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Abstract:



We present the semilocal convergence of a multi-step modified Newton-Hermitian and Skew-Hermitian Splitting method (MMN-HSS method) to approximate a solution of a nonlinear equation. Earlier studies show convergence under only Lipschitz conditions limiting the applicability of this method. The convergence in this study is shown under generalized Lipschitz-type conditions and restricted convergence domains. Hence, the applicability of the method is extended. Moreover, numerical examples are also provided to show that our results can be applied to solve equations in cases where earlier study cannot be applied. Furthermore, in the cases where both old and new results are applicable, the latter provides a larger domain of convergence and tighter error bounds on the distances involved.
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1. Introduction


Let [image: there is no content] be Gateaux-differentiable and D be an open set. Let also [image: there is no content] be a point at which [image: there is no content] is continuous and positive definite. Suppose that [image: there is no content], where [image: there is no content] and [image: there is no content] are the Hermitian and Skew-Hermitian parts of the Jacobian matrix [image: there is no content], respectively. Many problems can be formulated like the equation


[image: there is no content]



(1)




using mathematical modelling [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22]. The solution [image: there is no content] of Equation (1) can rarely be found in explicit form. This is why most solution methods of Equation (1) are usually iterative. In particular, Hermitian and Skew-Hermitian Splitting (HSS) methods have been shown to be very efficient in solving large sparse non-Hermitian positive definite systems of linear equations [11,12,17,19,22].



We study the semilocal convergence of the multi-step modified Newton-HSS (MMN-HSS) method defined by


xk(0)=xk,xk(i)=xk(i−1)−I−T(α;x)lk(i)F′(xk)−1F(xk(i−1)),1≤i≤m,xk+1=xk(m),i=1,2,…m,k=0,1,…,



(2)




where [image: there is no content] is an initial point, [image: there is no content][image: there is no content] is a sequence of positive integers, and [image: there is no content] and [image: there is no content] are positive constants


[image: there is no content]








and


∥F(xk)+F′(xk)dk,lk∥≤ηk∥F(xk)∥,ηk∈[0,1),ηk≤η≤1.











The local and semilocal convergence analysis of method (2) was given in [19] using Lipschitz continuity conditions on F. Later, we extended the local convergence of method (2) using generalized Lipschitz continuity conditions [8].



In the present study, we show that the results in [19] can be extended as the ones for MN-HSS in [8]. Using generalized Lipschitz-type conditions, we present a new semilocal convergence analysis with advantages (A):

	(a)

	
Larger radius of convergence,




	(b)

	
More precise error estimates on [image: there is no content],




	(c)

	
The new results can be used in cases where the old ones in [19] cannot be used to solve Equation (1).









The advantages (A) are obtained under the same computational cost as in [19]. Hence, the applicability of the MMN-HSS method is extended.



The rest of the paper is structured as follows: Section 2 contains the semilocal convergence analysis of the MMN-HSS method. Section 3 contains the numerical examples.




2. Semilocal Convergence


The following hypotheses shall be used in the semilocal convergence analysis (H):

	(H1)

	
Let [image: there is no content]. There exist [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] such that


∥H(x0)∥≤β1,∥S(x0)∥≤β2,∥F′(x0)−1∥≤γ,∥F(x0)∥≤μ.












	(H2)

	
There exist [image: there is no content], [image: there is no content], continuous and nondecreasing functions with [image: there is no content] such that, for each [image: there is no content]


[image: there is no content]










[image: there is no content]











Define functions w and v by [image: there is no content] and [image: there is no content].


Letr0=sup{t≥0:γv(t)<1}








and set


D0=D∩U(x0,r0).












	(H3)

	
There exist [image: there is no content], [image: there is no content], continuous and nondecreasing functions with [image: there is no content] such that, for each [image: there is no content]


[image: there is no content]










[image: there is no content]

















We need the following auxiliary results for the semilocal convergence analysis that follows.



Lemma 1.

Under the (H) hypotheses, the following items hold for each [image: there is no content]:


[image: there is no content]



(3)






[image: there is no content]



(4)






[image: there is no content]



(5)






[image: there is no content]



(6)




and


[image: there is no content]



(7)









Proof. 

