E:T algorithms m\py

Article
Adaptive Vector Quantization for Lossy Compression
of Image Sequences *

Raffaele Pizzolante 1'*, Bruno Carpentieri ! and Sergio De Agostino 2

1 Dipartimento di Informatica, Universita di Salerno, Via Giovanni Paolo II, 132, Fisciano, SA 84084, Italy;

bc@dia.unisa.it

Computer Science Department, Sapienza University, Via Salaria 113, Rome 00185, Italy;

deagostino@di.uniromal.it

* Correspondence: rpizzolante@unisa.it

t This paper is an extended version of our paper published in Data Compression Conference 2016,
Communication Processing and Security 2016.

Academic Editors: Pierre Leone and Bruno Carpentieri
Received: 23 January 2017; Accepted: 4 May 2017; Published: 9 May 2017

Abstract: In this work, we present a scheme for the lossy compression of image sequences, based on
the Adaptive Vector Quantization (AVQ) algorithm. The AVQ algorithm is a lossy compression
algorithm for grayscale images, which processes the input data in a single-pass, by using the
properties of the vector quantization to approximate data. First, we review the key aspects of
the AVQ algorithm and, subsequently, we outline the basic concepts and the design choices behind
the proposed scheme. Finally, we report the experimental results, which highlight an improvement
in compression performances when our scheme is compared with the AVQ algorithm.

Keywords: lossy compression; adaptive vector quantization; image sequences; data compression

1. Introduction

Data compression techniques, based on the Vector Quantization (VQ), are widely used in several
scenarios. For instance, VQ-based techniques are used for the compression of multispectral [1] and
hyperspectral images [2], static images [3], etc.

The VQ is a process that allows the approximation of sampled analog data (e.g., speech, images, etc.).
Indeed, by means of the VQ, the input data is subdivided into blocks, denoted as vectors, and each
vector is replaced by a similar one (or equal, when possible) stored into a static dictionary of codebook
vectors (denoted as codewords) [4]. In the first stage, a VQ-based encoder calculates all the distances
(according to a given distortion measure) between the input block (X}) and each one of the blocks
into the codewords. Subsequently, the index i of the block, which is more similar with respect to the
input block, is identified, as shown in Figure 1a. Thus, the index i can be transmitted to the decoder
or stored into a file. On the other hand, a VQ-based decoder receives (or reads) the index i and can
reconstruct the appropriate approximated block, as shown in Figure 1b. It is important to point out
that the codewords must be identical for the encoder as well as for the decoder. Moreover, the size
of an index is related to the size of the codewords (denoted as N), since an index is composed by
log, N bits.

The capabilities of the VQ approach are combined with the characteristics of the dictionary-based
techniques by Storer and Constantinescu, in order to provide an efficient scheme for the lossy
compression of grayscale image [5]. The method they proposed is referred to as the Adaptive Vector
Quantization (AVQ) algorithm.

Algorithms 2017, 10, 51; doi:10.3390/a10020051 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
http://dx.doi.org/10.3390/a10020051
http://www.mdpi.com/journal/algorithms

Algorithms 2017, 10, 51 2of 16

e & P

X Codewords Output

(a)
1 2 i N
Input Index Codewords Output
(b)

Figure 1. The usage of the VQ by an encoder (a) and by a decoder (b).

A well-known dictionary-based approach is the one outlined by Lempel and Ziv (often referred
to as LZ2) in [6]. The LZ2-based (or LZ78-based) approaches are mainly used for the textual data
compression. Basically, such approaches encode the repeated occurrences of substrings through an
index of a dynamically created dictionary. Since the dictionary is dynamically created, an LZ2 scheme
can perform the encoding in a single pass and does not need a priori statistical knowledge of the
input data.

Analogously to the LZ2 approaches, the encoder of the AVQ algorithm is capable of dynamically
creating a dictionary and is able to encode the input data in a single pass.

In this paper, we focus on the key aspects of the AVQ algorithm, by reviewing its logical functioning
and its architectural elements. Subsequently, we focus on some easy-to-implement design concepts to
extend the AVQ algorithm, in order to allow the lossy compression of image sequences. The proposed
scheme we denoted as Adaptive Vector Quantization for Image Sequences (AVQjs), which exploits the
temporal correlation (i.e., the correlation among adjacent frames of a sequence) and is generally high
among the frames of an image sequence.

