
Article

Efficient Algorithms for the Maximum Sum Problems

Sung Eun Bae 1, Tong-Wook Shinn 1,* and Tadao Takaoka 1,2

1 Algorithm Research Institute, Christchurch 8053, New Zealand; sung.bae@ari.org.nz (S.E.B.);
tadao.takaoka@ari.org.nz (T.T.)

2 Computer Science and Software Engineering, University of Canterbury, Christchurch 8140, New Zealand
* Correspondence: tongwook.shinn@ari.org.nz

Academic Editors: Bruno Carpentieri and Spyros Kontogiannis
Received: 9 August 2016; Accepted: 26 December 2016; Published: 4 January 2017

Abstract: We present efficient sequential and parallel algorithms for the maximum sum (MS) problem,
which is to maximize the sum of some shape in the data array. We deal with two MS problems;
the maximum subarray (MSA) problem and the maximum convex sum (MCS) problem. In the
MSA problem, we find a rectangular part within the given data array that maximizes the sum in it.
The MCS problem is to find a convex shape rather than a rectangular shape that maximizes the sum.
Thus, MCS is a generalization of MSA. For the MSA problem, O(n) time parallel algorithms are
already known on an (n, n) 2D array of processors. We improve the communication steps from
2n− 1 to n, which is optimal. For the MCS problem, we achieve the asymptotic time bound of O(n)
on an (n, n) 2D array of processors. We provide rigorous proofs for the correctness of our parallel
algorithm based on Hoare logic and also provide some experimental results of our algorithm that are
gathered from the Blue Gene/P super computer. Furthermore, we briefly describe how to compute
the actual shape of the maximum convex sum.

Keywords: maximum sub-array; maximum convex sum; parallel algorithm

1. Introduction

We face a challenge to process a big amount of data in the age of information explosion and
big data [1]. As the end of Moore’s law comes in sight, however, the extra computing power is
unlikely obtained from a single processor computer [2]. Parallel computing is obviously a direction to
faster computation. However, efficient utilization of the parallel architecture is not an effortless task.
New algorithms often need to be designed for specific problems on specific hardware.

In this paper, we investigate the maximum subarray (MSA) problem and the maximum convex
sum (MCS) problem, the latter being a generalization of the former. We design efficient parallel
algorithms for both problems and an improved sequential algorithm for the MCS problem.

The MSA problem is to find a rectangular subarray in the given two-dimensional (2D) data
array that maximizes the sum in it. This problem has wide applications from image processing to
data mining. An example application from image processing is to find the most distinct spot, such
as brightest or darkest, in the given image. If all pixel values are non-negative, solving the MSA
problem will return the trivial solution of the whole array. Thus, we normalize the input image (e.g., by
subtracting the mean value), such that the relatively brighter spots will have positive sums, while the
relatively darker spots will have negative sums. Then, solving the MSA problem on the normalized
image can give us the brightest spot in the image. In data mining, suppose we spread the sales amounts
of some product on a two-dimensional array classified by customer ages and annual income. Then,
after normalizing the data, the maximum subarray corresponds to the most promising customer range.

We now consider the MCS problem that maximizes the sum in a convex shape. The definition
of the word “convex” is not exactly the same as that in geometry. We define the convex shape as the

Algorithms 2017, 10, 5; doi:10.3390/a10010005 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
http://www.mdpi.com/journal/algorithms

Algorithms 2017, 10, 5 2 of 20

joining of a W-shape and an N-shape, where W stands for widening and N for narrowing. We call
this shape the WN-convex shape or WN-shape for short. In W, the top boundary goes up or stays
horizontal when scanned from left to right, and the bottom boundary goes down or stays horizontal.
Fukuda et al. defines a more general rectilinear shape [3], but for simplicity, we only consider the
WN-shape. The paper is mainly devoted to computing the maximum sum, and one section is devoted
to the computation of the explicit convex shape that provides the sum.

We give an example to illustrate how solving the MCS problem can provide a much more accurate
data analysis compared to solving the MSA problem. We compared the size of the hole in the ozone
layer over Antarctica between 2006 and 2011 by solving both the MSA problem and the MCS problem
on the normalized input images (Figure 1a,d, respectively) of the Antarctic region. Figure 1b,e is from
solving the MSA problem on the input images, while Figure 1c,f is from solving the MCS problem
on the same set of input images. Solving the MCS problem clearly provides a much more accurate
representation of the ozone hole. The numeric value returned by the MCS is also 22%~24% greater
than that by the MSA on both occasions. Intuitively similar gains from the WN-shape compared to the
rectangular shape can be foreseen for other types of data analysis.

(a) September 2006 (b) MSA (c) MCS

(d) 4 September 2011 (e) MSA (f) MCS

Figure 1. Ozone hole identified by the maximum subarray (MSA) and maximum convex sum (MCS)
algorithms (Courtesy of NASA).

In this paper, we assume that the input data array is an (n, n) square two-dimensional (2D) array.
It is a straightforward exercise to extend the contents of this paper to (n, m) rectangular 2D input
data arrays.

The typical algorithm for the MSA problem by Bentley [4] takes O(n3) time on a sequential
computer. This has been improved to a slightly sub-cubic time bound by Tamaki and Tokuyama [5]
and also Takaoka [6]. For the MCS problem, an algorithm with O(n3) time is given by Fukuda et al. [3],
and an algorithm with a sub-cubic time bound is not known.

Takaoka discussed a parallel implementation to solve the MSA problem on a PRAM [6]. Bae and
Takaoka implemented a range of parallel algorithms for the MSA problem on an (n, n) 2D mesh array
architecture based on the row-wise or column-wise prefix sum [7–9]. A parallel algorithm for the MSA

Algorithms 2017, 10, 5 3 of 20

problem was also implemented on the BSP/CGMarchitecture, which has more local memory and
communication capabilities with remote processors [10].

In this paper, we implement algorithms for the MSA and MCS problems based on the column-wise
prefix sum on the 2D mesh architecture, as shown by Figure 2. This architecture is also known as
a systolic array, where each processing unit has a constant number of registers and is permitted to only
communicate with directly-connected neighbours. This seemingly inflexible architecture is well suited
to be implemented on ASICs or FPGAs.

Data

Control

Data

Figure 2. Two-dimensional architecture.

Our most efficient parallel algorithms complete the computation in n− 1 communication steps
for the MSA problem and 4n communication steps for the MCS problem, respectively. In each step,
all cells execute a constant number of statements in parallel. Thus, our algorithms are cost optimal
with respect to the cubic time sequential algorithms [3,4].

We give a formal proof for the parallel algorithm for computing the maximum W (a part of
computing the MCS problem). The proof is based on the space-time invariants defined on the
architecture.