By hypothesis [image: there is no content] and [image: there is no content], we have that


∥F′(x)−F′(y)∥=∥H(x)−H(y)+S(x)−S(y)∥≤∥H(x)−H(y)∥+∥S(x)−S(y)∥≤w1(∥x−y∥)+w2(∥x−y∥=w(∥x−y∥)








and by [image: there is no content]


∥F′(x)−F′(x0)∥≤∥H(x)−H(x0)∥+∥S(x)−S(x0)∥≤v1(∥x−x0∥)+v2(∥x−x0∥)=v(∥x−x0∥),








which show inequalities (3) and (4), respectively.



Then, we get, by [image: there is no content] and [image: there is no content]


∥F′(x)∥=∥F′(x)−F(x0)+F′(x0)∥≤∥F′(x)−F′(x0)∥+∥H(x0)∥+∥S(x0)∥≤v(∥x−x0∥)+β1+β2,








which shows inequality (5). Using [image: there is no content], we obtain that


∥F(x)−F(y)−F′(y)(x−y)∥=∥∫01F′y+ξ(x−y)−F′(y)dξ(x−y)∥≤∫01w(∥x−y∥ξ)dξ∥x−y∥,








which shows inequality (6). By [image: there is no content], [image: there is no content] and inequality (4), we get, in turn, that for [image: there is no content]:


[image: there is no content]



(8)







It follows from inequality (8) and the Banach lemma on invertible operators [4] that [image: there is no content] exists so that inequality (7) is satisfied.    ☐





We shall define some scalar functions and parameters to be used in the semilocal convergence analysis. Let [image: there is no content] and [image: there is no content]. Define scalar sequences [image: there is no content] by the following schemes:


t0=0,sk(0)=tk,tk+1=skm,










[image: there is no content]










tk+1=sk(i)+(1−γv(tk))(sk(i)−sk(i−1)),i=0,1,2,…,m−1,k=0,1,2,….



(9)







Moreover, define functions q and [image: there is no content] on the interval [image: there is no content] by


[image: there is no content]








and


[image: there is no content]











We have that [image: there is no content] and [image: there is no content] as [image: there is no content]. It follows from the intermediate value theorem that function [image: there is no content] has zeros in interval [image: there is no content]. Denote by [image: there is no content] the smallest such zero. Then, we have that for each [image: there is no content]


[image: there is no content]



(10)







Lemma 2.

Suppose that equation


[image: there is no content]



(11)




has zeros in interval [image: there is no content]. Denote by r the smallest such zero. Then, sequence [image: there is no content], generated by Equation (9) is nondecreasing, bounded from above by [image: there is no content]and converges to its unique least upper bound [image: there is no content], which satisfies


[image: there is no content]



(12)









Proof. 

Equation (11) can be written as


[image: there is no content]



(13)




since, by Equation (9),


[image: there is no content]








and r solves Equation (11). It follows from the definition of sequence [image: there is no content], functions [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and inequality (10) that


[image: there is no content]










[image: there is no content]








and


[image: there is no content]











Therefore, sequences [image: there is no content] converges to [image: there is no content], which satisfies inequality (12).  ☐





Next, we present the semilocal convergence analysis of the MMN-HSS method.



Theorem 1.

Suppose that the hypotheses (H) and hypotheses of Lemma 2 hold. Define [image: there is no content], where [image: there is no content]is defined in ([7], Theorem 2.1) and [image: there is no content]is given in Lemma 2. Let [image: there is no content], [image: there is no content], [image: there is no content]. Moreover, suppose


[image: there is no content]



(14)




where the symbol [image: there is no content]denotes the smallest integer no less than the corresponding real number, [image: there is no content]and


[image: there is no content]



(15)







Then, the sequence [image: there is no content]generated by the MMN-HSS method is well defined, remains in [image: there is no content]for each [image: there is no content]and converges to a solution [image: there is no content]of Equation [image: there is no content].





Proof. 

