for all [image: there is no content] in parallel do




	2:

	
    [image: there is no content][image: there is no content];




	3:

	
    [image: there is no content]; [image: there is no content]




	4:

	
end for




	5:

	
for [image: there is no content] in parallel do




	6:

	
    [image: there is no content]




	7:

	
end for



 



Main




	8:

	
for [image: there is no content] to [image: there is no content]do




	9:

	
    for all [image: there is no content] in parallel do




	10:

	
        if [image: there is no content]then




	11:

	
           [image: there is no content]




	12:

	
           [image: there is no content]




	13:

	
           [image: there is no content]




	14:

	
           [image: there is no content];




	15:

	
           [image: there is no content]




	16:

	
           [image: there is no content]




	17:

	
        end if




	18:

	
    end for




	19:

	
end for













2.3. Parallel Algorithm 2


This algorithm (Algorithm 3) does communication bi-directionally in a horizontal way. For simplicity, we assume n is even. The [image: there is no content] mesh is divided into two halves, left and right. The left half operates in the same way as Algorithm 2. The right half operates in a mirror image, that is control signals go from right to left initiated at the right border. All other data also flow from right to left. At the centre, that is at [image: there is no content], [image: there is no content] performs “[image: there is no content]”, which adds the two values that are the sums of strip regions in the left and right whose heights are equal and, thus, can be added to form a possible solution crossing over the centre. At the end of the k-th iteration, all properties in Algorithm 2 hold on the left half, and the properties in the mirror image hold on the right half. In addition, we have that [image: there is no content] is the value of the maximum subarray that lies above or that is touching the i-th row and crosses over the centre line.








	Algorithm 3 MSA Parallel 2.



	   Initialization

	1:

	
for all [image: there is no content] in parallel do




	2:

	
    [image: there is no content]




	3:

	
    [image: there is no content]




	4:

	
end for




	5:

	
for [image: there is no content] in parallel do




	6:

	
    [image: there is no content]




	7:

	
end for



Main




	8:

	
for [image: there is no content] to [image: there is no content]do




	9:

	
    for all [image: there is no content] in parallel do




	10:

	
        if [image: there is no content]then ▹ left half




	11:

	
           if [image: there is no content]then




	12:

	
               [image: there is no content]




	13:

	
               [image: there is no content]




	14:

	
               [image: there is no content]




	15:

	
               [image: there is no content];




	16:

	
               [image: there is no content]




	17:

	
               [image: there is no content]




	18:

	
           end if




	19:

	
        end if




	20:

	
        if [image: there is no content]then ▹ right half




	21:

	
           if [image: there is no content]then




	22:

	
               [image: there is no content]




	23:

	
               [image: there is no content]




	24:

	
               [image: there is no content]




	25:

	
               [image: there is no content];




	26:

	
               [image: there is no content]




	27:

	
               [image: there is no content]




	28:

	
           end if




	29:

	
        end if




	30:

	
        if [image: there is no content]then ▹[image: there is no content] processes [image: there is no content]




	31:

	
           [image: there is no content];




	32:

	
           if [image: there is no content]then




	33:

	
               [image: there is no content]




	34:

	
           end if




	35:

	
        end if




	36:

	
    end for




	37:

	
end for



Finalization step




	38:

	
Let [image: there is no content] do [image: there is no content]












The strip [image: there is no content] processes is [image: there is no content] in the left half, and that in the right half is [image: there is no content]. Thus, the cells [image: there is no content] and [image: there is no content] processes the strips of the same height in the left half and the right half. Communication steps are measured by the distance from [image: there is no content] to [image: there is no content] or, equivalently, from [image: there is no content] to [image: there is no content], which is [image: there is no content]. By adding the finalization step, we have [image: there is no content] for the total communication steps.




2.4. Parallel Algorithm 3


In Algorithm 4, data flow in four directions. The array is divided into two halves; left and right, as in the previous section. Column sums c and prefix sums s accumulate downwards as before, whereas column sums d and prefix sums t accumulate upwards. See Figure 5.


Figure 5. Illustration for Algorithm 4.
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	Algorithm 4 MSA Parallel 3: initialization.