In a 2D array architecture, some processors to the right are sitting idle in the early stage of
computation waiting for inputs to arrive. This is because the data only flows from left to right and
from up to down (Figure 2). If appropriate, we attempt to maximize the throughput by extending data
flows to operate in four directions. This technique reduces the number of communication steps by
a constant factor.

Algorithms are given by pseudocode.

2. Parallel Algorithms for the MSA Problem

In this section, we improve parallel algorithms for the MSA problem on a mesh array and achieve
the optimal n communication steps. Furthermore, we show how the programming techniques in this
section lead to efficient parallel algorithms for the MCS problem in the later sections.

2.1. Sequential Algorithm

The computation in Algorithm 1 [8] proceeds with the strip of the array from position k to
position i. See Figure 3. The variable column[i][j] is the sum of array elements in the j-th column from
position k to position i in array a. The variable sum[i][j], called a prefix-sum, is the sum of the strip
from Position 1 to position j. Within this strip, variable j sweeps to compute column[i][j] by adding
a[i][j] to column[i− 1][j]. Then, the prefix sum of this strip from Position 1 to position j is computed

Algorithms 2017, 10, 5 4 of 20

by adding column[i][j] to sum[i][j− 1]. The variable min_sum[i][j] is the minimum prefix sum of this
strip from Position 1 to position j. If the current sum is smaller than min_sum[i][j], min_sum[i][j] is
replaced by it. sol[i][j] is the maximum sum in this strip so far found from Position 1 to position j. It is
computed by taking the maximum of sol[i][j− 1] and sum[i][j]−min_sum[i][j], expressed by max_sum
in the figure. After the computation for this strip is over, the global solution, S, is updated by sol[i][n].
This computation is done for all possible i and k, taking O(n3) time.

Algorithm 1 MSA: sequential.

1: for 1 ≤ i ≤ n do
2: min_sum[i][0]← ∞; sum[i][0]← 0; sol[i][0]← −∞;
3: end for
4: S← −∞;
5: for k← 1 to n do
6: for j← 1 to n do
7: column[k− 1][j]← 0;
8: end for
9: for i← k to n do

10: for j← 1 to n do
11: column[i][j]← column[i− 1][j] + a[i][j];
12: sum[i][j]← sum[i][j− 1] + column[i][j];
13: min_sum[i][j]←MIN{sum[i][j], min_sum[i][j− 1] };
14: max_sum[i][j]← sum[i][j]−min_sum[i][j];
15: sol[i][j]←MAX{max_sum[i][j], sol[i][j− 1]};
16: end for
17: if sol[i][n] > S then
18: S← sol[i][n];
19: end if
20: end for
21: end for

i

k

j

Figure 3. Strip-based sequential computation.

2.2. Parallel Algorithm 1

Algorithm 2 is a parallel adaptation of Algorithm 1. The following program is executed by
a processing unit at the (i, j) grid point, which we refer to as cell(i, j). Each cell(i, j) is aware of
its position (i, j). Data flow is from left to right and from top to bottom. The control signals are
fired at the left border and propagate right. When the signal arrives at cell(i, j), it accumulates the
column sum “column”, the sum “sum” and updates the minimum prefix sum “min”, etc. Figure 4
illustrates the information available to cell(i, j) at step k. At step 2n− 1, cell(n, n) will have computed
the maximum sum. We assume that all corresponding instructions in all cells are executed at the

Algorithms 2017, 10, 5 5 of 20

same time, that is they are synchronized. We will later make some comments on asynchronous
computation.

i

i+j-k

j

Figure 4. Illustration for Algorithm 2: The coverage of cell(i, j) at step k.

Algorithm 2 MSA Parallel 1.

Initialization
1: for all 0 ≤ i, j ≤ n in parallel do
2: column[i][j]← 0; min[i][j]← ∞;
3: control[i][[j]← 0; sum[i][j]← 0;
4: end for
5: for 0 ≤ i ≤ n in parallel do
6: control[i][0]← 1; sol[i][0]← −∞;
7: end for

Main
8: for k← 1 to 2n− 1 do
9: for all 1 ≤ i, j ≤ n in parallel do

10: if control[i][j− 1] = 1 then
11: column[i][j]← column[i− 1][j] + a[i][j];
12: sum[i][j]← sum[i][j− 1] + column[i][j];
13: min[i][j]←MIN{min[i][j− 1], sum[i][j]};
14: max[i][j]← sum[i][j]−min[i][j];
15: sol[i][j]←MAX{sol[i− 1][j], sol[i][j− 1], sol[i][j], max[i][j]};
16: control[i][j]← 1;
17: end if
18: end for
19: end for

2.3. Parallel Algorithm 2

This algorithm (Algorithm 3) does communication bi-directionally in a horizontal way. For simplicity,
we assume n is even. The (n, n) mesh is divided into two halves, left and right. The left half operates in the
same way as Algorithm 2. The right half operates in a mirror image, that is control signals go from right to
left initiated at the right border. All other data also flow from right to left. At the centre, that is at (i, n/2),
cell(i, n/2) performs “centre[i]← max[i][n/2] + max[i][n/2+ 1]”, which adds the two values that are the
sums of strip regions in the left and right whose heights are equal and, thus, can be added to form a
possible solution crossing over the centre. At the end of the k-th iteration, all properties in Algorithm 2
hold on the left half, and the properties in the mirror image hold on the right half. In addition, we
have that centre[i] is the value of the maximum subarray that lies above or that is touching the i-th row
and crosses over the centre line.

Algorithms 2017, 10, 5 6 of 20

Algorithm 3 MSA Parallel 2.

Initialization
1: for all 0 ≤ i, j ≤ n in parallel do
2: column[i][j]← 0; min[i][j]← ∞;
3: control[i][[j]← 0; sum[i][j]← 0;
4: end for
5: for 0 ≤ i ≤ n in parallel do
6: control[i][0]← 1; control[i][n + 1]← 1;
7: end for

