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Abstract: DNA fragment assembly requirements have generated an important computational
problem created by their structure and the volume of data. Therefore, it is important to develop
algorithms able to produce high-quality information that use computer resources efficiently.
Such an algorithm, using graph theory, is introduced in the present article. We first determine
the overlaps between DNA fragments, obtaining the edges of a directed graph; with this information,
the next step is to construct an adjacency list with some particularities. Using the adjacency list, it is
possible to obtain the DNA contigs (group of assembled fragments building a contiguous element)
using graph theory. We performed a set of experiments on real DNA data and compared our results
to those obtained with common assemblers (Edena and Velvet). Finally, we searched the contigs in the
original genome, in our results and in those of Edena and Velvet.
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1. Introduction

Each monomer comprising the DNA polymer is formed with a pentose, a phosphate group and
one of four nitrogenous bases: adenine, guanine, cytosine and thymine. In 1953, scientists James
Watson and Francis Crick [1] discovered the double-helix spatial structure of the DNA molecule.
This double chain is coiled around a single axis, and the strands are attached by hydrogen bridges
between pairs of opposite bases. The direction of the polymer chain is determined by the pentose
carbon atoms 5’ and 3’ (the beginning and ending positions of a DNA strand are denoted as 5’ and 3/,
respectively; a DNA strand is read in the 5’ to 3’ direction, and the complementary strand runs in the
opposite direction). The bases in each pair are complementary. The content of adenine (A) is the same
as the content of thymine (T), and the cytosine (C) content is the same as that of guanine (G) (Figure 1).

In 1975, Frederik Sanger [2] proposed a DNA sequencing technique that involved detecting
small dark bands in a thin gel using electrophoresis. Sanger proposed cutting the DNA molecule
at specific points in the sequence with restriction enzymes [3]. This method is slow and costly;
with each digestion, the sample must be divided, and each new division must be cloned to obtain
a sufficient amount of material. To reduce processing time, Sanger et al. [4,5] proposed splitting the
DNA sequences at random points. The disadvantage of this method is that the order of the fragments
is unknown, generating an NP-Complete (Non-deterministic polynomial time) [6] computational
problem. This method is known as the shotgun technigue.
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A strand is read in the 5' - 3' direction 5' ,3
REESETRR

The inverse-complementary strand TGGCAGCCTA

is read in the opposite direction 3¢ 5'

Figure 1. Reading a strand in direct and inverse-complementary.

Rodger Staden [7] proposed a method to assemble the genome using a computer. As the DNA
fragments are produced from many copies of the original genome, more than one fragment comes from
the same region. The DNA fragments should be processed while looking for overlaps, coincidences
in the extremes of the fragments. The total number of bases in the fragments divided by the total
number of bases in the complete genome is called the coverage. If the coverage is high enough, it is
possible to rebuild the genome, but it is difficult to obtain high-quality results because false overlaps
can be generated due to sequencing errors, sample contamination with foreign DNA and chimeras
(the cloning process is carried out using host bacteria, and sometimes the DNA of the sample is
concatenated with that of the host bacteria, producing what is known as a chimera). In our experiments,
we noticed that some DNA sections might not be sampled and that complete genome reconstruction
would therefore not be possible. What can be obtained is a set of contigs covering most of the genome,
and it is the job of a molecular biologist to assemble the contigs using other techniques.

Later, James Weber and Eugene Myers [4] proposed the generation of paired fragments in the
shotgun process. Traditional sequencing starts from the 5" end of each piece of DNA, and only a limited
number of bases can be sequenced. In NGS (Next-Generation Sequencing), the number of bases is
always the same, yielding fixed-size fragments; however, the DNA pieces sequenced are generally
longer. The goal of the paired fragments procedure is to obtain a sequence from the 3’ end as well as
one from the 5’ end, obtaining two fragments from the same piece of DNA. This would help to establish
an interval in the DNA sequence associated with the paired fragments. Unfortunately, sequencing
from the 3’ end is difficult and produces a relatively large number of sequencing errors.

