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Abstract: This paper discusses the generalized local version of critical section problems including
mutual exclusion, mutual inclusion, k-mutual exclusion and l-mutual inclusion. When a pair of
numbers (li, ki) is given for each process Pi, it is the problem of controlling the system in such a way
that the number of processes that can execute their critical sections at a time is at least li and at most
ki among its neighboring processes and Pi itself. We propose the first solution for the generalized
local (li, |Ni| + 1)-critical section problem (i.e., the generalized local li-mutual inclusion problem).
Additionally, we show the relationship between the generalized local (li, ki)-critical section problem
and the generalized local (|Ni|+ 1− ki, |Ni|+ 1− li)-critical section problem. Finally, we propose
the first solution for the generalized local (li, ki)-critical section problem for arbitrary (li, ki), where
0 ≤ li < ki ≤ |Ni|+ 1 for each process Pi.
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1. Introduction

The mutual exclusion problem is a fundamental process synchronization problem in concurrent
systems [1–3]. It is the problem of controlling the system in such a way that no two processes
execute their critical sections (CSs) at a time. Generalizations of mutual exclusion have been
studied extensively, e.g., k-mutual exclusion [4–9], mutual inclusion [10] and l-mutual inclusion [11].
The k-mutual exclusion problem is controlling the system in such a way that at most k processes can
execute their CSs at a time. The mutual inclusion problem is the complement of the mutual exclusion
problem; unlike mutual exclusion, where at most one process is in the CS, mutual inclusion places
at least one process in the CS. In a similar way, the l-mutual inclusion problem is the complement
of the k-mutual exclusion problem; unlike k-mutual exclusion, where at most k processes are in the
CSs, l-mutual inclusion places at least l processes in the CSs. These generalizations are unified to a
framework “the critical section problem” in [12]. Informally, the global (l, k)-CS problem is defined
as follows. For each 0 ≤ l < k ≤ n, the global (l, k)-CS problem has at least l and at most k processes
in the CSs in the entire network.

This paper discusses the generalized local CS problem, which is a new version of CS problems.
When the numbers li and ki are given for each process Pi, it is the problem of controlling the system
in such a way that the number of processes that can execute their CSs at a time is at least li and
at most ki among its neighbors and itself. In this case, we call this problem “the generalized local
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(li, ki)-critical section problem”. Note that the local (l, k)-CS problem assumes that the values of l and
k are shared among all processes in the network, whereas the generalized local CS problem assumes
that the values of li and ki are set for each process Pi. These are the generalizations of local mutual
exclusion [13–17], local k-mutual exclusion [18] and local mutual inclusion [11]. If every process has
(0, 1), then the problem is the local mutual exclusion problem. If every process has (0, k), then the
problem is the local k-mutual exclusion. If every process has (1, |Ni| + 1), then the problem is the
local mutual inclusion problem, where Ni is the set of Pi’s neighboring processes. The global CS
problem is a special case of the local CS problem when the network topology is complete. However,
to the best of our knowledge, our algorithm in this paper is the first solution for the generalized local
(li, ki)-CS problem.

The generalized local (li, ki)-CS problem is interesting not only theoretically, but also practically,
because it is useful for fault-tolerance and load balancing of distributed systems. For example, we can
consider the following future applications.

• One application is a formulation of the dynamic invocation of servers for the load balancing.
The minimum number of servers that are always invoked for quick responses to requests for
Pi is li. The number of servers is dynamically changed by the system load. However, the total
number of servers is limited by available resources like bandwidth for Pi, and the number is ki.

• Another is fault-tolerance services if each process in the CS provides a service for the network.
Because every process has direct access to at least li servers, it guarantees fault-tolerant services.
However, because providing services involve a significant cost, the number of servers should be
limited at most ki for each process.

• The other is that each process in the CS provides service A, and other processes provide service
B for the network. Then, every process in the network has direct access to at least li servers of A
and has direct access to at least |Ni|+ 1− ki servers of B.

In each case, the numbers li and ki can be set for each process.
In this paper, we propose a distributed algorithm for the generalized local (li, ki)-CS problem for

arbitrary (li, ki), where 0 ≤ li < ki ≤ |Ni| + 1 for each process Pi. To this end, we first propose
a distributed algorithm for the generalized local (li, |Ni| + 1)-CS problem (we call it generalized
local li-mutual inclusion problem). It is the first algorithm for the problem. Next, we show that
the generalized local (li, ki)-CS algorithms and the generalized local (|Ni|+ 1− ki, |Ni|+ 1− li)-CS
algorithms are interchangeable by swapping process state, in the CS and out of the CS. By using this
relationship between these two problems, we propose a distributed algorithm for the generalized
local (li, ki)-CS problem for arbitrary (li, ki), where 0 ≤ li < ki ≤ |Ni| + 1 for each process Pi.
We assume that there is a process PLDR, such that |NLDR| ≥ 4, lLDR ≤ kLDR − 3 and lq ≤ kq − 3
for each Pq ∈ NLDR.

This paper is organized as follows. Section 2 provides several definitions and problem statements.
Section 3 provides a solution to the generalized local (li, |Ni|+ 1)-CS (i.e., generalized local li-mutual
inclusion) problem. Section 4 presents an observation on the relationships between the generalized
local (li, ki)-CS problem and the generalized local (|Ni|+ 1− ki, |Ni|+ 1− li)-CS problem. Section 5
provides a solution to the generalized local (li, ki)-CS problem. In Section 6, we give a conclusion
and discuss future works.