Main
8: for k← 1 to (3/2)n− 1 do
9: for all 1 ≤ i, j ≤ n in parallel do

10: if 1 ≤ j ≤ n/2 then . left half
11: if control[i][j− 1] = 1 then
12: column[i][j]← column[i− 1][j] + a[i][j];
13: sum[i][j]← sum[i][j− 1] + column[i][j];
14: min[i][j]←MIN{min[i][j− 1], sum[i][j]};
15: max[i][j]← sum[i][j]−min[i][j];
16: sol[i][j]←MAX{sol[i− 1][j], sol[i][j− 1], sol[i][j], max[i][j]};
17: control[i][j]← 1;
18: end if
19: end if
20: if n/2+ 1 ≤ j ≤ n then . right half
21: if control[i][j + 1] = 1 then
22: column[i][j]← column[i− 1][j] + a[i][j];
23: sum[i][j]← sum[i][j + 1] + column[i][j];
24: min[i][j]←MIN{min[i][j + 1], sum[i][j]};
25: max[i][j]← sum[i][j]−min[i][j];
26: sol[i][j]←MAX{sol[i− 1][j], sol[i][j + 1], sol[i][j], max[i][j]};
27: control[i][j]← 1;
28: end if
29: end if
30: if j = n/2 then . cell(i, n/2) processes centre[i]
31: centre[i]← max[i][n/2] + max[i][n/2+ 1];
32: if centre[i] < centre[i− 1] then
33: centre[i]← centre[i− 1];
34: end if
35: end if
36: end for
37: end for

Finalization step
38: Let cell(n, n/2) do solution←MAX{sol[n][n/2], sol[n][n/2+ 1], centre[n]};

The strip cell(i, j) processes is a[i + j− k, ..., i][1, ..., j] in the left half, and that in the right half is
a[i + n− j + 1− k, ..., i][j, ..., n]. Thus, the cells cell(i, n/2) and cell(i, n/2+ 1) processes the strips of the
same height in the left half and the right half. Communication steps are measured by the distance
from cell(1, 1) to cell(n, n/2) or, equivalently, from cell(1, n) to cell(n, n/2+ 1), which is (3/2)n− 1. By
adding the finalization step, we have (3/2)n for the total communication steps.

Algorithms 2017, 10, 5 7 of 20

2.4. Parallel Algorithm 3

In Algorithm 4, data flow in four directions. The array is divided into two halves; left and
right, as in the previous section. Column sums c and prefix sums s accumulate downwards as before,
whereas column sums d and prefix sums t accumulate upwards. See Figure 5.

Algorithm 4 MSA Parallel 3: initialization.

1: for all 0 ≤ i, j ≤ n + 1 in parallel do
2: c[i][j]← 0; d[i][j]← 0;
3: min[i][j]← ∞; control[i][[j]← 0;
4: s[i][j]← 0; t[i][j]← 0;
5: end for
6: for 0 ≤ i ≤ n + 1 in parallel do
7: control[i][0]← 1; control[i][n + 1]← 1;
8: end for
9: for k← 1 to n− 2 do

10: for all 1 ≤ i, j ≤ n in parallel do
11: if 1 ≤ j ≤ n/2 then
12: if control[i][j− 1] = 1 then
13: c[i][j]← c[i− 1][j] + a[i][j];
14: s[i][j]← s[i][j− 1] + c[i][j];
15: d[i][j]← d[i + 1][j] + a[i][j];
16: t[i][j]← t[i][j− 1] + d[i][j];
17: u[i][j]← s[i][j] + t[i + 1][j];
18: min[i][j]←MIN{min[i][j− 1], u[i][j]};
19: max[i][j]← u[i][j]−min[i][j];
20: sol[i][j]←MAX{sol[i− 1][j], sol[i + 1][j], sol[i][j− 1], sol[i][j]};
21: sol[i][j]←MAX{sol[i][j], max[i][j]};
22: control[i][j]← 1;
23: end if
24: end if
25: if n/2+ 1 ≤ j ≤ n then
26: if control[i][j + 1] = 1 then
27: c[i][j]← c[i− 1][j] + a[i][j];
28: s[i][j]← s[i][j + 1] + c[i][j];
29: d[i][j]← d[i + 1][j] + a[i][j];
30: t[i][j]← t[i][j + 1] + d[i][j];
31: u[i][j]← s[i][j] + t[i + 1][j];
32: min[i][j]←MIN{min[i][j + 1], u[i][j]};
33: max[i][j]← u[i][j]−min[i][j];
34: sol[i][j]←MAX{sol[i− 1][j], sol[i + 1][j], sol[i][j + 1], sol[i][j]};
35: sol[i][j]←MAX{sol[i][j], max[i][j]};
36: control[i][j]← 1;
37: end if
38: end if
39: if j = n/2 then . cell(i, n/2) performs the following
40: centre[i]← max[i][n/2] + max[i][n/2+ 1];
41: if centre[i] < centre[i− 1] then
42: centre[i]← centre[i− 1];
43: end if
44: if centre[i] < centre[i + 1] then
45: centre[i]← centre[i + 1];
46: end if
47: end if
48: end for
49: end for
50: if i = n/2 and j = n/2 then . cell(n/2, n/2) processes solution
51: solution←MAX{sol[n/2][n/2], sol[n/2][n/2+ 1], centre[n/2]};
52: end if

Algorithms 2017, 10, 5 8 of 20

i

i+j-k

j

Figure 5. Illustration for Algorithm 4.

The structure of Algorithm 4 reveals that at the end of the k-th iteration, s[i][j] is the sum of
a[i + j− k, ..., i][1, ..., j] and t[i + 1][j] is the sum of a[i + 1, ..., i− j + k + 1][1, ..., j]. The height of each
subarray is k− j + 1. Since the widths of those two areas are the same, we can have the prefix sum
u[i][j] = s[i][j] + t[i+ 1][j] that covers a[i+ j− k, ..., i− j+ k+ 1][1, ..., j], the height of which is 2(k− j+ 1).
That is, spending k steps, we can achieve twice as much height as that in Algorithm 3.

The solution array sol is calculated as before, but the result is sent into three directions;
up, down and right in the left half and up, down and left in the right half. We have the property that
sol[i][j] is the maximum sum in subarray a[i + j− k, ..., i− j + k + 1][1, ..., j] in the left half. Substituting
i = n/2, j = n/2, and k = n− 1 yields the subarray a[1, ..., n][1, ..., n/2]. Similarly, sol[n/2][n/2+ 1] is
the maximum sum in the subarray a[1, ..., n][n/2+ 1, ..., n]. For simplicity, we deal with the maximum
subarray whose height is an even number. For a general case, see the note at the end of this section.

The computation proceeds with n− 2 steps by k and the last step of comparing the results from
cell(n/2, n/2) and cell(n/2+ 1, n/2), resulting in n− 1 steps in total.

Note that we described the algorithm for the solution whose height is an even number. This
fact comes from the assignment statement “u[i][j]← s[i][j] + t[i + 1][j]” where the heights of subarrays
whose sums are s and t are equal. To accommodate a height of an odd number, we can use the value of
t one step before, whose height is one shorter. To accommodate such odd heights, we need to almost
double the size of the program by increasing the number of variables.