DNA sequencing technology has advanced, decreasing costs and process time. Today, there are
databases with information about many genomes, including the human genome and those of many
disease-causing microorganisms [8]. Steven Salzberg [9] developed a comparative study of DNA
sequence assemblers; tests were carried out with fragment sets obtained using Illumina equipment
(Ilumina: http:/ /www.illumina.com/, Illumina, Inc., San Diego, CA, USA). The fragments’ lengths
were found by NGS technology to be in the range of 50 to 150 bases [10]. The Salzberg study was
developed in 2012; nevertheless, the paradigm remains the same today, and the Salzberg study is
therefore still applicable. The primary metric in the evaluation was N50 (shortest sequence length
close to the median of a set of contigs). Salzberg employed four organisms in the test, including
a Staphylococcus aureus problem. These results are particularly interesting because the tests we
present in this article have been obtained using a problem with the same bacterium. Salzberg did
not include the Edena assembler (http://www.genomic.ch/edena.php, Genomic Research Institute,
Geneva, Switzerland.), developed by David Hernandez [11] in his research. In our comparative study,
this assembler is an important reference.

Initially, greedy (Algorithmic technique that at each step tries to generate the optimal solution
of that step of the problem without considering the rest of the problem) algorithms [12] were
used to find the order of the fragments; later, the de Bruijn graph [13] was introduced with
different values for the k-mer (section of k consecutive bases) [13]. Most of the assemblers available
today are based on de Bruijn graphs. In our comparative study, we include the Velvet assembler
(http:/ /www.ebi.ac.uk/~zerbino/velvet/, EML-EBI, Cambridge, UK), developed by Zerbino [14],
which applies de Bruijn graphs.
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Parsons et al. [15] proposed an optimization with a genetic algorithm to maximize the sum of
the fragment overlaps, but the obtained contigs were relatively short and processing speed was low.
Later, Mallén-Fullerton and Fernandez-Anaya [16] suggested a reduction of the fragments” assembly
problem to the traveling salesman problem (TSP) that has been studied extensively. Solution methods
with relatively good efficiency exist for the TSP. Applying heuristics and algorithms, they obtained
optimal solutions for several commonly used benchmarks, and for the first time, a real-world problem
was solved by using optimization. Using graph theory and setting the appropriate objective functions,
Mallén et al. [17] developed a new assembly method from the perspective of a directed graph,
looking for the reduction of the algorithm’s complexity.

In this publication, taking Mallén et al. [17] as a starting point, we developed a new algorithm
working with the paired fragments (two records identified by “/1” and “/2”, respectively, conforming
to an interval of the sequence of DNA) resulting from the sequencing results of the Illumina equipment.
In our initial tests, we found some contigs that were not located in the published genome for the same
organism, even though these contigs were properly obtained. Empirically, we found that when these
contigs were split at certain points, all of the pieces could, in most cases, be found in the genome.
Using the information from the paired fragments information, we could find the locations where
a contig should be split to increase the quality of the assembly.

To obtain the overlaps between DNA fragments, we used a Trie [17]. Using the overlaps as edges,
a directed graph has been obtained, and we could build a set of contigs improving the N50 [8] of
the previous release [17]. The interval of the paired fragments was a critical factor in our success.
In our experiments, we worked with the sequencing data of real-life organisms obtained from [llumina
equipment, maximizing the lengths of the contigs as the objective function.

In Section 2 of this paper, we present the applied graph theory elements, data structures and
algorithms. In Section 3, we reveal the developed algorithms that solve the assembly problem. Section 4
sets out the application of this new model to a real-life problem comparing our assembler with other
assemblers (Velvet and Edena), and finally, in Section 5, we present our conclusions and ideas for
future work.

2. Graph Theory in the DNA Fragment Assembly Problem

2.1. Generalities

A graph G = (V,E) is a set of vertices V and edges E; the vertices are linked by the edges, and,
on each side of the edge, only one vertex exists. Some graphs are non-directional; nevertheless, if the
system requires a direction, it will activate an ordered paired of vertices, and the result will be called
a directed graph. One paradigm for DNA fragment assembly using overlapping fragments is based on
a graph. Several models have been developed, and these have had variable outcomes with respect
to the algorithm’s complexity and efficiency and the quality of the results in the assembled DNA.
The algorithms based on graph theory include de Bruijn graphs [13], Eulerian paths [10], Hamiltonian
paths [10] and Depth-First search (DFS) [17].