The paper is organized as follows: Section 2 briefly reviews the AVQ algorithm and its
fundamental aspects. In Section 3, we explain the logical concepts related to the AVQjg algorithm.
In Section 4, we report and discuss the preliminary test results that we achieved by our scheme. Finally,
we draw our conclusions and outline future research directions.

2. The Adaptive Vector Quantization (AVQ) Algorithm

As we mentioned above, one of the main characteristics of the AVQ algorithm is to combine the
features of a dictionary-based scheme (i.e., LZ2 scheme) and the capacity of the vector quantization
methodology to accurately approximate data. The AVQ algorithm is essentially the first application of
an LZ-based strategy to still images [7]. In fact, this algorithm does not reduce the two-dimensional
data to one-dimensional data (as in [8]), but it operates effectively on the two-dimensional data.

The basic idea behind the AVQ algorithm is to subdivide the input image in variable-sized blocks.
Each one of these latter blocks is substituted by an index, which represents a pointer to a similar block
(according to a given distortion measure), stored into the dictionary. During the encoding, the AVQ
algorithm dynamically updates the dictionary D, by adding new blocks to it. The new blocks are
derived from the already processed blocks and from the already coded parts of the input data. These
new blocks are essential to continue the encoding of the input image, since they can be used for the
encoding of the not yet processed parts of the input image.

As we will see in Section 2.1, in which we focus on the details related to the logical architecture of
the AVQ algorithm, all the rules (e.g., the rules for the adding of new blocks to the dictionary, the rules

Algorithms 2017, 10, 51 3of16

for the computation of the distortion measures, etc.) can be denoted as heuristics, while all the data
structures used by the AVQ algorithm (e.g., the dictionary, etc.) are denoted as components.

Subsequently, in Section 2.2, we explain the key concepts and the technical aspects related to the
compression and the decompression stages of the AVQ algorithm.

2.1. Logical Architecture

In Figure 2, we graphically highlight the logical architecture of the AVQ algorithm. As it is
noticeable from this figure, the key elements can be subdivided into two distinct categories:

o Components;
e Heuristics.

Components Heuristics

4‘ Growing Heuristic |
GP GPP &
L —' GP Update Heuristic |

AVQ
4‘ Init Dictionary Heuristic

Dictionary I Match Heuristic

| |
4’ Dictionary Update Heuristic |
—’ Deletion Heuristic ‘

Figure 2. The block diagram of the architecture of the AVQ algorithm.

A component is a data structure involved in the compression (or in the decompression) phase of
the AVQ algorithm. The main components are the following:

e Growing Points (GPs)

In contrast with one-dimensional data, two-dimensional data can have several uncoded points,
from which an encoding algorithm can continue its encoding process. These points are referred to as
growing points (GPs). Figure 3 shows a graphical example in which three GPs are highlighted in red.

1
:. Already coded part !
:El Not yet encoded |
! 1

1

! Growing Points

Input Image

Figure 3. Examples of growing points.
The encoder selects one GP at each step and identifies a match between the block anchored to the
selected GP (we denote the selected GP as gp from now on) and a similar block (according to a given

distortion measure) contained in the dictionary. Therefore, by using the GPs, the AVQ algorithm can
continue its encoding process in a deterministic manner.

° Growing Point Pool (GPP)

Algorithms 2017, 10, 51 40f 16

A GPP is a data structure in which all the Growing Points (GPs) are maintained.
. Dictionary (D)

All the blocks derived from the already coded parts of the input image are stored in the dictionary.
Such blocks are used to find a match with a block (anchored to a GP) in the not yet coded portion of
the input image. It should be noted that the dictionary plays an important role for the compression
(and the decompression) of the input image.

We can informally define a heuristic as a set of rules that describes the behavior of the AVQ
algorithm and its architectural element. Mainly, the heuristics are related to the GPP and the dictionary,
and are the following;:

° Growing Heuristic (GH)

A GH highlights the behavior related to the identification of the next GP, which will be extracted
from the GPP. Such a GP will be the next one that will be processed by the AVQ algorithm. Several
strategies can be adopted to define a GH. The ones used in literature are the following:

— Wave Growing Heuristic
The Wave GH selects a GP in which the coordinates, (x5, ys), satisfies the following relationship:
xs+ys <x+yV(x,y) € GPP.

With this heuristic, the GPP is initialized in this manner: GPP = {(0, 0)}. The point (0, 0) is the
pixel at the left top corner. In addition, the image coverage follows perpendicular to the main diagonal
by a wavelike trend.