3. Review of Sequential Algorithm for the MCS Problem

We start from describing a sequential algorithm for W based on column sums, given by
Fukuda et al. [3]. We call the rightmost column of a W-shape the anchor column of W. The array
portion of general array b, b[i, ..., k][j, ..., l], is the rectangular portion whose top left corner is (i, j), and
the bottom right corner is (k, l). The column b[i, ..., k][j, ..., j] is abbreviated as b[i, ..., k][j]. In Algorithm 5,
W[i][k][j] is a W-shape based on the anchor column of a[k, ..., i][j]. The sum of this anchor column is
given by column[i][k][j].

The computation proceeds with the strip of the array from row k to row i (Figure 6) based on
dynamic programming. Within this strip from row k to row i, variable j sweeps to compute W[i][k][j]
by adding column[i][k][j] to W[i][k][j− 1] (Case 1 of Figure 7) or extending a W-shape downward or
upward by one (Cases 2 and 3 of Figure 7, respectively). Note that the width of the strip is given by
t + 1. That is, we go through from thinner to thicker strips, so that the results for thinner ones are
available when needed for Cases 2 and 3. Obviously, Algorithm 5 takes O(n3) time.

Algorithms 2017, 10, 5 9 of 20

Algorithm 5 Sequential algorithm for W.

Initialization
1: for all 0 ≤ i, j, k ≤ n do
2: W[i][k][j]← 0 . W[i][k][j] stores maximum W for anchor column column[k, . . . , i][j]
3: end for

Main
4: for j← 1 to n do
5: sum[0][j]← 0
6: for i← 1 to n do
7: sum[i][j]← sum[i− 1][j] + a[i][j]
8: end for
9: end for

10: for t← 1 to n− 1 do
11: for k← 1 to n− t do
12: i← k + t
13: for j← 1 to n do
14: column[i][k][j]← sum[i][j]− sum[k− 1][j] . sum of a[k, . . . , i][j]
15: cand1 ←W[i][k][j− 1] + column[i][k][j]
16: cand2 ←W[i− 1][k][j] + a[i][j]
17: cand3 ←W[i][k + 1][j] + a[k][j]
18: W[i][k][j]←MAX{cand1, cand2, cand3}
19: end for
20: end for
21: end for

i

k

j

Figure 6. Sequential computation with position indices i, j, k.

i

k
j

Case 1

i-1

k
j

Case 2

i

k+1

j

Case 3

Figure 7. Three cases for candidates.

After all W are computed, we compute the N-shape in array N for all anchor columns by a mirror
image of the algorithm for W. Then, the finalization of the WN-shape is given by Algorithm 6.

Algorithms 2017, 10, 5 10 of 20

Algorithm 6 Combining W and N.

1: S← −∞
2: for j← 1 to n do
3: for k← 1 to n do
4: for i← k to n do
5: S←MAX{S, W[i][k][j] + N[i][k][j]− column[i][k][j]}
6: end for
7: end for
8: end for

Note that the W-shape and the N-shape share the same anchor column, meaning we need to
subtract one column[i][k][j]. This computation is done for all possible i, j and k, taking O(n3) time,
resulting in O(n3) time for the maximum convex sum.

4. Improved Sequential Algorithm

We can observe that Algorithm 5 not only takes O(n3) time, but also requires O(n3) memory.
The reason for this memory requirement is that the algorithm stores maximum W and maximum N for
all possible anchor columns.

We can improve the memory requirement of Algorithm 5 significantly to O(n2) with
a simple modification. Firstly, we observe that there is no reason to keep all maximum W and
maximum N for all O(n3) possible anchor columns. Instead, we can iterate over the possible anchor
column sizes and compute the O(n2) maximum W and N for the given anchor column size in each
iteration, thereby computing the maximum WN for the given anchor column size in each iteration.
Thus, in each iteration, we only need O(n2) memory, and there is no need to store maximum W
and N values from previous iterations. Note that W and N on shorter columns are available for the
t-th iteration.

Algorithm 7 is the pseudocode for achieving the O(n2) memory bound. The pseudocode has
been simplified, since much of the details have already been provided in Section 3.

Algorithm 7 Sequential algorithm for MCS.

1: for t← 1 to n do
2: Compute maximum W for all anchor columns of size t
3: Compute maximum N for all anchor columns of size t
4: Combine W and N for all anchor columns of size t
5: Store the current maximum WN
6: end for

We note that the reduction in the memory bound is very significant in practical terms. The
difference between O(n2) memory and O(n3) memory, if we take image processing as an example, is
the difference between being able to process a mega-pixel image entirely in memory and having to
resort to paging the results in an incomparably slow execution time.

5. Parallel Algorithm for MCS

We now give a parallel algorithm that corresponds to the sequential algorithm described in
Section 3. Algorithm 8 is executed by the cell at the (i, j) grid point. Each cell(i, j) is aware of its
position (i, j). Data flow is from left to right and from top to down. The control signals are fired at the
left border and propagate right. When the signal arrives at cell(i, j), it starts to accumulate the column
sum column and update top, W and sol. The value of W[i][j] at time k is to hold the maximum W-value
based on the anchor column in the j-th column from position i + j− k to position i. This is illustrated
in Figure 8. The value of sol[i][j] is to hold the best W-value obtained at cell(i, j) so far. The role of top

Algorithms 2017, 10, 5 11 of 20

is to bring down the top value of anchor column to cell(i, j) in time. The role of “old_W” is to provide
the value of W one step before, with old_W[i][0] being undefined.

Algorithm 8 Parallel algorithm for W.

Initialization
1: for all 0 ≤ i, j ≤ n in parallel do
2: column[i][j]← 0
3: top[i][j]← a[i][j]
4: control[i][j]← 0
5: W[i][j]← 0
6: old_W[i][j]← 0
7: end for
8: for 0 ≤ i ≤ n in parallel do
9: control[i][0]← 0

10: sol[i][0]← −∞
11: a[i][0]← 0
12: sol[0][i]← −∞
13: a[0][i]← 0
14: end for

Main
15: for k← 1 to 2n− 1 do
16: for all 1 ≤ i, j ≤ n in parallel do
17: if control[i][j− 1] = 1 then
18: column[i][j]← column[i− 1][j] + a[i][j]
19: cand1 ←W[i][j− 1] + column[i][j]
20: cand2 ←W[i− 1][j] + a[i][j]
21: cand3 ← old_W[i][j] + top[i][j]
22: old_W[i][j]←W[i][j]
23: W[i][j]←MAX{cand1, cand2, cand3}
24: top[i][j]← top[i− 1][j]
25: sol[i][j]←MAX{sol[i− 1][j], sol[i][j− 1], sol[i][j], W[i][j]}
26: control[i][j]← 1
27: end if
28: end for
29: end for

i

i+j-k

j

Figure 8. Illustration for Algorithm 8 with position indices (i, j) and time index k.