2. Preliminaries

2.1. System Model

Let V = {P1, P2, ..., Pn} be a set of n processes and E ⊆ V × V be a set of bidirectional
communication links in a distributed system. Each communication link is FIFO. Then, the topology
of the distributed system is represented as an undirected graph G = (V, E). By Ni, we denote the set
of neighboring processes of Pi. That is, Ni = {Pj | (Pi, Pj) ∈ E}. By dist(Pi, Pj), we denote the distance
between processes Pi and Pj. We assume that the distributed system is asynchronous, i.e., there is no
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global clock. A message is delivered eventually, but there is no upper bound on the delay time, and
the running speed of a process may vary.

A set of local variables defines the local state of a process. By Qi, we denote the local state of
each process Pi ∈ V. A tuple of the local state of each process (Q1, Q2, ..., Qn) forms a configuration
of a distributed system.

2.2. Problem

We assume that each process Pi ∈ V maintains a variable statei ∈ {InCS,OutCS}. For each
configuration C, let CS(C) (resp., CS(C)) be the set of processes Pi with statei = InCS (resp.,
statei = OutCS) in C. For each configuration C and each process Pi, let CS i(C) (resp., CS i(C)) be
the set CS(C)∩ (Ni ∪ {Pi}) (resp., CS(C)∩ (Ni ∪ {Pi})). The behavior of each process Pi is as follows,
where we assume that Pi eventually invokes entry-sequence when it is in the OutCS state, and Pi
eventually invokes exit-sequence when it is in the InCS state.

statei := (Initial state of Pi in the initial configuration C0);
while true{

if(statei = OutCS){
Entry-Sequence;
statei := InCS;
/* Critical Section */
}
if(statei = InCS){

Exit-Sequence;
statei := OutCS;
/* Remainder Section */
}
}

Definition 1. (The generalized local critical section problem). Assume that a pair of numbers li and ki
(0 ≤ li < ki ≤ |Ni|+ 1) is given for each process Pi ∈ V on network G = (V, E). Then, a protocol solves
the generalized local critical section problem on G if and only if the following two conditions hold in each
configuration C.

• Safety: For each process Pi ∈ V, li ≤ |CS i(C)| ≤ ki at any time.
• Liveness: Each process Pi ∈ V changes OutCS and InCS states alternately infinitely often.

We call the generalized local CS problem when li and ki are given for each process Pi “the
generalized local (li, ki)-CS problem”.

We assume that the initial configuration C0 is safe, that is each process Pi satisfies
li ≤ |CS i(C0)| ≤ ki. In the case of (li, ki) = (0, 1) (resp., (1, |Ni| + 1)), the initial state of each
process can be OutCS (resp., InCS) because it satisfies the condition for the initial configuration. In the
case of (li, ki) = (1, |Ni|), the initial state of each process is obtained from a maximal independent
set I as follows; a process is in the OutCS state if and only if it is in I. Note that existing works
for CS problems assume that their initial configurations are safe. For example, for the mutual
exclusion problem, most algorithms assume that each process is in the OutCS state initially, and some
algorithms (e.g., token-based algorithms) assume that exactly one process is in the InCS state and
other processes are in the OutCS state initially. Hence our assumption for the initial configuration is
common for existing algorithms.
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2.3. Performance Measure

We apply the following performance measure as message complexity to the generalized local
CS algorithm: the number of message exchanges triggered by a pair of invocations of exit-sequence
and entry-sequence.

3. Proposed Algorithm for the Generalized Local li-Mutual Inclusion

In this section, we propose an algorithm li-LMUTIN for the case that ki = |Ni|+ 1.
First, we explain how the safety is guaranteed. Initially, the configuration is safe, that is each

process Pi satisfies li ≤ |CS i(C0)| ≤ |Ni| + 1. When Pi wishes to be in the OutCS state, Pi requests
permission by sending a 〈Request, tsi, Pi〉 message for each process in Ni ∪ {Pi}. When Pi obtains a
permission by receiving a 〈Grant〉 message from each process in Ni ∪ {Pi}, Pi changes to the OutCS
state. Each process Pj grants permissions to |Nj| − lj + 1 processes at each time. Hence, at least lj
processes in Nj ∪ {Pj} cannot be in the OutCS state at the same time. When Pi wishes to be in the InCS
state, Pi changes to the InCS state and sends a message 〈Release, Pi〉 for each process in Ni ∪ {Pi} to
manage the next request for exiting the CS.

Next, we explain how the liveness is guaranteed. We incorporate the timestamp mechanism
proposed by [19] in our algorithm. Based on the priority of the timestamp for each request to change
the state, a process preempts a permission when necessary, as proposed in [11,20,21]. The proposed
algorithm uses 〈Preempt, Pi〉 and 〈Relinquish, Pi〉messages for this purpose.

In the proposed algorithm, each process Pi maintains the following local variables.

• statei: The current state of Pi: InCS or OutCS.
• tsi: The current value of the logical clock [19].
• nGrantsi: The number of grants that Pi obtains for exiting the CS.
• grantedToi: A set of timestamps (tsj, Pj) for the requests to Pj’s exiting the CS that Pi has been

granted, but that Pj has not yet released.
• pendingReqi: A set of timestamps (tsj, Pj) for the requests to Pj’s exiting the CS that are pending.
• preemptingNowi: A process id Pj such that Pi preempts a permission for Pj’s exiting the CS if the

preemption is in progress.

For each request, a pair (tsi, Pi) is used as its timestamp. We implicitly assume that the value
of the logical clock [19] is attached to each message exchanged. Thus, in the proposed algorithm,
we omit a detailed description of the maintenance protocol for tsi. The timestamps are compared as
follows: (tsi, Pi) < (tsj, Pj) iff tsi < tsj or (tsi = tsj) ∧ (Pi < Pj).