Notice that we showed in ([8], Theorem 2.1) that for each [image: there is no content]


[image: there is no content]



(16)







The following statements shall be shown using mathematical induction:


∥xk−x0∥≤tk−t0,∥F(xk)∥≤1(1+η)γϕ(tk),∥xk(1)−xk∥≤sk(1)−tk∥F(xk(i))∥≤1(1+η)γϕ(sk(i)),∥xk(i+1)−xk(i)∥≤sk(i+1)−sk(i),i=1,2,⋯,m−2,∥F(xk(m−1))∥≤1(1+η)γϕ(sk(m−1)),∥xk+1−xk(m−1)∥≤tk+1−sk(m−1).



(17)







We have for [image: there is no content]:


[image: there is no content]










[image: there is no content]










[image: there is no content]











Suppose the following items hold for each [image: there is no content]:


∥F(x0(i))∥≤1(1+η)γ(1−γv(t0))(s0(i+1)−s0(i)),∥x0(i+1)−x0(i)∥≤s0(i+1)−s0(i),i=1,2,⋯,m−2.



(18)







We shall prove that inequalities (18) hold for [image: there is no content].



Using the (H) conditions, we get in turn that


∥F(x0(m−1))∥≤∥F(x0(m−1))−F(x0(m−2))−F′(x0)(x0(m−1)−x0(m−2)∥+∥F(x0(m−2))+F′(x0)(x0(m−1)−x0(m−2)∥≤∥F(x0(m−1))−F(x0(m−2))−F′(x0(m−2))(x0(m−1)−x0(m−2))∥+∥F′(x0(m−2))−F′(x0)∥∥(x0(m−1)−x0(m−2)∥+η∥F(x0(m−2)∥≤∫01w(∥(x0(m−1)−x0(m−2)∥ξ)dξ∥∥(x0(m−1)−x0(m−2)∥+w(∥x0(m−2)−x0∥)∥(x0(m−1)−x0(m−2)∥+η∥F(x0(m−2))∥.



(19)







Then, we also obtain that


[image: there is no content]










∥x0(m−2)−x0∥≤∥x0(m−2)−x0(m−3)∥+⋯+∥x0(1)−x0∥≤(s0(m−2)−s0(m−3))+⋯+(s0(1)−t0)≤s0(m−2)−t0=s0(m−2)








and


[image: there is no content]











Hence, we get from inequality (19) that


∥F(x0(m−1))∥≤∫01w((s0(m−1)−s0(m−2))ξ)dξ(s0(m−1)−s0(m−2))+w(s0(m−2)−t0)(s0(m−1)−s0(m−2))+η(1−γv(t0))(1+η)γ(s0(m)−s0(m−1))≤1−γv(t0)(1+η)γ(s0(m)−s0(m−1)).



(20)







Then, we have by Equation (9) that


∥x1−x0(m−1)∥≤∥I−T(α;x0)l0(m)∥∥F′(x0)−1∥∥F(x0(m−1))∥≤(1+((τ+1)θ)l0(m))γ1(1+η)γ(1−γv(t0))(s0(m)−s0(m−1)))=t1−s0(m−1)








holds, and the items (17) hold for [image: there is no content]. Suppose that the items (17) hold for all nonnegative integers less than k. Next, we prove the items (17) hold for k.



We get, in turn, by the induction hypotheses:


∥xk−x0∥≤∥xk−xk−1(m−1)∥+∥xk−1(m−1)−xk−1(m−2)∥+⋯+∥xk−1(1)−xk−1(0)∥+∥xk−1−x0∥,≤(tk−sk−1(m−1))+(sk−1(m−1)−sk−1(m−2))+⋯+(sk−1(1)−tk−1)+(tk−1−t0),=tk−t0<r*<r.











In view of [image: there is no content], we have


∥F(xk)∥≤∥F(xk)−F(xk−1(m−1))−F′(xk−1)(xk−xk−1(m−1))∥+∥F(xk−1(m−1))+F′(xk−1)(xk−xk−1(m−1)∥≤∥F(xk)−F(xk−1(m−1))−F′(xk−1(m−1))(xk−xk−1(m−1))∥+∥F′(xk−1(m−1))−F′(xk−1)∥∥(xk−xk−1(m−1)∥+η∥F(xk−1(m−1)∥≤∫01w(∥(xk−xk−1(m−1)∥ξ)dξ∥∥(xk−xk−1(m−1)∥+w(∥xk−1(m−1)−xk−1∥)∥xk−xk−1(m−1)∥+η(1−γv(tk−1))(1+η)γ(sk−1(m)−sk−1(m−1))≤(1−γv(tk))(1+η)γ(sk(m)−sk(m−1)).