Algorithms 2017, 10, 5 12 of 20

Note that the memory requirement for each cell in Algorithm 8 is constant. When we put
W-shapes and N-shapes together, however, we need O(n) space in each cell, as we will explain later
on. We assume that all corresponding instructions in all cells are executed in parallel in a synchronized
manner. We later make some comments regarding how synchronization is achieved in the actual
implementation of the parallel algorithm.

We prove the correctness of Algorithm 8 in the framework of Hoare logic [11] based on a restricted
form of that in Owicki and Gries [12]. The latter is too general to cover our problem. We keep the
minimum extension of Hoare logic to our mesh architecture.

The meaning of Hoare’s triple {P}S{Q} is that if P is true before program (segment) S, and
if S halts, then Q is true after S stops. The typical loop invariant appears as that for a while-loop;
“while B do S”. Here, S is a program, and B is a Boolean condition. If we can prove {P ∧ B}S{P},
we can conclude {P} while B does S{P∧ ∼B}, where ∼B is the negation of B. P is called the loop
invariant, because P holds whenever the computer comes back to this point to evaluate the condition B.
This is a time-wise invariant as the computer comes back to this point time-wise. We establish
invariants in each cell. They are regarded as time-space invariants because the same conditions hold
for all cells as computation proceeds. Those invariants have space indices i and j and time index k.
Thus, our logical framework is a specialization of Owicki and Gries to indexed assertions.

The main assertions are given in the following. scope[a, ..., b][c, ..., d] is the rectangular array
portion from the top-left corner (a, c) to the bottom-right corner (b, d) where a candidate for the
solution can be found.

At the end of the k-th iteration, the following holds in cell(i, j):

For 1 ≤ i ≤ n and 0 ≤ j ≤ k:

P0 : control[i][j] = 1

P1 : column[i][j] is the column sum of a[i + j− k, ..., i][j],

which is the sum of the j-th column of array a from position i + j− k to position i

P2 : top[i][j] = a[i + j− k][j]

P3 : W[i][j] is the maximum W anchored at column a[i + j− k, ..., i][j]

P4 : old_W[i][j] is the old value of W[i][j]

P5 : sol[i][j] is the maximum W in scope[i + j− k, ..., i][1, ..., j]

The above are combined to P, where:

P⇔ (1 ≤ i ≤ n ∧ 0 ≤ j ≤ k⇒ P0 ∧ P1 ∧ P2 ∧ P3 ∧ P4 ∧ P5) ∧(1 ≤ i ≤ n ∧ k < j ≤ n⇒ Q)

Here, Q states that variables in each cell keep the initial values. In the following descriptions, we
omit the second portion Q of the above logical formula.

We can prove that P0(k) to P5(k) are all true for k = 0 by checking the initialization. For each
P0 to P5, we omit indices i and j. Using the time index k, we prove {P(k − 1)}cell(i, j){P0(k)} to
{P(k − 1)}cell(i, j){P5(k)}. We use the following rules of Hoare logic. Let x1 ← y1 to xn ← yn be
assignment statements in cell(1) to cell(n) in general. There can be several in each cell. We use
one for simplicity. The meaning of yi/xi is that the occurrence of variable xi in Q is replaced by yi.
Parallel execution of cell(1) to cell(n) is shown by [cell(1)||cell(2)...||cell(n)].

Algorithms 2017, 10, 5 13 of 20

Parallel assignment rule:

P⇒ Q[y1/x1, y2/x2, ..., yn/xn],

{Q[y1/x1, y2/x2, ..., yn/xn]}cell(i){Q} for 1 ≤ i ≤ n
{P}[cell(1)||cell(2)...||cell(n)]{Q}

Other programming constructs such as composition (semi-colon), if-then-else statement, etc., in
sequential Hoare logic can be extended to the parallel versions. Those definitions are omitted, but the
following rule for the if-then and for-loop for the sequential control structure, which controls a parallel
program S from outside, is needed for our verification purpose.

Rule for if-then statement:
{P ∧ B}S{Q}, P ∧ ¬B⇒ Q
{P} if B then S{Q}

In our proof, P(k− 1) corresponds to P, control[i][j− 1] = 1 to B and P(k) to Q.

Rule for the for-loop:
{P(0)}, {P(k− 1)}S{P(k)}

{P(0)} for k = 1 to n do S{P(n)}

This P represents P0 to P5 in our program. S is the parallel program [cell(1)||cell(2)...||cell(n)].
Each cell(i) has a few local variables and assignment statements. For an arbitrary array x, we regard
x[i][j] as a local variable for cell(i, j). A variable from the neighbour, x[i− 1][j], for example, is imported
from the upper neighbour. Updated variables are fetched in the next cycle. The proof for each
{P(k− 1)}cell(i, j){P(k)} for P is given in Appendix.

Theorem 1. Algorithm 8 is correct. The result is obtained at cell(n, n) in 2n− 1 steps.

Proof. From the Hoare logic rule for the for-loop, we have P5(2n− 1) at the end.

P5(2n− 1) at cell(n, n)⇔ sol[n][n] is the maximum sum in scope[n + n− 2n + 1, ..., n][1, ..., n]

⇔ sol[n][n] is the maximum sum in scope[1, ..., n][1, ..., n]

We used array W[1..n][1..n] to compute the maximum W-shape. The value of W[i][j] at cell(i, j) is
ephemeral in the sense that its value changes as computation proceeds. That is, W[i][j] at time k holds
the maximum W-shape anchored at column a[i + j− k, ..., i][j], and at the next step, it changes to that
value of W anchored at column a[i + j− k− 1, ..., i][j].

In order to combine W and N, we must memorize the maximum W and the maximum N for
each anchor column. Thus, we need the three-dimensional array store_W, as well as the array store_N.
Since in the final stage of WN computation, the same anchor column is added from W and N, we need
to subtract the sum of the anchor column. For that purpose, the sum of anchor column a[k, ..., i][j] is
stored in store_column[i][k][j]. Note that the computation of N goes from right to left.

In Algorithm 9, we provide the complete algorithm that combines W and N, where sol is dropped,
and the initialization is omitted. The computation of W and N takes 2n − 1 steps, and WN takes
n steps.

Selecting the maximum of WN[1..n][1..n] can be done in parallel. Algorithm 10 and Figure 9a
illustrate how to find the maximum in a 2D mesh in 2n steps, where the maximum can be retrieved at
the bottom right corner. If we orchestrate the bidirectional data movement in each of four quarters of
the mesh (Figure 9b), so that the maximum of each quarter can meet at the centre for the final selection,
it can be done in n + 1 steps. Therefore, Algorithm 9 takes total of 4n communication steps.