	
	1:

	
for all [image: there is no content] in parallel do




	2:

	
    [image: there is no content]




	3:

	
    [image: there is no content]




	4:

	
    [image: there is no content]




	5:

	
end for




	6:

	
for [image: there is no content] in parallel do




	7:

	
    [image: there is no content]




	8:

	
end for




	9:

	
for [image: there is no content] to [image: there is no content]do




	10:

	
    for all [image: there is no content] in parallel do




	11:

	
        if [image: there is no content]then




	12:

	
           if [image: there is no content]then




	13:

	
               [image: there is no content]




	14:

	
               [image: there is no content]




	15:

	
               [image: there is no content]




	16:

	
               [image: there is no content]




	17:

	
               [image: there is no content];




	18:

	
               [image: there is no content]




	19:

	
               [image: there is no content];




	20:

	
               [image: there is no content];




	21:

	
               [image: there is no content]




	22:

	
               [image: there is no content]




	23:

	
           end if




	24:

	
        end if




	25:

	
        if [image: there is no content]then




	26:

	
           if [image: there is no content]then




	27:

	
               [image: there is no content]




	28:

	
               [image: there is no content]




	29:

	
               [image: there is no content]




	30:

	
               [image: there is no content]




	31:

	
               [image: there is no content];




	32:

	
               [image: there is no content]




	33:

	
               [image: there is no content];




	34:

	
               [image: there is no content];




	35:

	
               [image: there is no content]




	36:

	
               [image: there is no content]




	37:

	
           end if




	38:

	
        end if




	39:

	
        if [image: there is no content]then ▹[image: there is no content] performs the following




	40:

	
           [image: there is no content];




	41:

	
           if [image: there is no content]then




	42:

	
               [image: there is no content]




	43:

	
           end if




	44:

	
           if [image: there is no content]then




	45:

	
               [image: there is no content]




	46:

	
           end if




	47:

	
        end if




	48:

	
    end for




	49:

	
end for




	50:

	
if [image: there is no content] and [image: there is no content]then ▹[image: there is no content] processes [image: there is no content]




	51:

	
    [image: there is no content]




	52:

	
end if












The structure of Algorithm 4 reveals that at the end of the k-th iteration, [image: there is no content] is the sum of [image: there is no content] and [image: there is no content] is the sum of [image: there is no content]. The height of each subarray is [image: there is no content]. Since the widths of those two areas are the same, we can have the prefix sum [image: there is no content] that covers [image: there is no content], the height of which is [image: there is no content]. That is, spending k steps, we can achieve twice as much height as that in Algorithm 3.



The solution array [image: there is no content] is calculated as before, but the result is sent into three directions; up, down and right in the left half and up, down and left in the right half. We have the property that [image: there is no content] is the maximum sum in subarray [image: there is no content] in the left half. Substituting [image: there is no content], and [image: there is no content] yields the subarray [image: there is no content]. Similarly, [image: there is no content] is the maximum sum in the subarray [image: there is no content]. For simplicity, we deal with the maximum subarray whose height is an even number. For a general case, see the note at the end of this section.



The computation proceeds with [image: there is no content] steps by k and the last step of comparing the results from [image: there is no content] and [image: there is no content], resulting in [image: there is no content] steps in total.



Note that we described the algorithm for the solution whose height is an even number. This fact comes from the assignment statement “[image: there is no content]” where the heights of subarrays whose sums are s and t are equal. To accommodate a height of an odd number, we can use the value of t one step before, whose height is one shorter. To accommodate such odd heights, we need to almost double the size of the program by increasing the number of variables.





3. Review of Sequential Algorithm for the MCS Problem


We start from describing a sequential algorithm for W based on column sums, given by Fukuda et al. [3]. We call the rightmost column of a W-shape the anchor column of W. The array portion of general array b, [image: there is no content], is the rectangular portion whose top left corner is [image: there is no content], and the bottom right corner is [image: there is no content]. The column [image: there is no content] is abbreviated as [image: there is no content]. In Algorithm 5, [image: there is no content] is a W-shape based on the anchor column of [image: there is no content]. The sum of this anchor column is given by [image: there is no content].



The computation proceeds with the strip of the array from row k to row i (Figure 6) based on dynamic programming. Within this strip from row k to row i, variable j sweeps to compute [image: there is no content] by adding [image: there is no content] to [image: there is no content] (Case 1 of Figure 7) or extending a W-shape downward or upward by one (Cases 2 and 3 of Figure 7, respectively). Note that the width of the strip is given by [image: there is no content]. That is, we go through from thinner to thicker strips, so that the results for thinner ones are available when needed for Cases 2 and 3. Obviously, Algorithm 5 takes [image: there is no content] time.


Figure 6. Sequential computation with position indices i, j, k.
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Figure 7. Three cases for candidates.
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	Algorithm 5 Sequential algorithm for W.