Formal description of the proposed algorithm for each process Pi is presented in Algorithms 1
and 2. When each process Pi receives a message, it invokes a corresponding message handler. Each
message handler is executed atomically. That is, if a message handler is being executed, the arrival
of a new message does not interrupt the message handler. In this algorithm description, we use
the statement wait until (conditional expression). By this statement, a process is blocked until the
conditional expression is true. While a process is blocked by the wait until statement and it receives
a message, it invokes a corresponding message handler.

Algorithm 1 Local variables for process Pi in algorithm li-LMUTIN

statei ∈ {InCS,OutCS}, initially statei =

{
InCS (Pi ∈ CS(C0))
OutCS (Pi 6∈ CS(C0))

tsi : integer, initially 0;
nGrantsi: integer, initially 0;
grantedToi: set of (integer, processID), initially {(0, Pj ∈ CS i(C0))};
pendingReqi: set of (integer, processID), initially ∅;
preemptingNowi: processID, initially nil;
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Algorithm 2 Algorithm li-LMUTIN: exit-sequence, entry-sequence and message handlers.
Exit-Sequence:

tsi := tsi + 1;
nGrantsi := 0;
for-each Pj ∈ (Ni ∪ {Pi}) send〈Request, tsi, Pi〉 to Pj;
wait until (nGrantsi = |Ni|+ 1);
statei := OutCS;

Entry-Sequence:
statei := InCS;
for-each Pj ∈ (Ni ∪ {Pi}) send〈Release, Pi〉 to Pj;

On receipt of a 〈Request, tsj, Pj〉message:
pendingReqi := pendingReqi ∪ {(tsj, Pj)};
if (|grantedToi| < |Ni| − li + 1){

(tsh, Ph) := deleteMin(pendingReqi);
grantedToi := grantedToi ∪ {(tsh, Ph)};
send 〈Grant〉 to Ph;

} else if (preemptingNowi = nil){
(tsh, Ph) := max(grantedToi);
if ((tsj, Pj) < (tsh, Ph)){

preemptingNowi := Ph;
send 〈Preempt, Pi〉 to Ph;

}
}

On receipt of a 〈Grant〉message:
nGrantsi := nGrantsi + 1;

On receipt of a 〈Release, Pj〉message:
if (Pj = preemptingNowi) preemptingNowi := nil;
Delete (∗, Pj) from grantedToi;
if (pendingReqi 6= ∅){

(tsh, Ph) := deleteMin(pendingReqi);
grantedToi := grantedToi ∪ {(tsh, Ph)};
send 〈Grant〉 to Ph;

}

On receipt of a 〈Preempt, Pj〉message:
if (statei = InCS){

nGrantsi := nGrantsi − 1;
send 〈Relinquish, Pi〉 to Pj;

}

On receipt of a 〈Relinquish, Pj〉message:
preemptingNowi := nil;
Delete (∗, Pj) from grantedToi, and let (tsj, Pj) be the deleted item;
pendingReqi := pendingReqi ∪ {(tsj, Pj)};
(tsh, Ph) := deleteMin(pendingReqi);
grantedToi := grantedToi ∪ {(tsh, Ph)};
send 〈Grant〉 to Ph;

3.1. Proof of Correctness

In this subsection, we show the correctness of li-LMUTIN.

Lemma 1. (Safety) For each process Pi ∈ V, li ≤ |CS i(C)| ≤ |Ni|+ 1 holds at any configuration C.
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Proof. We assume that the initial configuration C0 is safe, i.e., li ≤ |CS i(C0)|. Therefore, we consider
the process Pi, which becomes unsafe first for the contrary. Suppose that |CS i(C)| < li, that is
|CS i(C)| > |Ni|+ 1− li. Because |CS i(C0)| ≥ li, consider a process Pj ∈ Ni ∪ {Pi}, which became
the OutCS state by the (|Ni| + 2 − li)-th lowest timestamp among processes in CS i(C). Then, Pj
obtains permission to be the OutCS state from each process in Nj ∪ {Pj}. This implies that Pi receives
a request 〈Request, tsj, Pj〉 from Pj and that Pi sends a permission 〈Grant〉 to Pj. Because Pi grants at
most |Ni|+ 1− li permissions to exit the CS at each time, Pj cannot obtain a permission from Pi; this
is a contradiction.

Lemma 2. (Liveness) Each process Pi changes into the InCS and OutCS states alternately infinitely often.

Proof. By contrast, suppose that some processes do not change into the InCS and OutCS states
alternately infinitely often. Let Pi be such a process where the lowest timestamp value for its request
to be the OutCS state is (tsi, Pi). Without loss of generality, we assume that Pi is blocked in the InCS
state. That is, Pi is blocked by the wait until statement in the exit-sequence (recall that each process
changes into the InCS state eventually when it is in the OutCS state). Let Pj be any process in Ni.

• Suppose that Pj changes into the InCS and OutCS states alternately infinitely often. After Pj
receives the 〈Request, tsi, Pi〉message from Pi, the value of (tsj, Pj) exceeds the timestamp (tsi, Pi)

for Pi’s request. Because, by this algorithm, the request with the lowest timestamp is granted
preferentially, it is impossible for Pj to change into the InCS and OutCS states alternately infinitely
often. Then, Pj eventually sends a 〈Grant〉 message to Pi, and Pi eventually sends a 〈Grant〉
message to itself.

• Suppose that Pj does not change into the InCS and OutCS states alternately infinitely often.
Because the timestamp of Pi is smaller than that of Pj, by assumption, Pj’s permission is
preempted, and a 〈Grant〉 message is sent from Pj to Pi. In addition, Pi sends a 〈Grant〉 message
to itself.

Therefore, Pi eventually receives a 〈Grant〉message from each process in Ni ∪ {Pi}, and the wait
until statement in the exit-sequence does not block Pi forever.