(21)







We also get that


[image: there is no content]



(22)






∥xk−1(m−1)−xk−1∥≤∥xk−1m−1−xk−1(m−2)∥+⋯+∥xk−1(1)−xk−1∥,≤(sk−1(m−1)−sk−1(m−2))+⋯+(sk−1(1)−tk−1),≤sk−1(m−1)−tk−1



(23)




and


[image: there is no content]



(24)







It follows that


∥xk(1)−xk∥≤∥I−T(α;xk)lk(1)∥∥F′(xk)−1∥∥F(xk)∥≤(1+θlk(1))γ1−γv(tk)1−γv(tk)(1+η)γ(sk(1)−tk)≤sk(1)−tk.











Suppose that the following items hold for any positive integers less than [image: there is no content]:


∥F(x0(i))∥≤1(1+η)γ(1−γv(tk))(sk(i+1)−sk(i)),∥xk(i+1)−xk(i)∥≤sk(i+1)−sk(i),i=1,2,⋯,m−2.



(25)







We will prove items (25) hold for [image: there is no content]. As in inequality (21), we have that


∥F(xk(m−1))∥≤∥F(xk(m−1))−F(xk−1(m−2))−F′(xk)(xk(m−1)−xk(m−2))∥+∥F(xk(m−2))+F′(xk)(xk(m−1)−xk(m−2))∥≤∥F(xk(m−1)−F(xk(m−2))−F′(xk(m−2))(xk(m−1)−xk(m−2))∥+∥F′(xk(m−2))−F′(xk)∥∥xk(m−1)−xk−1(m−2)∥+η∥F(xk(m−2)∥≤1(1+η)γ(1−γv(tk))(sk(m)−sk(m−1)).



(26)







We also get that


[image: there is no content]



(27)






∥xk(m−2)−xk∥≤∥xkm−2−xk−1(m−3)∥+⋯+∥xk(1)−xk∥≤(sk(m−2)−sk(m−3))+⋯+(sk(1)−tk)≤sk(m−2)−tk,



(28)




and


[image: there is no content]



(29)







Therefore,


∥xk+1−xk(m−1)∥≤∥I−T(α;xk)lk(m)∥∥F′(xk)−1∥∥F(xk(m−1))∥≤(1+θlk(m))γ(1−γv(tk))(sk(m)−sk(m−1))(1−γv(tk))(1+η)γ≤tk+1−sk(m−1)



(30)




holds. The induction for items (17) is completed. The sequences [image: there is no content], [image: there is no content] converges [image: there is no content], and


∥xk+1−x0∥≤∥xk+1−xk(m−1)∥+∥xk(m−1)−xk(m−2)∥+⋯+∥xk(1)−xk(0)∥+∥xk−x0∥,≤(tk+1−sk(m−1))+(sk(m−1)−sk(m−2))+⋯+(sk(1)−tk)+(tk−t0),=tk+1−t0<r*<r.



(31)







Then, the sequence [image: there is no content] also converges to some [image: there is no content]. By letting [image: there is no content] in inequality (21), we get that


[image: there is no content]



(32)







☐





Remark 1.

Let us specialize functions [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content]as [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content]for some positive constants [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content]and set [image: there is no content], [image: there is no content]. Suppose that [image: there is no content]. Then, notice that


[image: there is no content]



(33)




since


[image: there is no content]



(34)




and


[image: there is no content]



(35)






[image: there is no content]



(36)




and


[image: there is no content]



(37)




where [image: there is no content].



Notice that in [19], [image: there is no content], [image: there is no content]. and [image: there is no content]. Therefore, if strict inequality holds in any of item (34), (35), (36) or (37), the present results improve the ones in [19], (see also numerical examples).





Remark 2.