— Diagonal Growing Heuristic

The Diagonal GH selects a GP in which the coordinates, (xs, ys), which satisfies the following
relationship:
|xs — ys|<|x —y| V(x,y) € GPP.

In this scenario, the GPP is initialized in the same way of the initialization of the Wave GH and
the image coverage follows perpendicular to the main diagonal.

— LIFO Growing Heuristic
A GP is selected from the GPP in Last-In-First-Out (LIFO) order.
o Growing Point Update Heuristic (GPUH)

A GPUH defines the behavior related to the updating of the GPP. Indeed, a GPUH defines the set
of adding one or more GP to the GPP.

e Init Dictionary Heuristic (IDH)
An IDH is a set of rules that define in which manner the dictionary, D, will be initialized.
e Match Heuristic (MH)

An MH is used by the AVQ algorithm to identify a match between the block b, anchored to the
GP that is undergoing the process (we referred to as gp), and a block in the dictionary D. Generally,

Algorithms 2017, 10, 51 50f 16

a distance is used (e.g., Mean Squared Error - MSE [9], etc.) to define the similarity between a block in
the dictionary and the block anchored to gp.

o Dictionary Update Heuristic (DUH)

A DUH is a set of rules that defines which new block(s) can be added to the dictionary D. Several
DUH are explained in literature, as, for instance, the OneRow + OneColumn DUH (outlined in [5]). This
heuristic adds two new blocks to the dictionary, if possible. The first block and the second block are
obtained by adding a row to the matched block, in the already coded part of the image, as shown
in Figure 4.

Matched block Matched Block Matched Block

Uncoded Image Uncoded Image Uncoded Image

(@) (b) (9
Figure 4. An example of the OneRow+OneColumn Dictionary Update Heuristic. (a) The matched block;

(b) The first added block into the dictionary; (c) The second block added into the dictionary.

e Deletion Heuristic (DH)

A DH is used when all of the entries of the dictionary D are used. Such a heuristic defines which
blocks in the dictionary should be deleted in order to make space.

2.2. Compression and Decompression Phases

Algorithm 1 highlights the pseudo-code of the AVQ compression phase. Firstly, the dictionary D
and the GPP are initialized. The dictionary D is initialized by one entry for each value that a pixel can
assume (i.e., in the case of grayscale images, D will be initialized with 256 values, from 0 to 255).

Algorithm 1. Pseudo-code of the compression stage (AVQ algorithm).

1. GPP < Initial GPs (e.g., the GP at coordinates (0, 0))
2. D < Use an IDH for the initialization

3. while GPP has more elements do

4. Use a GH to identify the next GP

5. Let gp be the current GP

6. Use an MH to find a block b in D that matches the sub- block anchored to gp
7. Transmit log, | D| bits for the index of b

8. Update D with a DUH

9. if D is full then

10. Use a DH

11. endif

12. By using a GPUH, update the GPP

13. Remove gp from GPP

14. end while

At each step, the AVQ algorithm selects a growing point from the growing point pool GPP
(we referred to as gp), according to a specified growing heuristic (GH). The algorithm ends when there
are no further selectable growing points (i.e., the GPP is empty).

Algorithms 2017, 10, 51 6 of 16

Subsequently, the encoder uses a match heuristic (MH) to individuate which block, stored in the
local dictionary D, is the best match for the one anchored to gp (see Figure 5). In general, the matching
heuristics prefer the largest block in D, which presents a distortion measure that is less than or equal
to a threshold T, when compared with the block anchored to gp. The threshold T can be fixed for the
whole image or can be dynamically adjusted by considering the image content, in order to improve
the quality perception.

:. Already coded part !
:D Not yet encoded | Tl My =
Current Growing Point (gp) Tnput Image
Dictionary

Figure 5. Examples of matching heuristics.

Once the match is performed and a block in D is identified, the index of this block (denoted as b
in Algorithm 1) can be stored or transmitted. An index can be represented with log,|D| bits (|D| is
the size of the dictionary D). After that, the dictionary D is updated, by adding one or more blocks
to it. The update is directed by the rules defined by a dictionary update heuristic (DUH). If D is full,
a deletion heuristic (DH) is invoked to eventually make space in D.

Finally, the GPP is also updated by using a growing update heuristic (GUH). The processed growing
point (i.e., gp) is removed from the GPP. Thus, such a growing point will not be further processed.