Algorithms 2017, 10, 5 14 of 20

Algorithm 9 Combining W and N.

1: for k← 1 to 2n− 1 do
2: for all 1 ≤ i, j ≤ n in parallel do
3: if control[i][j− 1] = 1 then . Compute W from left to right
4: column[i][j]← column[i− 1][j] + a[i][j]
5: cand1 ←W[i][j− 1] + column[i][j]
6: cand2 ←W[i− 1][j] + a[i][j]
7: cand3 ← old_W[i][j] + top[i][j]
8: old_W[i][j]←W[i][j]
9: W[i][j]←MAX{cand1, cand2, cand3}

10: store_column[i][i + j− k][j]← column[i][j]
11: store_W[i][i + j− k][j]←W[i][j]
12: top[i][j]← top[i− 1][j]
13: control[i][j]← 1
14: end if
15: if control[i][j + 1] = 1 then . Compute N from right to left
16: Mirrored operation of lines 4–13
17: end if
18: end for
19: end for
20: for all 1 ≤ i, j ≤ n in parallel do
21: WN[i][j]← −∞
22: for k← 1 to i do
23: anchor ← store_column[i][k][j]
24: WN[i][j]←MAX{WN[i][j], store_W[i][k][j] + store_N[i][k][j]− anchor}
25: end for
26: end for
27: Find the maximum of WN[1..n][1..n] by Algorithm 10

Algorithm 10 Find the maximum of a[1..n][1..n] in 2n steps.

1: for all 1 ≤ i, j ≤ n in parallel do
2: M[i][j]← a[i][j]
3: end for
4: for k← 1 to n do
5: for all 1 ≤ i, j ≤ n in parallel do
6: M[i][j]←MAX{M[i− 1][j], M[i][j]}
7: end for . Find the maximum in the same column
8: end for
9: for k← 1 to n do

10: for all j in parallel do
11: M[n][j]←MAX{M[n][j− 1], M[n][j]}
12: end for . Find the maximum in the n-th row
13: end for . M[n][n] is the maximum

Algorithms 2017, 10, 5 15 of 20

1
.

F
in

d
 t

h
e

m
ax

im
u
m

 i
n
 t

h
e

co
lu

m
n
 (

n
 s

te
p

s)

2. Find the maximum in the n-th row (n steps)

(a) 2n steps (b) n + 1 steps

Figure 9. Maximum finding in 2D mesh.

6. Computation of the Boundary

So far, we computed the maximum sum of the WN-shape. For practical purposes, we sometimes
need the shape itself. This problem was solved by Thaher [13] for the sequential algorithm
(Algorithm 11). We show how the idea works in our parallel situation. For simplicity, we only
show the boundary computation of the W-shape. We prepare the array store_d[i][k][j] to memorize the
direction from which the algorithm took one of Case 1, Case 2 or Case 3. This part of enhancement in
Algorithm 9 is shown below.

Case 1 : store_d[i][i + j− k][j]← 1

Case 2 : store_d[i][i + j− k][j]← 2

Case 3 : store_d[i][i + j− k][j]← 3

Let array boundary[i][j] = 1, if (i, j) is on the boundary, and zero otherwise. Let (i, k, j) denote the
j-th column from position k to position i, to represent the anchor column of some W-shape. Suppose
the anchor column of the maximum W-shape after Algorithm 9 is (i0, k0, j0). The following sequential
algorithm goes backward from (i0, k0, j0) guided by the data structure store_d[i][k][j]. The correctness
of the algorithm is obvious. The time O(n) can be shown as follows.

Algorithm 11 Computing the boundary.

1: i← i0, j← j0, k← k0
2: while j > 0 and W[i][k][j] > 0 do
3: boundary[i][j]← 1
4: boundary[k][j]← 1
5: D ← store_d[i][k][j]
6: if D=1 then
7: j← j− 1
8: else if D=2 then
9: i← i− 1

10: else if D=3 then
11: k← k + 1
12: end if
13: end while

The time is proportional to the number of changes on indices i, j and k. The index j can be reduced
at most n times. For i and k, we observe i− k decreases whenever i or k changes, resulting in O(n) time
for i and k. The O(n) time for the boundary can be absorbed in O(n) time of Algorithm 9. It will be easy
to organize parallel computation of tracing back over array store_d[i][k][j] by the mesh architecture.

Algorithms 2017, 10, 5 16 of 20

For example, we can convert the array index j to a processor index j and use a one-dimensional mesh
architecture as shown below (Algorithm 12).

This version has O(n) time, which provides no gain time-wise, but the O(n3) space requirement
on a single processor can be eased.

Algorithm 12 Computing the boundary; j-th cell.

1: receive (i, k)
2: while j > 0 and W[i][k] > 0 do
3: boundary[i][j]← 1
4: boundary[k][j]← 1
5: D ← store_d[i][k]
6: if D=1 then
7: send (i, k)-to j− 1-th processor
8: else if D=2 then
9: i← i− 1

10: else if D=3 then
11: k← k + 1
12: end if
13: end while

Main
14: for 1 ≤ j ≤ n in parallel do send (i0, k0) to j0-th processor
15: end for

7. Implementation

We implemented Algorithm 9 on the Blue Gene/P computer under the MPI/Parallel C program
environment. There were many practical issues to be considered. We summarize just three issues here
as representatives.

Firstly, we cannot assume that each cell knows its own position within the mesh array. Depending
on the architecture, additional computation is required for each cell to gather this information.
Within the MPI environment, we can let each cell(i, j) know its position (i, j) by the system call
“MPI_Cart_coords()”.

The second issue is synchronization. We assumed the corresponding statements in all cells are
executed in a synchronized manner. If we remove this assumption, that is if the execution proceeds in
an asynchronous manner, the algorithm loses its correctness.

In MPI, “MPI_Send()”, “MPI_Recv()” and “MPI_Sendrecv()” functions are used to perform
synchronous blocking communications [14]. As we call these functions in each step, no further
mechanisms are necessary to ensure synchronization between cells as the function calls ensure that
any given cell cannot progress one or more steps further than the rest. In other words, one cell
may reach the end of the given step and tries to move onto the next step before others, but then,
the cell must wait for the other cells to reach the same point due to the blocking nature of the MPI
communication functions.