3.2. Performance Analysis

Lemma 3. The message complexity of li-LMUTINfor Pi ∈ V is 3(|Ni|+ 1) in the best case and 6(|Ni|+ 1)
in the worst case.

Proof. First, let us consider the best case. In exit-sequence, for Pi’s exiting the CS, Pi sends a
〈Request, tsi, Pi〉 message to each process in Ni ∪ {Pi}; each process in Ni ∪ {Pi} sends a 〈Grant〉
message to Pi. In entry-sequence, after Pi’s entering the CS, Pi sends a 〈Release, Pi〉 message to each
process in Ni ∪ {Pi}. Thus, 3(|Ni|+ 1) messages are exchanged.

Next, let us consider the worst case. For Pi’s exiting the CS, Pi sends a 〈Request, tsi, Pi〉message to
each process Pj in Ni ∪{Pi}. Then, Pj sends a 〈Preempt, Pj〉message to the process Pm to which Pj sends
a 〈Grant〉 message, Pm sends a 〈Relinquish, Pm〉 message back to Pj and Pj sends a 〈Grant〉 message to
Pi. After Pi’s entering the CS, Pi sends a 〈Release, Pi〉 message to each process Pj in Ni ∪ {Pi}. Then,
Pj sends a 〈Grant〉 message to return a grant to Pm or grant to some process with the highest priority
in pendingReqj. Thus, 6(|Ni|+ 1) messages are exchanged.

Theorem 1. li-LMUTIN solves the generalized local (li, |Ni| + 1)-critical section problem with a message
complexity of O(∆), where ∆ is the maximum degree of a network.

4. The Generalized Local Complementary Theorem

In this section, we discuss the relationship between the generalized local CS problems.
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Let AG (l,k) be an algorithm for the global (l, k)-CS problem, and AL(li ,ki)
be an algorithm for

the generalized local (li, ki)-CS problem. By Co-AG (l,k)(resp., Co-AL(li ,ki)
), we denote a complement

algorithm of AG (l,k)(resp., AL(li ,ki)
), which is obtained by swapping the process states, InCS

and OutCS.
In [12], it is shown that the complement of AG (l,k) is a solution to the global (n − k, n − l)-CS

problem. We call this relation the complementary theorem. Now, we show the generalization of the
complementary theorem for the settings of local CS problems.

Theorem 2. For each process Pi, a pair of numbers li and ki (0 ≤ li < ki ≤ |Ni| + 1) is given.
Then, Co-AL(li ,ki)

is an algorithm for the generalized local (|Ni|+ 1− ki, |Ni|+ 1− li)-CS problem.

Proof. ByAL(li ,ki)
, at least li and at most ki processes among each process and its neighbors are in the

CS. Hence, by Co-AL(li ,ki)
, at least li and at most ki processes among each process and its neighbors

are out of the CS. That is, at least |Ni|+ 1− ki and at most |Ni|+ 1− li processes among each process
and its neighbors are in the CS.

By Theorem 2, Co-(li-LMUTIN) is an algorithm for the generalized local (0, ki)-CS problem
where ki = |Ni|+ 1− li. We call it ki-LMUTEX.

5. Proposed Algorithm for the Generalized Local CS Problem

In this section, we propose an algorithm LKCSfor the generalized local (li, ki)-CS problem for
arbitrary (li, ki), where 0 ≤ li < ki ≤ |Ni| + 1 for each process Pi. We assume that, the initial
configuration C0 is safe. Before we explain the technical details of LKCS, we explain the basic idea
behind it.

5.1. Idea

The main strategy in LKCS is the composition of two algorithms, li-LMUTIN and ki-LMUTEX.
In the following description, we simply call these algorithms LMUTIN and LMUTEX, respectively.
The idea of the composition in LKCS is as follows.

Exit-Sequence:
Exit-Sequence for LMUTIN;
Exit-Sequence for LMUTEX;

Entry-Sequence:
Entry-Sequence for LMUTEX;
Entry-Sequence for LMUTIN;

This idea does not violate the safety by the following observation.

• Exit-sequence keeps the safety because invocation of exit-sequence for LMUTIN keeps the safety,
and invocation of exit-sequence for LMUTEX trivially keeps the safety.

• Similarly, entry-sequence keeps the safety because invocation of entry-sequence for LMUTEX
keeps the safety, and invocation of entry-sequence for LMUTIN trivially keeps the safety.

Because invocations of exit-sequence for LMUTIN in exit-sequence and entry-sequence for
LMUTEX in entry-sequence may block a process forever, i.e., deadlocks and starvations, we need
some mechanism to such situation which makes the proposed algorithm non-trivial.

A problem in the above idea is the possibility of deadlocks in the following situation. There
is a process Pu with stateu = InCS such that |CSu(C)| = lu or Pu has a neighbor Pv ∈ Nu with
|CSv(C)| = lv. Then, Pu cannot change its state by exit-sequence until at least one of its neighbors
Pw ∈ Nu with statew = OutCS changes Pw’s state by entry-sequence. If |CSw(C)| = kw or Pw has a
neighbor Px ∈ Nw with |CSx(C)| = kx, Pw cannot change its state by entry-sequence until at least
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one of its neighbors Py ∈ Nw with statey = InCS changes Py’s state by exit-sequence. In the network,
if every process is in such situation, a deadlock occurs.

To avoid such a deadlock, we introduce a mechanism “sidetrack”, meaning that some processes
reserve some grants, which are used only when the system is suspected to be a deadlock. Hence, in a
normal situation, i.e., not suspected to be a deadlock, the number of processes in the CS is limited.
In this sense, LKCS is a partial solution to the (li, ki)-CS problem unfortunately. Currently, a full
solution to the problem is not known and left as a future task.