2.2. The Shotgun Technique

In the sequencing process, a sample of DNA is broken into many fragments [10]. Next-Generation
Sequencing (NGS) produces very short fragments, all the same size, usually between 25 and 500 bases.
The cuts are made in random places, usually producing millions of fragments. Each fragment is
sequenced, and the results are stored in a FASTA (plain-text file format used to represent and store
genetic information) file format [18]. Figure 2 illustrates the shotgun technique [10]. Each fragment
overlaps with other fragments; the fragments are the graph vertices, and the number of overlapped
bases are the edge weights. In Figure 3, a graph model example is shown.
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TTCACTTATTTAAAATCTGGAAGAAACCTAGG

TTCACTTATTTAAAATCTGGAAGA
TITAAAATCTGGAAGAAACCTAGG

TTCACTTATTTAAAATCTGGAAGAAACCTAGG

Sequenced info:
fragment 1 left cut:
fragment 2 right cut:
Overlap assembly:

<=16 overlaps => |

Figure 2. Shows the shotgun process for a DNA sequence and the assembly with overlaps.
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01 ACAGACAATGCAAGTTGGGGT GO GACGACGAAATA 09 TCAATTT CTACAGACAAT GCAAGTTGGGGTGGGAC

02 CTACAGACAAT GCAAGTTGGGGTGGGACGACGAAA 08 CAATTTCTACAGACAATGCAAGTTGOGGTGGGACG

03 TCTACAGACAATGCAAGTTGGGOTGGGACGACGAA 07 ATTTCTACAGACAATGCAAGTTGGGOTGGGACGAC

04 CTACAGACAAT GCAAGTTGGGGTGGGACGACGAAC 06 TITCTACAGACAATGCAAGTTGGGGTGGGACGACG

0s TTCTACAGACAATGCAAGTTGGGGTGGGACGACGA 0s TTCTACAGACAATGCAAGTTGGGGTOGGACGAGA
06 TITCTACAGACAATGCAAGTTGGGGTGGGACGACG 03 TCTACAGACAATGCAAGTTGGGOTGOGACGACGAA
07 ATTT CTACAGACAAT GCAAGTTGGGGT GG GACGAC 04 CTACAGACAAT GCAAGTTGGGOTGGGACGACGAAC