It is important to point out that the compression performances are strictly dependent on the
number of indexes that will be stored or transmitted by the encoder. Indeed, by considering that each
block is represented by its index in the dictionary, more blocks will be necessary to cover the input
image, and it will be necessary for more indices to be stored or transmitted. Vice versa, less blocks
will be necessary to cover the input image, and it will be necessary for less indices to be stored or
transmitted. Consequently, even the dimensions of the matched blocks can influence the compression
performances. In fact, the matched blocks with larger dimensions can increase the compression
performances, since they cover larger portions of the input image.

Algorithm 2 reports the pseudo-code related to the AVQ decompression phase. Substantially,
the pseudo-code is symmetrical, except for the fact that the decompression phase does not need to
identify the match, since it receives the indices from the encoder (or reads the indices from a file).

Algorithm 2. Pseudo-code of the decompression stage (AVQ algorithm).

1. GPP < Initial GPs (e.g., the GP at coordinates (0, 0))

2. D « Use an IDH for the initialization

3. while GPP has more elements do

4. Use a GH to identify the next GP

5. Let gp be the current GP

7. Receive log,|D| bits representing the index of a block b into the dictionary D
Anchor b to the current GP, gp, in order to reconstruct the output image

8. Update D with a DUH

9. if D is full then

10. Use a DH

11. endif

12. By using a GPUH, update the GPP

13. Remove gp from GPP

14. end while

Algorithms 2017, 10, 51 7 of 16

In Figure 6a, we graphically show, in false-colors, the progress of Algorithm 1, on the image
denoted as Lena. In detail, each block visually indicates the dimensions of the corresponding block,
identified in the dictionary D. In Figure 6b, we graphically show the progress of the decompression
phase (Algorithm 2).

The graph in Figure 7 shows the number of access (on the y-axis) to a specific index of the
dictionary D (on the x-axis), during the compression phase.

(a) (b)

Figure 6. Graphical representation of: (a) the progress (in false-colors) of the compression stage;
(b) the progress of the decompression stage.

1.400

1.300

1.200

1.100

1.000

900

800

700

Accessi

600
S00
400
300

200

100 ‘ 3
o k-, Sl uﬂ“ “ JUTeR T \u.lﬂﬂ\mm L Al b o il

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3.000 3250 3.500 3.750 4.000 4.250
Entry

Figure 7. Graphical representation of the number of access (on the y-axis) to a specific index of the
dictionary (on the x-axis) during the compression phase.

3. The AVQ for Image Sequences (AVQjg) Algorithm

In this section, we focus on the description of an easy-to-implement extension of the AVQ algorithm,
which allows the lossy compression of image sequences, without influencing the execution time of the
algorithm (for both compression and decompression phases). The extension is easily implementable
and requires only few modifications, starting from an existing AVQ implementation.

We emphasize that by compressing, in an independent manner, each frame of an image sequence
IS through the AVQ algorithm, only the spatial correlation (i.e., the correlation within the same frame) is
exploited. Indeed, during the encoding of the i-th frame of IS, the AVQ algorithm will use only the
blocks derived from the already coded part of the i-th frame itself.

Algorithms 2017, 10, 51 8 of 16

Our objective is to extend the AVQ algorithm to exploit also the temporal correlation among the
frames of an image sequence, by minimizing the effort for the modifications of an existing AVQ
implementation. Therefore, we considered using a dictionary (we referred to as shared dictionary), that
will be shared during the processing of all of the input frames (framey, ... , frame;, ... , framey) of an
image sequence IS [10].

The main benefit that provides a shared dictionary (SD) is related to the fact that it hosts the
blocks derived from the coded portions of the input frame as well as the ones derived from previously
coded frames. Therefore, the encoder has a greater probability to individuate matched blocks with
larger dimensions, which can cover larger areas of the input frame and, consequently, the compression
performances should be improved. On the other hand, the perceivable quality of the compressed
frames could be lower with respect to the usage of a local independent dictionary for each frame, since
some blocks are obtained by previous coded frames and present a slightly lower similarity.

Starting from these considerations, we outline a novel scheme based on the AVQ algorithm,
which we refer to as Adaptive Vector Quantization for Image Sequences (AVQjs). AVQjs can be used for
lossy compression of image sequences. In order to maintain a high degree of ease of implementation,
the existing heuristics are the same as the ones involved in the AVQ algorithm. Consequently, the blocks
stored in the shared dictionary will be treated in the same manner whether they were obtained from
the current frame or whether they were obtained from the previously encoded frames.