The idea of the “sidetrack” in LKCS is explained as follows. We select a process, say PLDR, with
|NLDR| ≥ 4 as a “leader”, and each process Pq within two hops from the leader may allow at least
lq + 1 and at most kq − 1 processes to be in the CSs locally in a normal situation. We assume that
kq − lq ≥ 3, because kq − 1− (lq + 1) ≥ 1. Other processes Pi may allow at least li and at most ki
processes to be in the CSs locally in any situation and ki − li ≥ 1. The leader observes the number of
neighbor processes that may be blocked, and when the leader itself and all of the neighbors can be
blocked, the leader suspects that the system is in a deadlock situation. Then, the leader designates a
process within one hop (including the leader itself) to use the “sidetrack” to break the chain of cyclic
blocking. Because the designated process Pq uses one extra CS exit/entry, the number of processes
in the CSs is at least (lq + 1) − 1 = lq and at most (kq − 1) + 1 = kq, and hence, LKCS does not
deviate from the restriction of the (li, ki)-CS problem. The suspicion by the leader process PLDR is not
always correct, i.e., PLDR may suspect that the system is in a deadlock when this is not true. However,
incorrect suspicion does not violate the safety of the problem specification.

5.2. Details of LKCS

We explain the technical details of LKCS below. Formal description of LKCS for each process
Pi is presented in Algorithms 3–7. The execution model of this algorithm is the same as the
previous section, except that the while statement is used in LKCS. By while (conditional expression)
{statement}, a process is blocked until the conditional expression is true. While a process is blocked by
this statement, it executes only the statement between braces and message handlers. While a process
is blocked by this statement and it receives a message, it invokes a corresponding message handler.
That is, if the statement between braces is empty, this while statement is same as wait until statement.

Algorithm 3 Local variables and macros for process Pi in algorithm LKCS
Local Variables:

enum at {MUTEX,MUTIN};

statei ∈ {InCS,OutCS}, initially statei =

{
InCS (Pi ∈ CS(C0))
OutCS (Pi 6∈ CS(C0))

tsi : integer, initially 1;
nGrantsi[at]: set of processID, initially ∅;
grantedToi[at]: set of (integer, processID), initially {(1, Pj ∈ CS i(C0))};
pendingReqi[at]: set of (integer, processID), initially ∅;
preemptingNowi[at]: (integer, processID), initially nil;

Local Variable only for a leader PLDR:
candidateLDR: set of (integer, processID), initially ∅;

Macros:

Li ≡
{

li dist(PLDR, Pi) > 2
li + 1 dist(PLDR, Pi) ≤ 2

Ki ≡
{

ki dist(PLDR, Pi) > 2
ki − 1 dist(PLDR, Pi) ≤ 2

GrantLDR ≡ {Pj | (∗, Pj) ∈ grantedToLDR[MUTIN] ∧ (∗, Pj) ∈ grantedToLDR[MUTEX]}
WaitingLDR ≡ |pendingReqLDR[MUTIN]|+ |pendingReqLDR[MUTEX]|+ |GrantLDR|
Condi ≡ (at = MUTEX∧ |grantedToi[MUTEX]| < Ki) ∨ (at = MUTIN∧ |grantedToi[MUTIN]| < |Ni| − Li + 1)
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Algorithm 4 Algorithm LKCS: exit-sequence and entry-sequence.
Exit-Sequence:

tsi := tsi + 1;
nGrantsi[MUTIN] := ∅;
for-each Pj ∈ (Ni ∪ {Pi}) send〈Request,MUTIN, tsi, Pi〉 to Pj;
while (|nGrantsi[MUTIN]| < |Ni|+ 1){

if (Pi = PLDR ∧WaitingLDR = |NLDR|+ 1){
/* The configuration may be in a deadlock. */
TriggerNomination();
wait until(WaitingLDR < |NLDR|+ 1);

}
}
statei := OutCS;
for-each Pj ∈ (Ni ∪ {Pi}) send〈Release,MUTEX, Pi〉 to Pj;

Entry-Sequence:
nGrantsi[MUTEX] := ∅;
for-each Pj ∈ (Ni ∪ {Pi}) send〈Request,MUTEX, tsi, Pi〉 to Pj;
while (|nGrantsi[MUTEX]| < |Ni|+ 1){

if (Pi = PLDR ∧WaitingLDR = |NLDR|+ 1){
/* The configuration may be in a deadlock. */
TriggerNomination();
wait until(WaitingLDR < |NLDR|+ 1);

}
}
statei := InCS;
for-each Pj ∈ (Ni ∪ {Pi}) send〈Release,MUTIN, Pi〉 to Pj;

When the leader PLDR suspects that the system is in a deadlock, it invokes the
TriggerNomination() function and selects a process Pq within one hop (PLDR itself or a neighbor of
PLDR) as a “trigger”, and PLDR sends a message (Trigger message type) to Pq so that Pq issues a special
request. Then, Pq sends a special request message (RequestByTrigger message type) to each neighbor
Pr ∈ Nq. This message also cancels the current request of Pq. After each Pr receives such special
request from Pq, then Pr cancels the request of Pq by deleting (∗, Pq) from its pending list (pendingReqr)
and its granted list (grantedTor), inserts the special request (0, Pq) to its granted list and immediately
grants by using the “sidetrack”. The deleted element (∗, Pq) is a request that Pr or other neighbors of
Pq kept it waiting if the system is in a deadlock, and the inserted element (0, Pq) cannot be preempted
because it has the maximum priority.