The third implementation issue is related to the number of available processors. As the number
of processors is limited, for large n, we need to have what is called a coarse grain parallel computer.
Suppose, for example, we are given a (1024, 1024) input array and only 16 processors are available.
The input array is divided into sixteen (256, 256) sub-arrays, to which the sixteen processors
are assigned. Let us call the sub-array for each processor its territory. Each processor simulates
one step of Algorithm 8 sequentially. These simulation processes by sixteen processors are done
in parallel. At the end of each simulation, the values in the registers on the right and bottom border
are sent to the left and top borders of the right neighbour and the lower neighbour, respectively.
The simulation of one step takes O((n/p)2) time, and 2n − 1 steps are carried out, meaning the

Algorithms 2017, 10, 5 17 of 20

computing time is O(n3/p2) at the cost of O(p2) processors. When p = 1, we hit the sequential
complexity of O(n3). If p = n, we have the time complexity of Algorithm 8, which is O(n).

While resolving the third implementation issue, we must again face the second issue of
synchronization. For each processor to simulate the parallel computation in its own territory in
a coarse-grained implementation, we must take extra care to ensure synchronization between simulated
cells within each territory. Specifically, we must double the number of variables, that is we prepare
variable x1 for every variable x. Let us associate the space/time index, (i, j, k) with each variable. Let
us call x(i, j, k) the current variable and the variable with indices different by one a neighbour variable.
For example, sol[i][j] in the right-hand side of the assignment statement is a time-wise neighbour, and
that at the left-hand side is a current variable. Furthermore, column[i− 1][j] in the right-hand side is a
neighbour variable space-wise and time-wise, and so on. If x is a current variable, change it to x1. If
it is a variable of a neighbour, keep it as it is. Let us call the modified program P1. Now, we define
“update” to be the set of assignment statements of the form x ← x1.

Example 1. Let P be a one-dimensional mesh program given by Algorithm 13, which shifts array x by one place.
Let us suppose x[0] = 0 and x[i] are already given.

In Algorithm 13, x[i] is the current variable, and x[i − 1] is a neighbour variable space-wise
and time-wise. An asynchronous computer can make all values zero. For the intended outcome,
we perform P1, given by Algorithm 14, which includes “synchronize” and “update”.

Algorithm 13 Program P.

1: for all i in parallel do
2: x[i]← x[i− 1]
3: end for

Algorithm 14 Program P1.

1: for all i in parallel do
2: x1[i]← x[i− 1]
3: end for
4: synchronize
5: for all i in parallel do
6: x[i]← x1[i] /* update */
7: end for

For our mesh algorithm, Algorithm 8, omitting the initialization part, we make the program of
the form that is given by Algorithm 15.

Algorithm 15 Synchronization for coarse grain.

1: for k← 1 to 2n− 1 do
2: P1
3: synchronize
4: update
5: end for

Algorithm 9 was executed on Blue Gene/P with up to 1024 cores. For the software side, the programming
environment of MPI and the parallel C compiler, mpixlc, were used with Optimization Level 5.
The results are shown in Table 1. Arrays of size (n, n) containing random integers were tested. The
times for generating uniformly-distributed random numbers, as well as loading the data onto each
processor were not included in the time measurement. On Blue Gene/P, the mesh architecture can be
configured into a 2D mesh or 3D mesh. The time taken to configure the mesh into a 2D mesh array

Algorithms 2017, 10, 5 18 of 20

for our algorithm was included in the time measurement. As we can see from the table, for small n,
the configuration time dominates, and increasing the number of processors does not result in a
decrease in the execution time. As the size of the input array increases, however, we can see noticeable
improvements in the execution times with a larger number of processors.

Note that we were unable to execute the program under certain configurations as shown by ‘x’
in Table 1. This was due to memory requirements. With large n and small p, each processor must
simulate a very large territory. With each cell in the territory requiring O(n) memory to store the
maximal values of W and N, the memory requirements can become prohibitive. This highlights the
fact that parallelization is required not only to reduce the execution time, but also to handle larger
input data.

Table 1. Time measurements on BG/P(seconds).

p2 = 4 16 64 256 1024

n = 64 0.1069 0.0329 0.0258 0.0251 0.0272
128 0.8435 0.2298 0.0989 0.1253 0.1252
256 7.2762 1.7506 0.4783 0.3783 0.6088
512 64.5455 15.8192 3.6038 1.3141 2.9883
1024 332.8847 137.6626 33.9193 7.7712 7.9303
2048 x x 188.9598 87.5153 43.5064

8. Lower Bound

Algorithm 8 for W is not very efficient, as cells to the right are idling at the early stage. Suppose
we are given an input array with the value a in the top-left cell and b in the bottom-right cell, while all
other value are −∞. Obviously the solution is a if a > b, and b otherwise. The values a and b need to
meet somewhere. It is easy to see that the earliest possibility is at time n− 1. Our algorithm for W
takes 2n− 1 steps, meaning there is still a gap of n steps with the lower bound. This is a sharp contrast
with the mesh algorithm for MSA (Algorithm 4) that completes in n− 1 steps. The role of Algorithm 8
is to establish an O(n) time for the MCS problem on the mesh architecture.

9. Concluding Remarks

We gave an O(n) time parallel algorithm for solving the MSA and MCS problem with n2

processors and a formal proof for the algorithm to compute the W-shape, a part of the MCS problem.
The formal proof for the N-shape can be given in a similar way. The formal proof not only ensures
correctness, but also clarifies what is actually going on inside the algorithm.

The formal proof was simplified by assuming synchronization. The asynchronous version with
(synchronize, update) in Section 7 would require about twice as much complexity for verification, since
we double the number of variables. Once the correctness of the synchronized version is established,
that of the asynchronous version will be acceptable without further verification.

It is open whether there is a mesh algorithm for the MCS problem with the O(1) memory
requirement in each cell. Mesh algorithms are inherently easy to implement on an FPGA and, thus,
can be considered for practical applications.

Appendix A. Proof for Invariants

In the following, sum(k, ..., i; j) is the sum of array portion a[k, ..., i][j]. We assume control[i][j− 1] = 1.

Proof. For {P(k − 1)}cell(i, j){P0(k)}: At the beginning of the k-th iteration, control[i][j] = 1 for
j = 0, ..., k− 1, equivalently control[i][j− 1] = 1 for j = 1, ..., k. cell(i, j) performs “control[i][j] ← 1”
for j = 1, ..., k. Thus, we have {P(k− 1)}cell(i, j){P0(k)} for j = 1, ..., k.

Algorithms 2017, 10, 5 19 of 20

Proof. For {P(k−1)}cell(i, j){P1(k)}: At time k−1, column[i−1][j] = sum(i−1+ j − (k−1), ..., i−1; j) =
sum(i+ j− k, ..., i−1; j). “column[i][j]← column[i−1][j]+ a[i][j]” is performed for i = 1, ..., n and j = 1, ..., k
in parallel. Thus, {P(k− 1)}cell(i, j){P1(k)} holds.