09 TCAATTTCT ACAGACAATG CAA GTT GG 6 6T GG GAC 03 TCTACAGACAATGCAAGTTGGGGTGGGACGACGAA
10 CAATTTCTACAGACAAT GCAAGTTG GGGTGGGACA 02 CTACAGACAATGCAAGTT GGGGTGGGACGACGAAA
11 TITCTACAGACAATGCAAGTTGGGGTGGGACAACG 01  ACAGACAATGCAAGTTGGGGTGGGACGACGAAATA
12 TTCTACAGACAATG CAAGTTG GG GTGGGACAA CGA
13 CTACAGACAAT GCAAGTTG GGOTG G GA CAACGAAA 09 TCAATTTCTACAGACAATG CAA GTTGG 6T GGGAC
14 TACAGACAATGCAAGTTG GG GT GG GACAACGAAAT 10 CAATTT CTACAGACAAT GCAAGTTG G GGTG G GACA
15 ACAGACAATGCAAGTTGGGGTGGGACAACGAAATA 11 TITCTACAGACAATGCAAGTTGGGGTGGGACAACG
15 AACAGACAATG CAAGTTG GG GTG G GACAA COAAAT 12 TTCTACAGACAATGCAAGTTGGGGTGGGACAACGA
17 TTAAACAGACAATGCAAGTTGGGGTGGGACAACGA 13 CTACAGACAATG CAAGTTGGGGTGGGACAACGAAA
8 AACAGACAATG CAAGTTGGGGTG G GACAA CRATAA 14 TACAGACAATG CAAGTTG G GGTGG GACAA CGAAAT
19 CAGACAATGCAAGTTGGGGTGGGACAACGATAAAG 15 ACAGACAATGCAAGTTGG G GT GGGACAACGAAATA
20 GACAATGCAAGTTG GG GTGGGACAACGATAAA GAA
21 ACAATGCAAGTTGGGGTGGGACAACGATAAAGAAA 17 TTAAACAGACAATG CAAGTTG GG GTGGGACAACGA
22 AATGCAAGTTGGGGTGGGACAACGATAAAGAAATA 16 AACAGACAATGCAAGTT GGGGTGGGACAACGAAAT
23 TGCAAGTTGGGGTGGGACAACGATAAAGAAATACT 15 ACAGACAATGCAAGITGGGGT GGGACAACGAAATA
2 GCAAGIT GG GGT GGGACAACGATAAAGAAATACTT
25 AGTTGGGGTGGGACAACGATAAAGAAATACTITTT | 17 TTAAACAGACAATGCAAGTTGGGGT GGGACAACGA
2 GTTGGGGTGGGACAACGATAAAGAAATACTITITC | 18 AACAGACAATGCAAGTTGGGGTGGGACAACGATAA
(3a) 19 CAGACAATGCAAGTTGGGGTGGGACAACGATAAAG
20 GACAATGCAAGTTGGGOTGGOACAACGATAAA GAA
21 ACAAT GCAA GTT GG G 6T GG GACAACGAT AAAGAAA
22 AATGCAAGTT GGG GT GGGACAACGATAAAGAAAT A
23 TGCAAGTTGGGGTGGGACAACGATAAAGAAATA CT
Vs 2 % 2 GCAAGTTGGGOTGGGACAACGATAAA GAAATACTT
" ”L@ 25 AGTT GGG GT GGGACAACGATAAAGAAAT ACTTTTT
Q & . 26 GTTG6GGTGGOACAACGATAAAGAAATACTTTTTC

(3b)

Figure 3. Directed graph from a group of fragments. (3a) Semi assembled fragments; (3b) Overlapped

fragments; (3c) Resulting graph from the overlap analysis.

2.3. Pair Generation

The overlaps between fragments are obtained using a Trie data structure [19]. With this data
structure, it is possible to calculate only the real overlaps without checking all of the possible pairs or
the overlaps that are smaller than a predefined length. In the worst-case scenario, the search complexity
of the Trie is O(1), where [ is the fragment length. If n is the number of fragments in the problem,
the complexity to obtain all the overlaps is O(nl). In addition, the Trie has the advantage of storing no
duplicate data [20].
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2.4. Adjacency List

A proper way to manage sparse graphs, as was applied in our case, is the adjacency list data
structure [21]. We found the use of a linked list appropriate for our problem, with a header section
as a dictionary. Each header value is a starting point for the adjacency elements stored in the same
data structure, which really contains a set of adjacency lists. The input and output degrees for each
vertex are calculated while the overlaps are loaded. Each overlap has a preceding and a subsequent
fragment that determine the direction of the edges of the directed graph. The vertices with zero input
degree value are the starting point for a path. The path with a larger sum of weights is a contig in
our algorithms.

Because of the fragment overlaps, each base in a contig can appear in more than one fragment,
as shown in Figure 4. The consensus is the number of times that a nucleotide appears in the same
position of a contig. We considered a minimum consensus to accept a base in a contig. The base found
most frequently in each position of a contig is accepted if its frequency is over the minimum consensus
previously defined. In the example presented in Figure 4, a minimum consensus of four is accepted.

TTCACTTATTTAAAATCTGGAAGAAACCTAG
CACTTATTTAAAATCTGGAAGAAACCTAGGCCTGAA
TTATTTAAAATCTGGAAGAAACCTAGGCCTGAACGGT
TTTAAAATCTGGAAGAAACCTAGGCCTGAACGGTAA
AAAATCTGGAAGAAACCTAGGCCTGAACGGTAATTG
AAATCTGGAAGAAACCTAGGCCTGAACGGTAATTGGGTTT

A: 2 3 5666 66 666 6 55 33
C: 2 2 6 66 55 4
G: 6 6 6 6 5 5 44 211
T 11 33 444 6 6 6 5 4 22 111
TTTAAAATCTGGAAGAAACCTAGGCCTGAACGGT
[ B e e e e e e e e e e e e e e e e e e e e > < - - - - - 2>
bases with low bases with low

| bases with good consensus value

consensus | consensus value

Figure 4. Consensus effect in the contig assembly.