We explain the technical details how the leader PLDR suspects that the system is in a deadlock.
When WaitingLDR = |NLDR| + 1, then |pendingReqLDR[MUTIN]| + |pendingReqLDR[MUTEX]| +
|GrantLDR| = |NLDR| + 1. Because a request is not sent if a previous one is kept waiting, two
pending lists pendingReqLDR[MUTIN] and pendingReqLDR[MUTEX] are disjoint. Thus, if there is a
neighbor Pq ∈ NLDR, which is not in these pending lists, then Pq’s request is granted by PLDR,
but is kept waiting by other neighbor than PLDR in the deadlock configuration. That is, Pq’s
request is in both of grantedToLDR. To the suspicion possible, we assume that, at the leader process,
(kLDR − 1)− (lLDR + 1) ≥ 1 holds, i.e., kLDR − lLDR ≥ 3. The underlying LMUTIN (resp., LMUTEX)
algorithm sends at most |NLDR|+ 1− (lLDR + 1) (resp., kLDR − 1) grants; the total number of grants
of the two underlying algorithms is at most |NLDR| − lLDR + kLDR − 1. Because kLDR − lLDR ≥ 3,
|NLDR| − lLDR + kLDR − 1 ≥ |NLDR| + 2 > |NLDR| + 1 = |NLDR ∪ {PLDR}| holds. This implies
that there exists at least a process Pq ∈ (NLDR ∪ {PLDR}) that receives both grants of LMUTIN and
LMUTEX from PLDR.
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Algorithm 5 Algorithm LKCS: message handlers (1).

On receipt of a 〈Request, at, tsj, Pj〉message:
pendingReqi[at] := pendingReqi[at] ∪ {(tsj, Pj)};
if (Condi){
(tsh, Ph) := deleteMin(pendingReqi[at]);
grantedToi[at] := grantedToi[at] ∪ {(tsh, Ph)};
send 〈Grant, at, Pi〉 to Ph;
} else if (preemptingNowi[at] = nil){
(tsh, Ph) := max(grantedToi[at]);
if ((tsj, Pj) < (tsh, Ph)){

preemptingNowi[at] := (tsh, Ph);
send 〈Preempt, at, Pi〉 to Ph;

}
}

On receipt of a 〈Grant, at, Pj〉message:
if (Pj 6∈ nGrantsi[at]){

nGrantsi[at] := nGrantsi[at] ∪ {Pj};
}

On receipt of a 〈Release, at, Pj〉message:
if ((∗, Pj) = preemptingNowi[at])preemptingNowi[at] := nil;
Delete (∗, Pj) from grantedToi[at];
if (pendingReqi[at] 6= ∅){
(tsh, Ph) := deleteMin(pendingReqi[at]);
grantedToi[at] := grantedToi[at] ∪ {(tsh, Ph)};
send 〈Grant, at, Pi〉 to Ph;
}

On receipt of a 〈Preempt, at, Pj〉message:
if ((at = MUTEX∧ statei = OutCS) ∨ (at = MUTIN∧ statei = InCS)){

Delete Pj from nGrantsi[at];
send 〈Relinquish, at, Pi〉 to Pj;
}

On receipt of a 〈Relinquish, at, Pj〉message:
preemptingNowi[at] := nil;
Delete (∗, Pj) from grantedToi[at], and let (tsj, Pj) be the deleted item;
pendingReqi[at] := pendingReqi[at] ∪ {(tsj, Pj)};
(tsh, Ph) := deleteMin(pendingReqi[at]);
grantedToi[at] := grantedToi[at] ∪ {(tsh, Ph)};
send 〈Grant, at, Pi〉 to Ph;

• If the system is in a deadlock, Pq is definitely involved in the deadlock. Giving special grants by
the sidetrack resolves the deadlock.

• If the system is not in a deadlock, Pq is not be involved in the deadlock. Furthermore, in this
case, LKCS gives special grants by the sidetrack. This is because exact deadlock avoidance
mechanisms require global information collection, and they incur large message complexity.

With this local observation at the leader PLDR, the deadlock is avoided with less message complexity.
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Algorithm 6 Algorithm LKCS: function TriggerNomination() for the leader PLDR.

TriggerNomination(){
if (|grantedToLDR[MUTIN]| = |NLDR| − LLDR){

if (pendingReqLDR[MUTEX] 6= ∅){
(tsh, Ph) := deleteMin(pendingReqLDR[MUTEX]);
} else{

for-each Pj ∈ GrantLDR{
if ((tsj, Pj) ∈ grantedToLDR[MUTIN] ∧ (tsj, Pj) ∈ grantedToLDR[MUTEX]){

/* Pj may be waiting for grant messages to enter. */
candidateLDR := candidateLDR ∪ {(tsj, Pj)};
}
}
(tsh, Ph) := min(candidateLDR);
candidateLDR := ∅;
}
send 〈Trigger,MUTEX, tsh〉 to Ph;
} else if (|grantedToLDR[MUTEX]| = KLDR − 1){

if (pendingReqLDR[MUTIN] 6= ∅){
(tsh, Ph) := deleteMin(pendingReqLDR[MUTIN]);
} else{

for-each Pj ∈ GrantLDR{
if ((tsj + 1, Pj) ∈ grantedToLDR[MUTIN] ∧ (tsj, Pj) ∈ grantedToLDR[MUTEX]){

/* Pj may be waiting for grant messages to exit. */
candidateLDR := candidateLDR ∪ {(tsj, Pj)};
}
}
(tsh, Ph) := min(candidateLDR);
candidateLDR := ∅;
}
send 〈Trigger,MUTIN, tsh〉 to Ph;
}
}

Algorithm 7 Algorithm LKCS: message handlers (2).