	   Initialization

	1:

	
for all [image: there is no content]do




	2:

	
    [image: there is no content]     ▹[image: there is no content] stores maximum W for anchor column [image: there is no content]




	3:

	
end for



 



Main




	4:

	
for [image: there is no content] to n do




	5:

	
    [image: there is no content]




	6:

	
    for [image: there is no content] to n do




	7:

	
        [image: there is no content]




	8:

	
    end for




	9:

	
end for




	10:

	
for [image: there is no content] to [image: there is no content]do




	11:

	
    for [image: there is no content] to [image: there is no content]do




	12:

	
        [image: there is no content]




	13:

	
        for [image: there is no content] to n do




	14:

	
           [image: there is no content]          ▹ sum of [image: there is no content]




	15:

	
           [image: there is no content]




	16:

	
           [image: there is no content]




	17:

	
           [image: there is no content]




	18:

	
           [image: there is no content]




	19:

	
        end for




	20:

	
    end for




	21:

	
end for












After all W are computed, we compute the N-shape in array N for all anchor columns by a mirror image of the algorithm for W. Then, the finalization of the [image: there is no content]-shape is given by Algorithm 6.








	Algorithm 6 Combining W and N.



	
	1:

	
[image: there is no content]




	2:

	
for [image: there is no content] to n do




	3:

	
    for [image: there is no content] to n do




	4:

	
        for [image: there is no content] to n do




	5:

	
           [image: there is no content]




	6:

	
        end for




	7:

	
    end for




	8:

	
end for












Note that the W-shape and the N-shape share the same anchor column, meaning we need to subtract one [image: there is no content]. This computation is done for all possible i, j and k, taking [image: there is no content] time, resulting in [image: there is no content] time for the maximum convex sum.




4. Improved Sequential Algorithm


We can observe that Algorithm 5 not only takes [image: there is no content] time, but also requires [image: there is no content] memory. The reason for this memory requirement is that the algorithm stores maximum W and maximum N for all possible anchor columns.



We can improve the memory requirement of Algorithm 5 significantly to [image: there is no content] with a simple modification. Firstly, we observe that there is no reason to keep all maximum W and maximum N for all [image: there is no content] possible anchor columns. Instead, we can iterate over the possible anchor column sizes and compute the [image: there is no content] maximum W and N for the given anchor column size in each iteration, thereby computing the maximum [image: there is no content] for the given anchor column size in each iteration. Thus, in each iteration, we only need [image: there is no content] memory, and there is no need to store maximum W and N values from previous iterations. Note that W and N on shorter columns are available for the t-th iteration.



Algorithm 7 is the pseudocode for achieving the [image: there is no content] memory bound. The pseudocode has been simplified, since much of the details have already been provided in Section 3.








	Algorithm 7 Sequential algorithm for [image: there is no content].



	
	1:

	
for [image: there is no content] to n do




	2:

	
    Compute maximum W for all anchor columns of size t




	3:

	
    Compute maximum N for all anchor columns of size t




	4:

	
    Combine W and N for all anchor columns of size t




	5:

	
    Store the current maximum [image: there is no content]




	6:

	
end for












We note that the reduction in the memory bound is very significant in practical terms. The difference between [image: there is no content] memory and [image: there is no content] memory, if we take image processing as an example, is the difference between being able to process a mega-pixel image entirely in memory and having to resort to paging the results in an incomparably slow execution time.




5. Parallel Algorithm for MCS


We now give a parallel algorithm that corresponds to the sequential algorithm described in Section 3. Algorithm 8 is executed by the cell at the [image: there is no content] grid point. Each [image: there is no content] is aware of its position [image: there is no content]. Data flow is from left to right and from top to down. The control signals are fired at the left border and propagate right. When the signal arrives at [image: there is no content], it starts to accumulate the column sum [image: there is no content] and update [image: there is no content], W and [image: there is no content]. The value of [image: there is no content] at time k is to hold the maximum W-value based on the anchor column in the j-th column from position [image: there is no content] to position i. This is illustrated in Figure 8. The value of [image: there is no content] is to hold the best W-value obtained at [image: there is no content] so far. The role of [image: there is no content] is to bring down the top value of anchor column to [image: there is no content] in time. The role of “[image: there is no content]” is to provide the value of W one step before, with [image: there is no content] being undefined.


Figure 8. Illustration for Algorithm 8 with position indices [image: there is no content] and time index k.
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	Algorithm 8 Parallel algorithm for W.