2.5. Specific Characteristics

Our objective is to obtain the paths that maximize the sum from the weights of the edges contained
in the path [17]. Each path starts at a node with zero-input degree and ends at a node with zero-output
degree. Notice that several starting nodes can connect to a shared group of nodes. In this case, we keep
only the path with the maximum edge sum. From the selected paths, it is possible to assemble a set
of contigs.

In the assembly process for the contig, the consensus value [17] must be selected. In the experiments
presented in this article, we used a consensus of 4. Bases with a consensus lower than the specified value
are discarded. A consensus value greater than or equal to the specified value indicates a good-quality
base, as shown in Figure 4. Usually, the lowest consensus values are found in the extremes of the contig.

To verify the quality of the contigs, we searched for them in the original genome. Those not
located were separated into several segments, searching for each one in the genome. Some of these
fragments were located, while a few were not, indicating that the prediction of the split point was not
always accurate. The existence of paired fragments in the contig is a guarantee that the content of the
interval is correct, and this gave us the criterion for the split point with respect to the interval of the
paired fragments.

Figure 5 shows two intervals; the split point of the contig is outside the intervals. All of the
elements outside of the intervals can be discarded because there is no confirmation with the paired
fragments (“/1”, “/2”). It should be noted that the N50 [9] value will be reduced; meanwhile, the new
contigs are of better quality.
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Contig
Fragment X/1 Bases Fragment x/2 Bases Fragment y/1 Bases Fragment y/2
1 7' N X 7'
split
Contig 1 Contig 2

Figure 5. Assembly ensured with the intervals of paired fragments.

3. Algorithms

To resolve the assembly problem, we hereby propose the following sequence (Figure 6):

Step 1. Trie building

‘ Edge overlaps evaluated

Step 2. Adjacency list building

l Directed graph

Step 3. Input and output degree calculation

l Start and end vertices of a path

Step 4. Greatest value paths

I

Contigs

Figure 6. Contigs build sequence.

Step 1. Build a Trie (prefix tree) [19] to identify the overlapped fragments, trying to get the greatest
value from the overlapping while resolving duplicates, fragments without overlap and repetition bases
with the same element.

Step 2. From the list of overlapping fragments that comprise a directed graph, an adjacency list is
built [21], with which we can calculate the input and output degrees of each vertex.

Step 3. Using the degree input and output information of the vertices, we could detect those that
are a head of a path, with zero input degree, and build the path to those with zero output degree,
accumulating the overlapping values of each edge. This accumulated value can change if, when on
a new path, there is a value greater than the previous intersection of an intermediate vertex of the path.

Step 4. Finally, walking in reverse, beginning with the last vertex, rebuild the route marked with
the greatest overlapping values until a vertex of zero input degree is reached. This path is a contig.
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3.1. Trie

The Trie data structure was developed by Fredking [22]. It is a tree structure that forms prefix
texts that are converted into a search index for the new texts. The new texts fit with the prefix and
complement the branch of the tree with a suffix. In our problem, the prefixes and suffixes are letters
from the alphabet: A, C, G, T.

In the building process, the first node with four locations is empty and ready to receive the four
elements A, C, G, T. The first fragment arrives and accommodates depending on the letter value.
For example, the first string is AGGTCGA, and it goes on creating new blank nodes. The next one
arrives with AGGTTTC, and it accommodates from AGGT; the next fragment is AGGCCTC, and now
it accommodates from AGG. Figure 7 shows the resulting tree.

A

/

(@}
-

(9]
-

/

Figure 7. Inserted sequences in the Trie.

The duplicate fragments are easily handled because they do not provide new values to the
branches and are eliminated. The construction of the Trie is, in the worst case, O(In) [19] when there
are no coincidences between the fragments ([ is the fragment length and 7 is the number of fragments).
In our data problem, the number of coincidences is large. Algorithm 1 describes the process of building
the Trie.