In Algorithm 3, we report the pseudo-code related to the compression stage of the AVQjg algorithm.
In detail, each one of the N frames of IS (the input image sequence) is compressed through the fAVQ
algorithm. The fAVQ algorithm is directly derived from the AVQ algorithm and is able to operate on
the shared dictionary SD, instead of the local dictionary D. As it is possible to observe in Figure 8,
the shared dictionary SD is involved among the instances of the fAVQ algorithm (one instance per
frame). We remark that during the compression of the i-th frame frame; (i > 0), by the fAVQ algorithm,
the SD contains blocks from the already coded parts of the frame in process (i.e., frame;) and from the
previous coded frames (frame;, j=1,... ,i — 1).

Algorithm 3. Pseudo-code of the compression stage (AVQyg algorithm).

SD <+ Use an IDH for the initialization
fori < 1to N do

frame; < i-th frame of IS

f rame;© «—f AVQCompression(fmmeir SD)
end for
IS¢ <—{fmme1c, . ,fmmeic, .. ,fmmeNC}

AL

Shared Dictionary

1
frame; fAVQ : framef
. 1
1
: 1
1

Figure 8. The shared dictionary used by each one of the fAVQ instances.

In Algorithm 4, we outline the pseudo-code of the decompression stage. It should be noted that
the decompression stage is substantially symmetrical with respect to the compression one.

Algorithms 2017, 10, 51 9of 16

Algorithm 4. Pseudo-code of the decompression stage (AVQyg algorithm).

SD < Use an IDH for the initialization
fori < 1to N do

frame;© < i-th frame of ISC

fmmei <_fAVQDecompression(fmmeiCr SD)
end for
IS «{ framey, ... , frame;, ... , frameyy}

ALY

4. Experimental Results

The main objective of our experiments is to compare the compression performances, in terms
of Compression Ratio (C.R.), between the AVQ algorithm (in which each frame is independently
compressed) and the AVQyg algorithm. In addition, we measure the Peak-Signal-to-Noise-Ratio (PSNR)
metric, in order to compare the perceptive quality. It is important to outline that the execution times
we have achieved in our experiments are comparable between the two algorithms.

We used two datasets (we referred to as Dataset 1 and Dataset 2, respectively), each one composed
of three image sequences. Dataset 1 is composed of image sequences extracted from a video, while
three infrared image sequences compose Dataset 2.

4.1. Dataset 1

The first dataset we consider (Dataset 1) is composed of three image sequences. In Table 1,
we report a short description. All the sequences are publicly available at [11]. In the following, for
brevity, we refer to an image sequence of Dataset 1, by using a short name (reported in the second
column of Table 1).

Table 1. Dataset 1 description.

Name Short Name Resolution # of Frames
Walter Cronkite moving head Seq. 1 256 x 256 16
Chemical plant flyover (close view) Seq. 2 256 x 256 32
Chemical plant flyover (far view) Seq. 3 256 x 256 11

The parameters we used for our experiments are the following:

° Wave Heuristic as Growing Heuristic;

e OneRow+OneColumn as Dictionary Update Heuristic;

e Freeze as Deletion Heuristic;

e MSE-based as Match Heuristic (threshold value equal to 10).

The dictionary is initialized with all of pixels for continuous grayscale (IDH), and we set the size
of the dictionary (AVQ) as well as the shared dictionary (AVQs) of 16384 (2!4).

In Figure 9, we report a graphical comparison of the achieved experimental results, in terms of
Compression Ratio (C.R.), reported on the y-axis, achieved by the AVQ algorithm (blue line) and the
AVQyg algorithm (red line) for all of the frames (on the x-axis) of the three image sequences.

Algorithms 2017, 10, 51 10 of 16

Walter Cronkite moving head (Seq. 1) Chemical plant flyover {close view) (Seq. 2) Chernical plant fiyover (far view) (Seq. 3)

2 1 [[o 12 14 18 5 0 15 20 25 30
Frarmes Frames 1.9

(@) (b) (0)

Figure 9. Graphical comparison of the achieved C.R. between the AVQjg algorithm (blue line) and the
AVQ algorithm (red line) for (a) Seq. 1; (b) Seq. 2; and (c) Seq. 3.

4.2. Results Analysis (Dataset 1)

Table 2 synthetizes the achieved average results, in terms of C.R. The second and third columns of
Table 2, report the AVQ and the AVQjg achieved average results, respectively. The results are reported
for each one of the image sequences of Dataset 1 (first column).