The set [image: there is no content]in [image: there is no content]can be replaced by [image: there is no content]leading to even smaller “w” and “v” functions, since [image: there is no content].






3. Numerical Examples


Example 1.

Suppose that the motion of an object in three dimensions is governed by system of differential equations


[image: there is no content]



(38)




with x,y,z∈Dfor [image: there is no content]. Then, the solution of the system is given for [image: there is no content]by function [image: there is no content]defined by


[image: there is no content]



(39)







Then, the Fréchet-derivative is given by


F′(v)=ex000(e−1)y+10001.



(40)







Then, we have that [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content]where [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content]and [image: there is no content].



After solving the equation [image: there is no content], we obtain the root [image: there is no content]. Similarly, the roots of Equation (11) are: 0.0452196and0.0933513. So,


[image: there is no content]











Therefore,


[image: there is no content]











In addition, we have that


[image: there is no content]








and (see [7])


[image: there is no content]











So,


[image: there is no content]











It follows that sequence [image: there is no content]is complete, [image: there is no content]in D and as such it converges to [image: there is no content].





Example 2.

Consider the system of nonlinear equation [image: there is no content], wherein [image: there is no content]and X=(x1,x2,…,xn)T, with


Fi(X)=(3−2xi)xi3/2−xi−1−2xi+1+1,i=1,2,…,n,








where [image: there is no content]by convention. This system has a complex solution. Therefore, we consider the complex initial guess [image: there is no content]. The derivative [image: there is no content]is given by


[image: there is no content]













It is clear that [image: there is no content] is sparse and positive definite. Now, we solve this nonlinear problem by the Newton-HSS method (N-HSS), (see [10]), modified Newton-HSS method (MN-HSS), (see [22]), three-step modified Newton-HSS (3MN-HSS) and four-step modified Newton-HSS (4MN-HSS) method. The methods are compared in error estimates, CPU time (CPU-time) and the number of iterations. We use experimentally optimal parameter values of [image: there is no content] for the methods corresponding to the problem dimension n=100,200,500,1000, see Table 1. The numerical results are displayed in Table 2. From numerical results, we observe that MN-HSS outperforms N-HSS in the sense of CPU time and the number of iterations. Note that, in this example, the results in [19] can not be applied since the operators involved are not Lipschitz. However, our results can be applied by choosing “w” and “v” functions appropriately as in Example 3.1. We leave these details to the interested readers.



Table 1. Optimal values of [image: there is no content] for N-HSS and MN-HSS methods.







	
n

	
100

	
200

	
500

	
1000






	
N-HSS

	
4.1

	
4.1

	
4.2

	
4.1




	
MN-HSS

	
4.4

	
4.4

	
4.3

	
4.3




	
MMN-HSS

	
4.4

	
4.4

	
4.3

	
4.3










Table 2. Numerical results.







	
n

	
Method

	
Error Estimates

	
CPU-Time

	
Iterations






	
100

	
N-HSS

	
[image: there is no content]

	
1.744

	
5




	
MN-HSS

	
[image: there is no content]

	
1.485

	
4




	
3MN-HSS

	
[image: there is no content]

	
1.281

	
3




	
4MN-HSS

	
[image: there is no content]

	
1.327

	
3




	
200

	
N-HSS

	
[image: there is no content]

	
6.162

	
5




	
MN-HSS

	
[image: there is no content]

	
4.450

	
4




	
3MN-HSS

	
[image: there is no content]

	
4.287

	
3




	
4MN-HSS

	
[image: there is no content]

	
4.108

	
3




	
500

	
N-HSS

	
[image: there is no content]

	
32.594

	
5




	
MN-HSS

	
[image: there is no content]

	
24.968

	
4




	
3MN-HSS

	
[image: there is no content]

	
21.250

	
3




	
4MN-HSS

	
[image: there is no content]

	
20.406

	
3




	
1000

	
N-HSS

	
[image: there is no content]

	
119.937

	
5




	
MN-HSS

	
[image: there is no content]

	
98.203

	
4




	
3MN-HSS

	
[image: there is no content]

	
89.018

	
3




	
4MN-HSS

	
[image: there is no content]

	
91.000

	
3
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