On receipt of a 〈Trigger, at, ts〉message:
if (statei = InCS∧ at = MUTIN∧ ts = tsi ∧ |nGrantsi[MUTIN]| < |Ni|+ 1){

/* Pi is waiting for grant messages to exit. */
nGrantsi[MUTIN] := ∅;
for-each Pj ∈ (Ni ∪ {Pi}) send〈RequestByTrigger,MUTIN, Pi〉 to Pj;
/* Request message as a trigger. */
} else if (statei = OutCS∧ at = MUTEX∧ ts = tsi ∧ |nGrantsi[MUTEX]| < |Ni|+ 1){

/* Pi is waiting for grant messages to enter. */
nGrantsi[MUTEX] := ∅;
for-each Pj ∈ (Ni ∪ {Pi}) send〈RequestByTrigger,MUTEX, Pi〉 to Pj;
/* Request message as a trigger. */
}

On receipt of a 〈RequestByTrigger, at, Pj〉message:
Delete (∗, Pj) from pendingReqi[at];
Delete (∗, Pj) from grantedToi[at];
grantedToi[at] := grantedToi[at] ∪ {(0, Pj)};
send 〈Grant, at, Pi〉 to Pj;
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In the proposed algorithm, each process Pi maintains the following local variables, where at is
the algorithm type, MUTEX or MUTIN. These variables work as the same as those of li-LMUTIN, and
we omit the detailed description here.

• statei: The current state of Pi: InCS or OutCS.
• tsi: The current value of the logical clock [19].
• nGrantsi[at]: A set of process ids from which Pi obtains grants for exiting/entering to the CS.
• grantedToi[at]: A set of timestamps (tsj, Pj) for the requests to Pj’s exiting/entering to the CS that

Pi has been granted but that Pj has not yet released.
• pendingReqi[at]: A set of timestamps (tsj, Pj) for the requests to Pj’s exiting/entering to the CS

that are pending.
• preemptingNowi[at]: A timestamp (tsj, Pj) of a request such that Pi preempts a permission for Pj’s

exiting/entering to the CS if the preemption is in progress.

5.3. Proof of Correctness

In this subsection, we show the correctness of LKCS. We assume the initial configuration is safe.
First, we show that the process Pi with dist(PLDR, Pi) > 2 cannot become unsafe by the proof by
contradiction. Next, we show that other processes Pj cannot become unsafe because they normally
execute the algorithm as their instance (lj + 1, k j − 1). Thus, we can derive the following lemma.

Lemma 4. (Safety) For each process Pi ∈ V, li ≤ |CS i(C)| ≤ ki holds at any configuration C.

Proof. We assume that the initial configuration C0 is safe. First, we consider the process Pi for which
dist(PLDR, Pi) > 2 holds becomes unsafe first in a configuration C for the contrary.

• Suppose that |CS i(C)| < li, that is |CS i(C)| > |Ni|+ 1− li. Because |CS i(C0)| ≥ li, consider a
process Pj ∈ Ni ∪ {Pi}, which became the OutCS state by the (|Ni|+ 2− li)-th lowest timestamp
among processes in CS i(C). Then, Pj obtains permission to be the OutCS state from each process
in Nj ∪ {Pj}. This implies that Pi receives a permission request 〈Request,MUTIN, tsj, Pj〉 from Pj
and that Pi sends a permission 〈Grant,MUTIN, Pi〉 to Pj. Because Pi grants at most |Ni|+ 1− li
permissions to exit the CS at each time by the condition Condi, Pj cannot obtain a permission
from Pi; this is a contradiction.

• Suppose that |CS i(C)| > ki. Because |CS i(C0)| ≤ ki, consider a process Pj ∈ Ni ∪ {Pi} that
became the InCS state by the (ki + 1)-th lowest timestamp among processes in CS i(C). Then,
Pj obtains permission to be the InCS state from each process in Nj ∪ {Pj}. This implies that Pi
receives a permission request 〈Request,MUTEX, tsj, Pj〉 from Pj and that Pi sends a permission
〈Grant,MUTEX, Pi〉 to Pj. Because Pi grants at most ki permissions to enter the CS at each time
by the condition Condi, Pj cannot obtain a permission from Pi; this is a contradiction.

Next, we consider Pi that has dist(PLDR, Pi) ≤ 2. Note that the leader PLDR sends a trigger
request 〈Trigger, at, ts〉 to exactly one of its neighbors or itself at a time. Let Pq be the receiver.
If Pq does not request to invert its state as a trigger, we can discuss by the same way as above,
and li + 1 ≤ |CS i(C)| ≤ ki − 1 because of condition Condi (of course, if Pi = PLDR, lLDR + 1 ≤
|CSLDR(C)| ≤ kLDR − 1). When Pq requests to invert its state as a trigger by sending a message
〈RequestByTrigger, at, Pq〉, all of its neighbors Pj grant it without attention to |CS j(C)|, and Pq inverts
its state without attention to |CSq(C)|. Thus, |CS i(C)| becomes li + 1− 1 or ki − 1 + 1 (if Pi = PLDR,
|CSLDR(C)| becomes lLDR + 1− 1 or kLDR − 1 + 1). Therefore, Pi does not become unsafe.

Next, we consider that a deadlock occurs in a configuration. Then, processes waiting for grant
messages constitute chains of deadlocks unless at least one process on chains changes its state.
However, then, the leader process designates one of its neighbors or itself as a trigger, and the trigger
changes its state by its preferential rights. Therefore, we can derive the following lemma.
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Lemma 5. (Liveness) Each process Pi changes into the InCS and OutCS states alternately infinitely often.