	   Initialization

	1:

	
for all [image: there is no content] in parallel do




	2:

	
    [image: there is no content]




	3:

	
    [image: there is no content]




	4:

	
    [image: there is no content]




	5:

	
    [image: there is no content]




	6:

	
    [image: there is no content]




	7:

	
end for




	8:

	
for [image: there is no content] in parallel do




	9:

	
    [image: there is no content]




	10:

	
    [image: there is no content]




	11:

	
    [image: there is no content]




	12:

	
    [image: there is no content]




	13:

	
    [image: there is no content]




	14:

	
end for



 



Main




	15:

	
for [image: there is no content] to [image: there is no content]do




	16:

	
    for all [image: there is no content] in parallel do




	17:

	
        if [image: there is no content]then




	18:

	
           [image: there is no content]




	19:

	
           [image: there is no content]




	20:

	
           [image: there is no content]




	21:

	
           [image: there is no content]




	22:

	
           [image: there is no content]




	23:

	
           [image: there is no content]




	24:

	
           [image: there is no content]




	25:

	
           [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content]




	26:

	
           [image: there is no content]




	27:

	
        end if




	28:

	
    end for




	29:

	
end for












Note that the memory requirement for each cell in Algorithm 8 is constant. When we put W-shapes and N-shapes together, however, we need [image: there is no content] space in each cell, as we will explain later on. We assume that all corresponding instructions in all cells are executed in parallel in a synchronized manner. We later make some comments regarding how synchronization is achieved in the actual implementation of the parallel algorithm.



We prove the correctness of Algorithm 8 in the framework of Hoare logic [11] based on a restricted form of that in Owicki and Gries [12]. The latter is too general to cover our problem. We keep the minimum extension of Hoare logic to our mesh architecture.



The meaning of Hoare’s triple [image: there is no content] is that if P is true before program (segment) S, and if S halts, then Q is true after S stops. The typical loop invariant appears as that for a while-loop; “while B do S”. Here, S is a program, and B is a Boolean condition. If we can prove [image: there is no content], we can conclude [image: there is no content] while B does [image: there is no content], where ∼B is the negation of B. P is called the loop invariant, because P holds whenever the computer comes back to this point to evaluate the condition B. This is a time-wise invariant as the computer comes back to this point time-wise. We establish invariants in each cell. They are regarded as time-space invariants because the same conditions hold for all cells as computation proceeds. Those invariants have space indices i and j and time index k. Thus, our logical framework is a specialization of Owicki and Gries to indexed assertions.



The main assertions are given in the following. [image: there is no content] is the rectangular array portion from the top-left corner [image: there is no content] to the bottom-right corner [image: there is no content] where a candidate for the solution can be found.



At the end of the k-th iteration, the following holds in [image: there is no content]:



For [image: there is no content] and [image: there is no content]:


P0:control[i][j]=1P1:column[i][j]isthecolumnsumofa[i+j−k,…,i][j],whichisthesumofthej−thcolumnofarrayafrompositioni+j−ktopositioniP2:top[i][j]=a[i+j−k][j]P3:W[i][j]isthemaximumWanchoredatcolumna[i+j−k,…,i][j]P4:old_W[i][j]istheoldvalueofW[i][j]P5:sol[i][j]isthemaximumWinscope[i+j−k,…,i][1,…,j]











The above are combined to P, where:


[image: there is no content]











Here, Q states that variables in each cell keep the initial values. In the following descriptions, we omit the second portion Q of the above logical formula.



We can prove that [image: there is no content] to [image: there is no content] are all true for [image: there is no content] by checking the initialization. For each [image: there is no content] to [image: there is no content], we omit indices i and j. Using the time index k, we prove [image: there is no content] to [image: there is no content]. We use the following rules of Hoare logic. Let [image: there is no content] to [image: there is no content] be assignment statements in [image: there is no content] to [image: there is no content] in general. There can be several in each cell. We use one for simplicity. The meaning of [image: there is no content] is that the occurrence of variable [image: there is no content] in Q is replaced by [image: there is no content]. Parallel execution of [image: there is no content] to [image: there is no content] is shown by [image: there is no content].



Parallel assignment rule:


P⇒Q[y1/x1,y2/x2,…,yn/xn],{Q[y1/x1,y2/x2,…,yn/xn]}cell(i){Q}for1≤i≤n{P}[cell(1)||cell(2)…||cell(n)]{Q}











Other programming constructs such as composition (semi-colon), if-then-else statement, etc., in sequential Hoare logic can be extended to the parallel versions. Those definitions are omitted, but the following rule for the if-then and for-loop for the sequential control structure, which controls a parallel program S from outside, is needed for our verification purpose.