Proof. For {P(k− 1)}cell(i, j){P2(k)}: At time k− 1, top[i− 1][j] = a[i+ j− 1− (k− 1)][j] = a[i+ j− k][j].
At time k, “top[i][j] ← top[i − 1][j]” is performed for i = 1, ..., n and j = 1, ..., k in parallel. Thus,
top[i][j] = a[i + j− k][j], and {P(k− 1)}cell(i, j){P2(k)} holds.

Proof. For {P(k− 1)}cell(i, j){P3(k)}: At time k− 1, W[i][j− 1] is the maximum of W-shapes anchored
at column a[i + (j− 1)− (k− 1), ..., i][j− 1] = a[i + j− k, ..., i][j− 1]. By adding the sum of column
a[i + j− k, ..., i][j], cand1 is made. W[i− 1][j] is the maximum of the W-shape anchored at column
a[i− 1 + j− (k− 1), ..., i− 1][j] = a[i + j− k, ..., i− 1][j]. By adding a[i][j], cand2 is made. old_W[i][j] is
W[i][j] at time k− 1, which is the maximum of W-shapes anchored at column a[i + j− (k− 1), ..., i][j] =
a[i + j − k + 1][j]. By adding top[i][j] = a[i + j − k][j], cand3 is made. Since the maximum of the
W-shape based on column a[i + j− k, ..., i][j] is chosen from only those three possibilities, W[i][j] is
correctly computed.

Proof. For {P(k− 1)}cell(i, j){P4(k)}: After cell(i, j), the value of old_W[i][j] changes from W[i][j] at
k− 2 to k− 1. Thus, {P(k− 1)}cell(i, j){P4(k)} holds.

Proof. For {P(k− 1)}cell(i, j){P5(k)}: The scopes for the four candidates are given below.

• sol[i− 1][j] at k− 1: scope[i− 1+ j− (k− 1), ..., i− 1][1, ..., j] = scope[i + j− k, ..., i− 1][1, ..., j]
• sol[i][j− 1] at k− 1: scope[i + (j− 1)− (k− 1)..i][1, ..., j− 1] = scope[i + j− k, ..., i][1, ..., j− 1]
• sol[i][j] at k− 1: scope[i + j− (k− 1), ..., i][1, ..., j] = scope[i + j− k + 1, ..., i][1, ..., j]
• W[i][j] at k is anchored at column a[i + j− k, ..., i][j] with scope[i + j− k, ..., i][1, ..., j]

There are only four candidates for sol[i][j] from those four scopes. Thus,
{P(k− 1) }cell(i, j){P5(k)} holds.

Acknowledgments: This research was supported by the EU/NZ Joint Project, Optimization and its Applications
in Learning and Industry (OptALI). The experiments were conducted utilising high performance computing
resources from the New Zealand eScience Infrastructure (NeSI), especially the High Performance Computing
unit at the University of Canterbury (UCHPC). [NeSI-UCHPC]URL https://www.nesi.org.nzorhttp://www.hpc.
canterbury.ac.nz

Author Contributions: All authors contributed to the design of algorithms; T.S. provided the codes; T.S. and
S.E.B. designed and performed the experiments; T.T. provided the formal proofs; S.E.B provided the figures; T.T.
wrote more of the initial draft, and all authors contributed to the finalization of the paper

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bell, G. Tony hey and alex szalay: Beyond the data deluge. Science 2009, 323, 1297–1298.
2. Pavlus, J. The search for a new machine. Sci. Am. 2015, 312, 48–53.
3. Fukuda, T.; Morimoto, Y.; Morishita, S.; Tokuyama, T. Data mining with optimized two-dimensional

association rules. ACM Trans. Database Syst. 2001, 26, 179–213.
4. Bentley, J.L. Perspective on performance. Commun. ACM 1984, 27, 1087–1092.
5. Tamaki, H.; Tokuyama, T. Algorithms for the maximum subarray problem based on matrix multiplication.

In Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 1998), San Francisco,
CA, USA, 25–27 January 1998; pp. 446–452.

6. Takaoka, T. Efficient algorithms for the maximum subarray problem by distance matrix multiplication.
Electr. Notes Theor. Comput. Sci. 2002, 61, 191–200.

7. Bae, S.E. Sequential and Parallel Algorithms for Generalized Maximum Subarray Problem. Ph. D Thesis,
University of Canterbury, Christchurch, New Zealand, 2007.

https://www.nesi.org.nz or http://www.hpc.canterbury.ac.nz
https://www.nesi.org.nz or http://www.hpc.canterbury.ac.nz

Algorithms 2017, 10, 5 20 of 20

8. Bae, S.E.; Takaoka, T. Algorithms for the Problem of K Maximum Sums and a VLSI Algorithm for the K
Maximum Subarrays Problem. In Proceedings of the 7th International Symposium on Parallel Architectures,
Algorithms and Networks (I-SPAN 2004), Hong Kong, China, 10–12 May 2004; pp. 247–253.

9. Takaoka, T. Efficient parallel algorithms for the maximum subarray problem. In Proceedings of the 12th
Australasian Symposium on Parallel and Distributed Computing (AusPDC 2014), Auckland, New Zealand,
20–23 January 2014; Volume 152, pp. 45–50.

10. Alves, C.E.R.; Caceres, E.N.; Song, S.W. BSP/CGM Algorithms for Maximum Subsequence and
Maximum Subarray. In Proceedings of the 11th European PVM/MPI Users’ Group Meeting, Budapest,
Hungary, 19–22 September 2004; pp. 139–146.

11. Hoare, C.A.R. An axiomatic basis for computer programming. Commun. ACM 1969, 12, 576–580.
12. Owicki, S.; Gries, D. Verifying properties of parallel programs: An axiomatic approach. Commun. ACM 1976,

19, 279–285.
13. Thaher, M. Efficient Algorithms for the Maximum Convex Sum Problem. PhD Thesis, University of Canterbury,

Christchurch, New Zealand, 2014.
14. IBM: Parallel Environment Runtime Edition for Linux: MPI Programming Guide (SC23-7285-01) (7/2015).

Available online: http://publib.boulder.ibm.com/epubs/pdf/c2372851.pdf (accessed on 29 December 2016).

c© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://publib.boulder.ibm.com/epubs/pdf/c2372851.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Parallel Algorithms for the MSA Problem
	Sequential Algorithm
	Parallel Algorithm 1
	Parallel Algorithm 2
	Parallel Algorithm 3

	Review of Sequential Algorithm for the MCS Problem
	Improved Sequential Algorithm
	Parallel Algorithm for MCS
	Computation of the Boundary
	Implementation
	Lower Bound
	Concluding Remarks
	Proof for Invariants