Table 2. Average C.R.—Dataset 1.

Image Sequence/Average PSNR AVQ AVQrg
Seq. 1 6.72 9.79
Seq. 2 241 2.44
Seq. 2 2.09 2.13

From such a table, it is noticeable that the compression performances of the AVQjg algorithm are
better, with respect to the AVQ algorithm, in two cases: Seq. 1 and Seq. 3. In relation to the sequence
referred to as Seq. 2, the AVQg algorithm achieves slightly worse performance. Indeed, the AVQyg
algorithm achieves an average C.R. of 2.41, while the AVQ algorithm achieves an average C.R. of 2.44.

In Figure 10, we graphically report the trends of the achieved PSNR metric for each one of the
image sequences of Dataset 1, in relation to the AVQ algorithm (green line) and the AVQjg algorithm
(magenta line). From Table 3, which synthetizes the achieved average PSNR, it is noticeable that the
AVQ algorithm achieves a better PSNR for the Seg. 2 and Seq. 3 sequences, while, in Seq. 1, the AVQjg
algorithm obtains a higher PSNR. In Table A1,

Walter Cronkite moving head (Seq. 1) Chemical plant flyover (close view) (Seq. 2) Chemical plant flyover (far view) (Seq. 3)

- O S SO ;
% 34
21t : f w
St e N 3z

PSNR
W
PSNR
PSNR

35 AN, Voo fd \f

2 4 6 8 10 12 14 16 5 10 15 20 2 30 2 4 3 8 10
Frames Frames Frames

(a) (b) (c)

Figure 10. Graphical comparison of the achieved PSNR between the AVQ algorithm (green line) and
the AVQyg algorithm (magenta line), for (a) Seg. 1; (b) Seq. 2; and (c) Seq. 3.

Algorithms 2017, 10, 51 11 of 16

Table 3. Average PSNR-Dataset 1.

Image Sequence/Average PSNR AVQ AVQig
Seq. 1 30.87 31.80
Seq. 2 34.51 33.62
Seq. 2 34.42 33.75

4.3. Dataset 2

Dataset 2 is composed of three infrared image sequences and is briefly described in Table 4 (further
details in [12]).

Table 4. Dataset 2 description.

Name Resolution # of Frames
Dune 360 x 270 22
Trees 360 x 270 18

UN camp 360 x 270 31

The parameters we used for our experiments are the following:

° Wave Heuristic as Growing Heuristic;

e OneRow+OneColumn as Dictionary Update Heuristic;

e Freeze as Deletion Heuristic;

e MSE-based as Match Heuristic (threshold value equal to 5.5).

Finally, the dictionary is initialized with all pixels for continuous grayscale (IDH). Furthermore,
we set the size of the dictionary (AVQ) as well as the shared dictionary (AVQjs) as 4096 (2!2) and
8192 (213), respectively.

In Figures 11 and 12, we graphically compare the experimental results, in terms of Compression Ratio
(C.R), achieved by the AVQ algorithm (blue line) and the AVQjg algorithm (red line), by considering
the size of the dictionary/shared dictionary of 4096 (2!2) entries and of 8192 (2!4), respectively.

UN Camp

Dune Trees 28

i i i L 25l i i I i i 1 1 L 1 L
5 10 15 20 2 4 6 8 10 12 14 16 18 T N I

Frames Frames Frames

(@) (b) (c)

Figure 11. Graphical comparison of the achieved C.R. between the AVQyg algorithm (blue line) and the
AVQ algorithm (red line), by using a dictionary of 4096 (212), for (a) the Dune sequence; (b) the Trees
sequence; and (c) the UN camp sequence.

Algorithms 2017, 10, 51 12 of 16

Dune Trees UN Camp

5 10 15 20 2 4 6 8 10 12 1 16 18 5 10 15 20 F3 30
Frames Frames Frames

(a) (b) (0

Figure 12. Graphical comparison of the achieved C.R. between the AVQjg algorithm (blue line) and
the AVQ algorithm (red line), by using a dictionary of 8192 (213) entries, for (a) the Dune sequence;
(b) the Trees sequence; and (c) the UN camp sequence.

4.4. Results Analysis (Dataset 2)

Tables 5 and 6 summarize the achieved average C.R. when AVQ (second column) and AVQjg
(third column) are used, for each one of the used image sequences (first column). From these tables,
it is possible to observe that the compression performances of the AVQyg algorithm are better with
respect to the AVQ) algorithm in all of the tested sequences.