Rule for if-then statement:


{P∧B}S{Q},P∧¬B⇒Q{P}ifBthenS{Q}











In our proof, [image: there is no content] corresponds to P, [image: there is no content] to B and [image: there is no content] to Q.



Rule for the for-loop:


{P(0)},{P(k−1)}S{P(k)}{P(0)}fork=1tondoS{P(n)}











This P represents [image: there is no content] to [image: there is no content] in our program. S is the parallel program [image: there is no content]. Each [image: there is no content] has a few local variables and assignment statements. For an arbitrary array x, we regard [image: there is no content] as a local variable for [image: there is no content]. A variable from the neighbour, [image: there is no content], for example, is imported from the upper neighbour. Updated variables are fetched in the next cycle. The proof for each [image: there is no content] for P is given in Appendix.



Theorem 1.

Algorithm 8 is correct. The result is obtained at [image: there is no content] in [image: there is no content] steps.





Proof. 

From the Hoare logic rule for the for-loop, we have [image: there is no content] at the end.


P5(2n−1)atcell(n,n)⇔sol[n][n]isthemaximumsuminscope[n+n−2n+1,…,n][1,…,n]⇔sol[n][n]isthemaximumsuminscope[1,…,n][1,…,n]











☐





We used array [image: there is no content] to compute the maximum W-shape. The value of [image: there is no content] at [image: there is no content] is ephemeral in the sense that its value changes as computation proceeds. That is, [image: there is no content] at time k holds the maximum W-shape anchored at column [image: there is no content], and at the next step, it changes to that value of W anchored at column [image: there is no content].



In order to combine W and N, we must memorize the maximum W and the maximum N for each anchor column. Thus, we need the three-dimensional array [image: there is no content], as well as the array [image: there is no content]. Since in the final stage of [image: there is no content] computation, the same anchor column is added from W and N, we need to subtract the sum of the anchor column. For that purpose, the sum of anchor column [image: there is no content] is stored in [image: there is no content]. Note that the computation of N goes from right to left.



In Algorithm 9, we provide the complete algorithm that combines W and N, where [image: there is no content] is dropped, and the initialization is omitted. The computation of W and N takes [image: there is no content] steps, and [image: there is no content] takes n steps.



Selecting the maximum of [image: there is no content] can be done in parallel. Algorithm 10 and Figure 9a illustrate how to find the maximum in a 2D mesh in [image: there is no content] steps, where the maximum can be retrieved at the bottom right corner. If we orchestrate the bidirectional data movement in each of four quarters of the mesh (Figure 9b), so that the maximum of each quarter can meet at the centre for the final selection, it can be done in [image: there is no content] steps. Therefore, Algorithm 9 takes total of [image: there is no content] communication steps.


Figure 9. Maximum finding in 2D mesh.



[image: Algorithms 10 00005 g009]











	Algorithm 9 Combining W and N.



	
	1:

	
for [image: there is no content] to [image: there is no content]do




	2:

	
    for all [image: there is no content] in parallel do




	3:

	
        if [image: there is no content]then         ▹ Compute W from left to right




	4:

	
           [image: there is no content]




	5:

	
           [image: there is no content]




	6:

	
           [image: there is no content]




	7:

	
           [image: there is no content]




	8:

	
           [image: there is no content]




	9:

	
           [image: there is no content]




	10:

	
           [image: there is no content]




	11:

	
           [image: there is no content]




	12:

	
           [image: there is no content]




	13:

	
           [image: there is no content]




	14:

	
        end if




	15:

	
        if [image: there is no content]then         ▹ Compute N from right to left




	16:

	
           Mirrored operation of lines 4–13




	17:

	
        end if




	18:

	
    end for




	19:

	
end for




	20:

	
for all [image: there is no content] in parallel do




	21:

	
    [image: there is no content]




	22:

	
    for [image: there is no content] to i do




	23:

	
        [image: there is no content]




	24:

	
        [image: there is no content]




	25:

	
    end for




	26:

	
end for




	27:

	
Find the maximum of [image: there is no content] by Algorithm 10

















	Algorithm 10 Find the maximum of [image: there is no content] in [image: there is no content] steps.