Algorithm 1. Trie construction.

1. For each fragment

1.1 For each letter x from the fragment
1.1.1  If box node(x) is free:

1.1.1.1 Take up the box and create new empty node
1.1.2  Else

1.1.2.1 Go to next node
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Algorithm 2 shows the search for the overlapped fragments. In the worst case, it is O(I) for
a single fragment, where / is the length of the fragment, because, at that point, it has completely walked
through the branch of the tree.

Algorithm 2. Searching a fragment in the Trie.

1. For each fragment (1)

1.1 For each fragment (I < I-1 until overlap limit value)
1.1.1  For each fragment-letter vs. Trie-node-letter

1.1.1.a If equal: continue to next fragment-letter and node
1.1.1.b If empty box: finish cycle 1.1

1.2 If end of fragment:

1.2.1  Drain the branch
1.2.2  Identify both fragments and create an edge (from, to, overlap)

3.2. Adjacency List

This data structure is built by taking the list of edges. The list is a conventional data structure for
each fragment.

3.3. Contig Assembly

In this step, the longest path will be sought, starting with all the vertices with zero input
degree, these being the potential starting points of a path that could eventually become a contig.
The walkthrough is carried out until a vertex with zero output degree is found, while accumulating
the overlapping values. Once a path is finished, the walkthrough shifts to the next vertex with zero
input degree and the process is repeated. If a node that has been used in another path is detected,
the process will evaluate the greatest value and will leave the greater value as the result. Once the
complete graph has been processed, each starting node is a contig. Algorithm 3 shows the process used
to obtain the greatest weight of a path.

Algorithm 3. Contigs assembly.

1. For all elements with Din = 0

1.1 Dout minus 1
1.2 For each adjacency element until Dout = 0

121  Accumulate weight
1.3 If accumulated weight > previous weight

1.3.1  Label maximum path

While assembling the branch, a content counter is generated for the column; at the end of the
assembly process, the consensus is reviewed with the counter, and it is possible to remove the sections
not in compliance with the predefined value.

In the FASTA file containing the original fragments [18], the paired values are identified as “/1”
and “/2”; these identifiers will be used to confirm the contig by searching the interval inside the contig.
Algorithm 4 describes how the paired fragments confirm intervals.
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Algorithm 4. Confirm intervals.

1. Interval-counter < 0 (counts the intervals into a contig).
2. For each fragment in the contig

2.1 If type “/1”, search type “/2" in the contig
2.1.1  If Found type “/2” in the contig

2.1.1.1 Yes: interval counter = interval counter+1
3. For each fragment in the contig

3.1 If interval counter = 0

3.1.1  If fragment in in-between, cut of the contig
3.1.2  If fragment in extremes, drop the section

Figure 8a shows a case of a contig that demonstrates continuity between the first confirmation
interval and the subsequent interval. If there is no continuity between the confirmation intervals,
then there is a split point, as shown in Figure 8b. This split point will produce two contigs. The elements
at the extremes are also removed because there is no confirmation interval.

Illumina code
5530/1 <4— without confirmation
1733605/1 <4— without confirmation
6628149/ 1- <4 start confirm interval
7200731/1
6316892/2 Illumina code
6628149/2 inv 1398960/1 <«—without confirmation
4542074/1— 2136342/1 <«—without confirmation
3825852/1 5842273/1_inv <—without confirmation
1185456/1 717432/1 <4—without confirmation
8667953/1 5864145/1_inv <—without confirmation
4542074/2 inv 3378671 /1=———%start confirm interval
4488279/2_ 1552392/1_inv
8667953/2_inv eI 1240204/1
4077062 /1 ———————— 8568189/1_inv
4944750/2 5448495/1_inv

3378671/2_inv —

1185456/2_inv
2158161/2_inv

875244/1 inv

6172029/1_inv 4722102/1

8675608 /1— 1240204/2_inv pend confirm interval
4077062/2 inv 7452571/1_inv <— without confirmation
5891987/2_inv 2238639/2=——)<¢-start confirm interval
6022418/1 inv 8339252/1 inv