Proof. For the contrary, we assume that a deadlock occurs in the configuration C. Let D be a set
of processes that cannot change its state, that is they are in the deadlock. First, we assume that
all of process Pu in D has stateu = OutCS. Then, all of their neighbors Pv have kv neighbors Pw

with statew = InCS. However, such neighbors Pw are not in D and eventually change their state to
OutCS. Thus, Pu eventually can change its state; this is a contradiction. Therefore, in D, there is a
process Pu with stateu = InCS such that it cannot change its state by the exit-sequence. Then, it holds
|CSu(C)| = lu or has a neighbor Pv ∈ Nu with |CSv(C)| = lv. It is waiting for grant messages and
cannot change its state until at least one of its neighbors Pw ∈ Nu with statew = OutCS changes Pw’s
state by the entry-sequence. If |CSw(C)| = kw holds or Pw has a neighbor Px ∈ Nw with |CSx(C)| =
kx, Pw cannot change its state by the entry-sequence until at least one of its neighbors Py ∈ Nw with
statey = InCS changes Py’s state by the exit-sequence. By such chain relationship, it is clear that
the waiting chain can be broken if at least one process on this chain changes its state. Thus, for the
assumption, all processes in V are in such a chain in C, that is V = D.

However, in such a C, all of PLDR and its neighbors are waiting for grant messages from their
neighbors. That is, their requests are in grantedToLDR or pendingReqLDR, and WaitingLDR is equal to
|NLDR|+ 1. Additionally, we assume that kLDR − lLDR ≥ 3 and the number of grants PLDR can send
with MUTIN (resp., MUTEX) is |NLDR| + 1 − (lLDR + 1) (resp., kLDR − 1 ≥ lLDR + 2). Because of
safety, |grantedToLDR[MUTIN]| = |NLDR| − lLDR or |grantedToLDR[MUTEX]| = kLDR − 1 holds. Then,
PLDR sends a 〈Trigger, at, ts〉message to a neighbor Pq and Pq becomes a trigger if Pq is also waiting for
grant messages. Processes Pr that receive 〈RequestByTrigger, at, Pq〉 grant the request without attention
to |CS r(C)|. Then, Pq can change its state, and after that, PLDR can change its state. Therefore,
the waiting chain in C can be broken. This is a contradiction.

5.4. Performance Analysis

Lemma 6. The message complexity of LKCS for Pi ∈ V is 6(|Ni|+ 1) in the best case, and 12(|Ni|+ 1) in
the worst case.

Proof. First, let us consider the best case.

• For Pi’s exiting the CS, Pi sends a 〈Request,MUTIN, tsi, Pi〉 message to each process in Ni ∪ {Pi};
each process Pj in Ni ∪ {Pi} sends a 〈Grant,MUTIN, Pj〉 message to Pi; then Pi sends a
〈Release,MUTEX, Pi〉 message to each process in Ni ∪ {Pi}. Thus, 3(|Ni| + 1) messages are
exchanged for Pi’s exiting the CS.

• For Pi’s entering the CS, Pi sends a 〈Request,MUTEX, tsi, Pi〉 message to each process in
Ni ∪ {Pi}; each process Pj in Ni ∪ {Pi} sends a 〈Grant,MUTEX, Pj〉 message to Pi; then Pi sends
a 〈Release,MUTIN, Pi〉 message to each process in Ni ∪ {Pi}. Thus, 3(|Ni| + 1) messages are
exchanged for Pi’s entering the CS.

Thus, the message complexity is 6(|Ni|+ 1) in the best case.
Next, let us consider the worst case.

• For Pi’s exiting the CS, Pi sends a 〈Request,MUTIN, tsi, Pi〉 message to each process Pj in
Ni ∪ {Pi}. Then, Pj sends a 〈Preempt,MUTIN, Pj〉 message to the process Pm to which Pj sends a
〈Grant,MUTIN, Pj〉message; Pm sends a 〈Relinquish,MUTIN, Pm〉message back to Pj; and Pj sends
a 〈Grant,MUTIN, Pj〉message to Pi. After Pi exits the CS, Pi sends a 〈Release,MUTEX, Pi〉message
to each process Pj in Ni ∪ {Pi}. Then, Pj sends a 〈Grant,MUTEX, Pj〉 message to some process
with the highest priority in pendingReqj[MUTEX]. Thus, 6(|Ni|+ 1) messages are exchanged.

• For Pi’s entering the CS, Pi sends a 〈Request,MUTEX, tsi, Pi〉 message to each process Pj in
Ni ∪ {Pi}. Then, Pj sends a 〈Preempt,MUTEX, Pj〉 message to the process Pm to which Pj sends
a 〈Grant,MUTEX, Pj〉 message; Pm sends a 〈Relinquish,MUTEX, Pm〉 message back to Pj; and Pj
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sends a 〈Grant,MUTEX, Pj〉 message to Pi. After Pi enters the CS, Pi sends a 〈Release,MUTIN, Pi〉
message to each process Pj in Ni ∪ {Pi}. Then, Pj sends a 〈Grant,MUTIN, Pj〉 message to
some process with the highest priority in pendingReqj[MUTIN]. Thus, 6(|Ni| + 1) messages
are exchanged.

Thus, the message complexity is 12(|Ni|+ 1) in the worst case.

Theorem 3. LKCS solves the generalized local (li, ki)-critical section problem with a message complexity of
O(∆), where ∆ is the maximum degree of a network.

6. Conclusions

In this paper, we consider the generalized local (li, ki)-critical section problem, which is a new
version of critical section problems. Because this problem is useful for fault-tolerance and load
balancing of distributed systems, we can consider various future applications. We first proposed
an algorithm for the generalized local li-mutual inclusion. Next, we showed the generalized local
complementary theorem. By using this theorem, we proposed an algorithm for the generalized local
(li, ki)-critical section problem.

In the future, we plan to perform extensive simulations and confirm the performance of our
algorithms under various application scenarios. Additionally, we plan to improve the proposed
algorithm in message complexity and time complexity and to design an algorithm that guarantees
exactly li ≤ |CS i(C)| ≤ ki in every process.
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