Table 5. Average C.R. (dictionary composed by 4096 entries)-Dataset 2.

Image Sequence/Average C.R. AVQ AVQig
Dune 3.18 3.26
Trees 2.80 3.12
UN camp 2.59 2.73

Table 6. Average C.R. (dictionary composed by 8192 entries)-Dataset 2.

Image Sequence/Average C.R. AVQ AVQrg
Dune 3.48 3.65
Trees 3.28 3.47
UN camp 2.77 2.90

Figures 13 and 14 show the trends of the PSNR metric for the AVQ algorithm (green line) and
the AVQyg algorithm (magenta line) when dictionaries of 4096 entries and of 8192 entries are used,
respectively. As is observable from these figures and from Tables 7 and 8, which summarize the
achieved average PSNRs, the trend obtained by the AVQjg algorithm is generally slightly worse, except
for a few cases (e.g., the 14-th frame of the sequence denoted as “Dune”).

Table 7. Average PSNR (dictionary composed by 4096 entries)-Dataset 2.

Image Sequence/Average PSNR AVQ AVOQig
Dune 36.65 35.97

Trees 36.85 36.65

UN camp 38.32 38.32

Table 8. Average PSNR (dictionary composed by 8192 entries)-Dataset 2.

Image Sequence/Average PSNR AVQ AVQig
Dune 36.10 35.30
Trees 36.11 35.95

UN camp 37.71 37.69

Algorithms 2017, 10, 51

PSNR

PSNR

Trees

8 10
Frames

(b)

12

13 of 16

UN camp

Figure 13. Graphical comparison of the achieved PSNR between the AVQ algorithm (green line)
and the AVQyg algorithm (magenta line), by using a dictionary of 4096 (212) entries, for (a) the Dune
sequence; (b) the Trees sequence; and (c) the UN camp sequence.

Dune Trees

UN camp

375}----

PSNR
PSNR

: 10 15 20 2 4 6 8 10 12 14 16 18 U 5 -
Frames Frames

(@) (b) (©)

Figure 14. Graphical comparison of the achieved PSNR between the AVQ algorithm (green line) and
the AVQyg algorithm (magenta), by using a dictionary of 8192 (2'3) entries, for (a) the Dune sequence;
(b) the Trees sequence; and (c) the UN camp sequence.

5. Conclusions

In this work, we propose a lossy compression scheme for image sequences, based on the AVQ
algorithm, which we denoted as AVQjs. Our approach uses a shared dictionary to exploit the temporal
correlation of image sequences.

The experimental results that we achieved show slight improvements, on average, in terms of
compression performances, when the AVQjg algorithm is compared with the AVQ algorithm. However,
we have designed our approach in order for it to be easily implementable and it does not affect the
execution time. The compression performances are dependent anyway on the temporal correlation
among the frames that compose the input image sequence.

Future research directions will include the testing on collections of bi-level images [13] and on 3D
medical images [14]. Moreover, we will focus on the design of new heuristics and on the design of
parallel implementations through adequate frameworks (e.g., the OpenCL framework [15], etc.) of
the AVQyg algorithm (e.g., based on the technique addressed in [16]). In addition, we will focus on a
possible pre-processing based on a frame ordering (similar to the one highlighted in [17]), which could
improve the compression performances.

Acknowledgments: The authors would like to thank students Vincenzo Fariello and Andrea Vallati, who have
implemented and tested a preliminary version of the AVQyg algorithm.

Algorithms 2017, 10, 51 14 of 16

Author Contributions: Raffaele Pizzolante designed and performed the experiments. Raffaele Pizzolante,
Bruno Carpentieri and Sergio De Agostino wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.
Appendix A

In Tables A1-A3, we respectively report three uncompressed frames of Seq. 1 (Table A1), Seq. 2
(Table A2) and Seq. 3 (Table A3) of Dataset 1, and the same frames obtained as output of the compression,
by using the AVQ algorithm and the AVQyg algorithm.

Table Al. Example of some frames from Seq. 1-Dataset 1. Appendix.

Frame No. 1 9 15

Uncompressed

AVQ

AVQrs

Table A2. Example of some frames from Seq. 2-Dataset 1.

Frame No. 1 15 30

Uncompressed

AVQ

AVQrs

Algorithms 2017, 10, 51 150f 16

Table A3. Example of some frames from Seq. 3-Dataset 1.