	
	1:

	
for all [image: there is no content] in parallel do




	2:

	
    [image: there is no content]




	3:

	
end for




	4:

	
for [image: there is no content] to n do




	5:

	
    for all [image: there is no content] in parallel do




	6:

	
        [image: there is no content]




	7:

	
    end for                 ▹ Find the maximum in the same column




	8:

	
end for




	9:

	
for [image: there is no content] to n do




	10:

	
    for all j in parallel do




	11:

	
        [image: there is no content]




	12:

	
    end for                   ▹ Find the maximum in the n-th row




	13:

	
end for                         ▹[image: there is no content] is the maximum













6. Computation of the Boundary


So far, we computed the maximum sum of the [image: there is no content]-shape. For practical purposes, we sometimes need the shape itself. This problem was solved by Thaher [13] for the sequential algorithm (Algorithm 11). We show how the idea works in our parallel situation. For simplicity, we only show the boundary computation of the W-shape. We prepare the array [image: there is no content] to memorize the direction from which the algorithm took one of Case 1, Case 2 or Case 3. This part of enhancement in Algorithm 9 is shown below.


Case1:store_d[i][i+j−k][j]←1Case2:store_d[i][i+j−k][j]←2Case3:store_d[i][i+j−k][j]←3











Let array [image: there is no content], if [image: there is no content] is on the boundary, and zero otherwise. Let [image: there is no content] denote the j-th column from position k to position i, to represent the anchor column of some W-shape. Suppose the anchor column of the maximum W-shape after Algorithm 9 is [image: there is no content]. The following sequential algorithm goes backward from [image: there is no content] guided by the data structure [image: there is no content]. The correctness of the algorithm is obvious. The time [image: there is no content] can be shown as follows.








	Algorithm 11 Computing the boundary.



	
	1:

	
[image: there is no content]




	2:

	
while [image: there is no content] and [image: there is no content]do




	3:

	
    [image: there is no content]




	4:

	
    [image: there is no content]




	5:

	
    [image: there is no content]




	6:

	
    if D=1 then




	7:

	
        [image: there is no content]




	8:

	
    else if D=2 then




	9:

	
        [image: there is no content]




	10:

	
   else if D=3 then




	11:

	
       [image: there is no content]




	12:

	
   end if




	13:

	
end while












The time is proportional to the number of changes on indices i, j and k. The index j can be reduced at most n times. For i and k, we observe [image: there is no content] decreases whenever i or k changes, resulting in [image: there is no content] time for i and k. The [image: there is no content] time for the boundary can be absorbed in [image: there is no content] time of Algorithm 9. It will be easy to organize parallel computation of tracing back over array [image: there is no content] by the mesh architecture. For example, we can convert the array index j to a processor index j and use a one-dimensional mesh architecture as shown below (Algorithm 12).



This version has [image: there is no content] time, which provides no gain time-wise, but the [image: there is no content] space requirement on a single processor can be eased.








	Algorithm 12 Computing the boundary; j-th cell.



	
	1:

	
receive [image: there is no content]




	2:

	
while [image: there is no content] and [image: there is no content]do




	3:

	
    [image: there is no content]




	4:

	
    [image: there is no content]




	5:

	
    [image: there is no content]




	6:

	
    if D=1 then




	7:

	
        send [image: there is no content]-to [image: there is no content]-th processor




	8:

	
    else if D=2 then




	9:

	
        [image: there is no content]




	10:

	
   else if D=3 then




	11:

	
       [image: there is no content]




	12:

	
   end if




	13:

	
end while



Main




	14:

	
for [image: there is no content] in parallel do send [image: there is no content] to [image: there is no content]-th processor




	15:

	
end for













7. Implementation


We implemented Algorithm 9 on the Blue Gene/P computer under the MPI/Parallel C program environment. There were many practical issues to be considered. We summarize just three issues here as representatives.



Firstly, we cannot assume that each cell knows its own position within the mesh array. Depending on the architecture, additional computation is required for each cell to gather this information. Within the MPI environment, we can let each [image: there is no content] know its position [image: there is no content] by the system call “MPI_Cart_coords()”.



The second issue is synchronization. We assumed the corresponding statements in all cells are executed in a synchronized manner. If we remove this assumption, that is if the execution proceeds in an asynchronous manner, the algorithm loses its correctness.



In MPI, “MPI_Send()”, “MPI_Recv()” and “MPI_Sendrecv()” functions are used to perform synchronous blocking communications [14]. As we call these functions in each step, no further mechanisms are necessary to ensure synchronization between cells as the function calls ensure that any given cell cannot progress one or more steps further than the rest. In other words, one cell may reach the end of the given step and tries to move onto the next step before others, but then, the cell must wait for the other cells to reach the same point due to the blocking nature of the MPI communication functions.