6196086/liinv 2238639/1 inv—Jpend confirm interval
2700448/1_inv 6803566/1_inv <«—without confirmation
4944750/1_inv 7472631/2 <«—without confirmation
4715867/2_inv 5712221/1_inv <—without confirmation
4663615/1:—— 2856109/2_inv <—without confirmation
4236403/1 6401133/1 <—without confirmation
3965775/1

5502304/1 (8b)

8675608/2_inv

3236072/1

8624709/1_inv
3812427/1_inv
6216369/2_inv
4236403/2_inv
4663615/2_inv——>end confirm interval
2965482/2_inv 4— without confirmation
3848530/2 <4— without confirmation

(8a)

Figure 8. Examples of confirm intervals. (8a) Contig with confirm interval joined; (8b) Contig with
confirm intervals separated.
4. Experiments

The application of the algorithms was carried out with the Staphylococcus aureus problem,
taken from GAGE (Genome Assembly Gold-Standard Evaluations, 2011, [9]). The information
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consisted of 647,062 fixed-length fragments of 101 bases. The bacterium had a genomic chromosome
with 2,903,081 bases, a first plasmid with 27,428 bases and a second plasmid with 3170 bases.

The lllumina equipment generates three types of DNA sequences: single record, two records paired
in a lineal sample and two records paired in a circular sample. In the paper of Mallén et al. [17], the work
was applied to a single record; in this new approach, we have worked with lineal paired records.
These paired records contained the information necessary to confirm intervals in the assembled DNA.

The reverse-complementary fragments were generated (inverted sequence exchanging AxT and
CxG in reverse order) for both types of records, “/1” and “/2”. The correspondence of the pairs is:

Type “/1” paired with the reverse complement of “/2”,

Type “/2” paired with the reverse complement of “/1”.

The generation of these reverse-complementary pairs generated duplicated contigs; they were
eliminated from the result.

The Velvet release we used was 1.2.10, and we searched for the execution with the best results
of N50 [9], varying the value of the k-mer [13]. Ultimately, the best value obtained was 31. The Eden
release we used was 3.13, and, in the same way, we took the best result with different overlap values to
obtain the best N50 [9]. The best value was 30 overlapping bases.

Nlumina equipment delivers two fragment data files. The first contains the record type “/1” and
the second contains the record type “/2”. In both Edena and Veluvet, it is possible to define a parameter
for how to use these files. During the tests, this was considered.

With our programs (in the C/C++ programming language), we also had different parameter
values with respect to overlapping. The best result of N50 [9] was found with 50 bases. In the results,
we produced two versions, A and B. In our programs, we merge both data files because, during the
initial tests, we found these records in the same file. We deleted the records with “N” values for the
bases; this value means that the base is undetermined. In addition, we removed all characters except
for the A, C, G, and T values. During the Trie process, we removed duplicate fragments, and, finally,
we eliminated repetitions of the same base value with more than 15 occurrences. This decision was
based on an analysis of the data as a special case and would not be applicable to other organisms.

The A version of our program was designed for paired records; the B version also included both
records, but the confirmation interval was applied to the contigs. In this version, we also eliminated
the contigs with a length shorter than 1.5 times the fragment size. Edena also carries out this process,
but this decision cannot be modified by the user; it is a consistency requirement. This action resulted
in a modest improvement in N50 [9]. Table 1 shows the results of the executions in the “Generated”
section. To determine how close we were to obtaining total genome reconstruction, we did a search of
every contig in the original genome with our results, with those of Edena and with those of Velvet.

The results presented in Table 1 have been obtained from QUAST (v 4.4. CAB: Center for
Algorithmic Biotechnology. St. Petersburg, Russia) [23]. The search was also done with Mummer [24].
The last column of Table 1 shows the result from Mummer, representing the contigs that have been
found completely in the original genome. This result was applied to Edena, Velvet and our programs.

We performed all program executions two consecutive times to guarantee an execution time
independent of computer dependencies such as those from the cache memory, the hard disk or the
processor. With the Linux command “time” in terminal mode, we obtained the real time and the user
time. We took the real time in all the proofs and the lower of the two times from the first and the
second executions.