Frame No. 3 6 9

Uncompressed

AVQ

AVQrs

References

1.

10.

11.

12.

13.

Valsesia, D.; Boufounos, P. Multispectral image compression using universal vector quantization.
In Proceedings of the Multispectral Image Compression Using Universal Vector Quantization, Cambridge, UK,
11-14 September 2016; Information Theory Workshop (ITW): Cambridge, UK, 2016.

Ryan, M.J.; Arnold, J.F. The lossless compression of AVIRIS images by vector quantization. IEEE Trans.
Geosci. Remote Sens. 1997, 35, 546-550. [CrossRef]

Kekre, H.B.; Prachi, N.; Tanuja, S. Color image compression using vector quantization and hybrid wavelet
transform. In Proceedings of the Computer Science 89, Bangalore, India, 19-21 August 2016; pp. 778-784.
Gersho, A.; Gray, RM. Vector Quantization and Signal Compression; Kluwer Academic Press: Dordrecht,
The Netherlands, 1992.

Constantinescu, C.; Storer,].A. Improved techniques for single-pass adaptive vector quantization. Proc. IEEE
1994, 82, 933-939. [CrossRef]

Ziv,].; Lempel, A. Compression of individual sequences via variable-length coding. IEEE Trans. Inf. Theory
1978, 24, 530-536. [CrossRef]

Carpentieri, B. Image compression via textual substitution. Wseas Trans. Inf. Sci. Appl. 2009, 6, 768-777.
Sheinwald, D.; Lempel, A.; Ziv,]. Two-dimensional encoding by finite state encoders. IEEE Trans. Commun.
1990, 38, 341-347. [CrossRef]

DeGroot, M.H.; Schervish, M.]. Probability and Statistics, 4th ed.; Addison Wesley: Boston, MA, USA, 2011.
Pizzolante, R. Lossy compression of image sequences through the AVQ algorithm. In Proceedings of the
International Conference on Data Compression, Communication Processing and Security, Salerno, Italy,
22-23 September 2016.

SIPI Image Sequences. Available online: http:/ /sipi.usc.edu/database/database.php?volume=sequences
(accessed on 6 May 2017).

Lewis, J.J.; Nikolov, S.G.; Canagarajah, C.N.; Bull, D.R.; Toet, A. Uni-modal versus joint segmentation
for region-based image fusion. IEEE 9th International Conference on Information Fusion, Florence, Italy,
10-13 July 2006; pp. 1-8.

De Agostino, S. Compressing Bi-level images by block matching on a tree architecture. In Proceedings of the
Prague Stringology conference 2009, Prague, Czech Republic, 31 August-2 September 2009.

http://dx.doi.org/10.1109/36.581964
http://dx.doi.org/10.1109/5.286197
http://dx.doi.org/10.1109/TIT.1978.1055934
http://dx.doi.org/10.1109/26.48892
http://sipi.usc.edu/database/database.php?volume=sequences

Algorithms 2017, 10, 51 16 of 16

14.

15.

16.

17.

Pizzolante, R.; Carpentieri, B.; Castiglione, A. A secure low complexity approach for compression and
transmission of 3-D medical images. In Proceedings of the 2013 Eighth International Conference on
Broadband and Wireless Computing, Communication and Applications, Compiegne, France, 28-30 October
2013; pp. 387-392.

Pizzolante, R.; Castiglione, A.; Carpentieri, B.; de Santis, A. parallel low-complexity lossless coding of
three-dimensional medical images. In Proceedings of the NBIS 2014 17th International Conference on
Network-Based Information Systems, 10-12 September 2014; pp. 91-98.

Cinque, L.; Agostino, S.D.; Lombardi, L. Practical parallel algorithms for dictionary data compression.
In Proceedings of the 2009 Data Compression Conference, Snowbird, UT, USA, 16-18 March 2009; p. 441.
Pizzolante, R.; Carpentieri, B. Visualization, band ordering and compression of hyperspectral images.
Algorithms 2012, 5, 76-97. [CrossRef]

@ © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/a5010076
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Adaptive Vector Quantization (AVQ) Algorithm
	Logical Architecture
	Compression and Decompression Phases

	The AVQ for Image Sequences (AVQIS) Algorithm
	Experimental Results
	Dataset 1
	Results Analysis (Dataset 1)
	Dataset 2
	Results Analysis (Dataset 2)

	Conclusions
	