The third implementation issue is related to the number of available processors. As the number of processors is limited, for large n, we need to have what is called a coarse grain parallel computer. Suppose, for example, we are given a [image: there is no content] input array and only 16 processors are available. The input array is divided into sixteen [image: there is no content] sub-arrays, to which the sixteen processors are assigned. Let us call the sub-array for each processor its territory. Each processor simulates one step of Algorithm 8 sequentially. These simulation processes by sixteen processors are done in parallel. At the end of each simulation, the values in the registers on the right and bottom border are sent to the left and top borders of the right neighbour and the lower neighbour, respectively. The simulation of one step takes [image: there is no content] time, and [image: there is no content] steps are carried out, meaning the computing time is [image: there is no content] at the cost of [image: there is no content] processors. When [image: there is no content], we hit the sequential complexity of [image: there is no content]. If [image: there is no content], we have the time complexity of Algorithm 8, which is [image: there is no content].



While resolving the third implementation issue, we must again face the second issue of synchronization. For each processor to simulate the parallel computation in its own territory in a coarse-grained implementation, we must take extra care to ensure synchronization between simulated cells within each territory. Specifically, we must double the number of variables, that is we prepare variable [image: there is no content] for every variable x. Let us associate the space/time index, [image: there is no content] with each variable. Let us call [image: there is no content] the current variable and the variable with indices different by one a neighbour variable. For example, [image: there is no content] in the right-hand side of the assignment statement is a time-wise neighbour, and that at the left-hand side is a current variable. Furthermore, [image: there is no content] in the right-hand side is a neighbour variable space-wise and time-wise, and so on. If x is a current variable, change it to [image: there is no content]. If it is a variable of a neighbour, keep it as it is. Let us call the modified program [image: there is no content]. Now, we define “update” to be the set of assignment statements of the form [image: there is no content].



Example 1.

Let P be a one-dimensional mesh program given by Algorithm 13, which shifts array x by one place. Let us suppose [image: there is no content] and [image: there is no content] are already given.





In Algorithm 13, [image: there is no content] is the current variable, and [image: there is no content] is a neighbour variable space-wise and time-wise. An asynchronous computer can make all values zero. For the intended outcome, we perform [image: there is no content], given by Algorithm 14, which includes “synchronize” and “update”.








	Algorithm 13 Program P.



	
	1:

	
for all i in parallel do




	2:

	
    [image: there is no content]




	3:

	
end for

















	Algorithm 14 Program [image: there is no content].



	
	1:

	
for all i in parallel do




	2:

	
    [image: there is no content]




	3:

	
end for




	4:

	
synchronize




	5:

	
for all i in parallel do




	6:

	
    [image: there is no content] /* update */




	7:

	
end for












For our mesh algorithm, Algorithm 8, omitting the initialization part, we make the program of the form that is given by Algorithm 15.








	Algorithm 15 Synchronization for coarse grain.



	
	1:

	
for [image: there is no content] to [image: there is no content]do




	2:

	
    [image: there is no content]




	3:

	
    synchronize




	4:

	
    update




	5:

	
end for












Algorithm 9 was executed on Blue Gene/P with up to 1024 cores. For the software side, the programming environment of MPI and the parallel C compiler, mpixlc, were used with Optimization Level 5. The results are shown in Table 1. Arrays of size [image: there is no content] containing random integers were tested. The times for generating uniformly-distributed random numbers, as well as loading the data onto each processor were not included in the time measurement. On Blue Gene/P, the mesh architecture can be configured into a 2D mesh or 3D mesh. The time taken to configure the mesh into a 2D mesh array for our algorithm was included in the time measurement. As we can see from the table, for small n, the configuration time dominates, and increasing the number of processors does not result in a decrease in the execution time. As the size of the input array increases, however, we can see noticeable improvements in the execution times with a larger number of processors.



Table 1. Time measurements on BG/P(seconds).