All of the runs were made on the same computer, employing 64 bit Linux with Ubuntu 14.4 Long
Term Support (London, UK), 16 gigabytes of RAM, an Intel (Santa Clara, CA, USA) i5-4460 processor @
3.2 GHz x 4 and a hard disk with an EXT4 partition type. The programming language of our programs
(versions A and B) was C/C++, with the standard compilation C++ ISO (-std = C++11), and without
any optimization. Table 2 shows the execution times for each of the cases tested.
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Table 1. Experimental results.
Organism: Staphylococcus aureus Genome: 2,903,081 with Two Plasmids
Generated (Statistics without Reference) Found in Genome (Statistics with Genome Reference)
P Contigs Contigs in the Total Bases in Total Bases in N50 from NG50 from Total Number of Genome Contigs Foun.d by
rogram Parameter y . . . P Mummer in
Generated Assembly the Assembly the Contigs Contigs Contigs Found Aligned Bases Fraction % o,
Genome at 100%
Velvet k-mer =31 1059 693 2,733,950 2,816,990 6666 6216 2,733,853 93.942% 67.3%
Edena overlap = 30 3038 1670 2,017,901 2,419,142 1380 938 2,017,901 69.39% 86.6%
Version A overlap =50 2985 1701 2,234,717 2,619,179 1539 1183 2,233,545 76.326% 84.3%
Version B overlap = 50 20,439 2090 1,455,722 6,016,455 675 500 1,437,787 25.986% 93.4%
w/confirm interval
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Table 2. Execution times.

Program Step Execution Time (s)

Velvet Velveth 23.085
Velvetg 6.397

Edena Edena-DR 363.676
Edena-e 2.051

Version A FragAPares 69.140
ListAdy 5.002

Version B FragAPares 69.140
ListAdyU 5.834

5. Conclusions

The advantages of our algorithms are described below.

Before applying the confirmation intervals, our N50 [9] was superior to Edena but not to Velvet.
It is clear that Velvet uses de Bruijn graphs [13], and it contains a rebuilding contigs step. The resultant
N50 of Velvet is better than those of Edena and our programs (see Table 3).

Table 3. N50 comparison.

N50 from Generated Contigs

Velvet 6666
Edena 1380
Version A 1539
Version B 675

After applying the confirmation intervals, our N50 [9] for the paired fragments was smaller, but
the quality of the contigs was greater than those of the other programs, as seen in the percentage of
Mummer-located contigs (see Table 4).

Table 4. Contigs found by Mummer.

Contigs Found by MUMMER in the Genome at 100%

Velvet 67.3%
Edena 86.6%
Version A 84.3%
Version B 93.4%

The values found by Mummer (see Table 1) do not help Velvet (67.3%), and our program yielded
the best value (93.4%). If Mummer locates the contig completely in the genome, it appears as a 100%
value; if Mummer cannot locate the contig, it adjusts the difference, splitting or tolerating certain errors
and trying to relocate the pieces, reporting these as a percent value less than 100%. These values are
not included in Table 1.

Regarding the execution times (see Table 2), in the first step, Edena took 6 min to calculate the
overlap, and it took the longest time for the samples. In our version, an equivalent process took
approximately 1 min, so we concluded that our process is much faster than Edena, though that is not
the case when compared to Velvet. Our program requested approximately 4 gigabytes of RAM to
manage the Trie [22]. Meanwhile, as the Trie grows, it becomes asymptotic; the construction of the Trie
is rapid, with times on the order of five seconds.

A potential future study could search the “/2” type records outside the contig with a “/1” type
record without its matching pair. These might generate a contig with a greater confirmation interval
and, consequently, a better N50 value [9].
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To obtain an improvement in the execution time, it would be advisable to eliminate the transitive
edges of the graph. With this action, the data volume would be reduced significantly.

The identification of the sequences of the contigs could represent valuable information for
molecular biologists, and these could probably be obtained by looking for paired fragments that
span multiple contigs. The records with undetermined values (“N”) could probably also contribute
some information about the contig ordering.

Finally, the scaffolding process (contigs assembly) could generate important results for biologists,
including a likely new step of detecting overlapping within contigs and giving rise to some adjustments
in the quality assurance of the assembly.
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