	

	
[image: there is no content] = 4

	
16

	
64

	
256

	
1024






	
n = 64

	
0.1069

	
0.0329

	
0.0258

	
0.0251

	
0.0272




	
128

	
0.8435

	
0.2298

	
0.0989

	
0.1253

	
0.1252




	
256

	
7.2762

	
1.7506

	
0.4783

	
0.3783

	
0.6088




	
512

	
64.5455

	
15.8192

	
3.6038

	
1.3141

	
2.9883




	
1024

	
332.8847

	
137.6626

	
33.9193

	
7.7712

	
7.9303




	
2048

	
x

	
x

	
188.9598

	
87.5153

	
43.5064










Note that we were unable to execute the program under certain configurations as shown by `x’ in Table 1. This was due to memory requirements. With large n and small p, each processor must simulate a very large territory. With each cell in the territory requiring [image: there is no content] memory to store the maximal values of W and N, the memory requirements can become prohibitive. This highlights the fact that parallelization is required not only to reduce the execution time, but also to handle larger input data.




8. Lower Bound


Algorithm 8 for W is not very efficient, as cells to the right are idling at the early stage. Suppose we are given an input array with the value a in the top-left cell and b in the bottom-right cell, while all other value are [image: there is no content]. Obviously the solution is a if [image: there is no content], and b otherwise. The values a and b need to meet somewhere. It is easy to see that the earliest possibility is at time [image: there is no content]. Our algorithm for W takes [image: there is no content] steps, meaning there is still a gap of n steps with the lower bound. This is a sharp contrast with the mesh algorithm for MSA (Algorithm 4) that completes in [image: there is no content] steps. The role of Algorithm 8 is to establish an [image: there is no content] time for the MCS problem on the mesh architecture.




9. Concluding Remarks


We gave an [image: there is no content] time parallel algorithm for solving the MSA and MCS problem with [image: there is no content] processors and a formal proof for the algorithm to compute the W-shape, a part of the MCS problem. The formal proof for the N-shape can be given in a similar way. The formal proof not only ensures correctness, but also clarifies what is actually going on inside the algorithm.



The formal proof was simplified by assuming synchronization. The asynchronous version with (synchronize, update) in Section 7 would require about twice as much complexity for verification, since we double the number of variables. Once the correctness of the synchronized version is established, that of the asynchronous version will be acceptable without further verification.



It is open whether there is a mesh algorithm for the MCS problem with the [image: there is no content] memory requirement in each cell. Mesh algorithms are inherently easy to implement on an FPGA and, thus, can be considered for practical applications.



multiple








Appendix A. Proof for Invariants


In the following, [image: there is no content] is the sum of array portion [image: there is no content]. We assume [image: there is no content].



Proof. 

For [image: there is no content]: At the beginning of the k-th iteration, [image: there is no content] for [image: there is no content], equivalently [image: there is no content] for [image: there is no content]. [image: there is no content] performs “[image: there is no content]” for [image: there is no content]. Thus, we have [image: there is no content] for [image: there is no content]. ☐





Proof. 

For [image: there is no content]: At time [image: there is no content], [image: there is no content]. “[image: there is no content]” is performed for [image: there is no content] and [image: there is no content] in parallel. Thus, [image: there is no content] holds. ☐





Proof. 

For [image: there is no content]: At time [image: there is no content], [image: there is no content]. At time k, “[image: there is no content]” is performed for [image: there is no content] and [image: there is no content] in parallel. Thus, [image: there is no content], and [image: there is no content] holds. ☐





Proof. 

For [image: there is no content]: At time [image: there is no content], [image: there is no content] is the maximum of W-shapes anchored at column [image: there is no content]. By adding the sum of column [image: there is no content], [image: there is no content] is made. [image: there is no content] is the maximum of the W-shape anchored at column [image: there is no content]. By adding [image: there is no content], [image: there is no content] is made. [image: there is no content] is [image: there is no content] at time [image: there is no content], which is the maximum of W-shapes anchored at column [image: there is no content]. By adding [image: there is no content], [image: there is no content] is made. Since the maximum of the W-shape based on column [image: there is no content] is chosen from only those three possibilities, [image: there is no content] is correctly computed. ☐





Proof. 

For [image: there is no content]: After [image: there is no content], the value of [image: there is no content] changes from [image: there is no content] at [image: there is no content] to [image: there is no content]. Thus, [image: there is no content] holds. ☐





Proof. 

For [image: there is no content]: The scopes for the four candidates are given below.

	
[image: there is no content] at [image: there is no content]: [image: there is no content]



	
[image: there is no content] at [image: there is no content]: [image: there is no content]



	
[image: there is no content] at [image: there is no content]: [image: there is no content]



	
[image: there is no content] at k is anchored at column [image: there is no content] with [image: there is no content]





 ☐





There are only four candidates for [image: there is no content] from those four scopes. Thus, [image: there is no content] holds.
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