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Abstract: We present the semilocal convergence of a multi-step modified Newton-Hermitian and
Skew-Hermitian Splitting method (MMN-HSS method) to approximate a solution of a nonlinear
equation. Earlier studies show convergence under only Lipschitz conditions limiting the applicability
of this method. The convergence in this study is shown under generalized Lipschitz-type conditions
and restricted convergence domains. Hence, the applicability of the method is extended. Moreover,
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results are applicable, the latter provides a larger domain of convergence and tighter error bounds on
the distances involved.
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1. Introduction

Let F : D ⊆ Cn → Cn be Gateaux-differentiable and D be an open set. Let also x0 ∈ D be
a point at which F′(x) is continuous and positive definite. Suppose that F′(x) = H(x) + S(x), where
H(x) = 1

2 (F′(x) + F′(x)∗) and S(x) = 1
2 (F′(x)− F′(x)∗) are the Hermitian and Skew-Hermitian parts

of the Jacobian matrix F′(x), respectively. Many problems can be formulated like the equation

F(x) = 0, (1)

using mathematical modelling [1–22]. The solution x∗ of Equation (1) can rarely be found in
explicit form. This is why most solution methods of Equation (1) are usually iterative. In particular,
Hermitian and Skew-Hermitian Splitting (HSS) methods have been shown to be very efficient in
solving large sparse non-Hermitian positive definite systems of linear equations [11,12,17,19,22].

We study the semilocal convergence of the multi-step modified Newton-HSS (MMN-HSS) method
defined by

x(0)k = xk,

x(i)k = x(i−1)
k −

(
I − T(α; x)l(i)k

)
F′(xk)

−1F(x(i−1)
k ), 1 ≤ i ≤ m,

xk+1 = x(m)
k , i = 1, 2, . . . m, k = 0, 1, . . . ,

(2)
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where x0 ∈ D is an initial point, T(α; x) = (αI + S(x))−1(αI − H(x))(αI + H(x))−1(αI − H(x)), l(i)k is
a sequence of positive integers, and α and tol are positive constants

‖F(xk)‖ ≤ tol‖F(x0)‖

and
‖F(xk) + F′(xk)dk,lk‖ ≤ ηk‖F(xk)‖, ηk ∈ [0, 1), ηk ≤ η ≤ 1.

The local and semilocal convergence analysis of method (2) was given in [19] using Lipschitz
continuity conditions on F. Later, we extended the local convergence of method (2) using generalized
Lipschitz continuity conditions [8].

In the present study, we show that the results in [19] can be extended as the ones for MN-HSS
in [8]. Using generalized Lipschitz-type conditions, we present a new semilocal convergence analysis
with advantages (A):

(a) Larger radius of convergence,
(b) More precise error estimates on ‖xk − x∗‖,
(c) The new results can be used in cases where the old ones in [19] cannot be used to solve Equation (1).

The advantages (A) are obtained under the same computational cost as in [19]. Hence,
the applicability of the MMN-HSS method is extended.

The rest of the paper is structured as follows: Section 2 contains the semilocal convergence analysis
of the MMN-HSS method. Section 3 contains the numerical examples.

2. Semilocal Convergence

The following hypotheses shall be used in the semilocal convergence analysis (H):

(H1) Let x0 ∈ Cn. There exist β1 > 0, β2 > 0, γ > 0 and µ > 0 such that

‖H(x0)‖ ≤ β1, ‖S(x0)‖ ≤ β2, ‖F′(x0)
−1‖ ≤ γ, ‖F(x0)‖ ≤ µ.

(H2) There exist v1 : [0,+∞)→ R, v2 : [0,+∞)→ R, continuous and nondecreasing functions with
v1(0) = v2(0) = 0 such that, for each x, y ∈ D,

‖H(x)− H(x0)‖ ≤ v1(‖x− x0‖),

‖S(x)− S(x0)‖ ≤ v2(‖x− x0‖).

Define functions w and v by w(t) = w1(t) + w2(t) and v(t) = v1(t) + v2(t).

Let r0 = sup{t ≥ 0 : γv(t) < 1}

and set
D0 = D ∩U(x0, r0).

(H3) There exist w1 : [0,+∞)→ R, w2 : [0,+∞)→ R, continuous and nondecreasing functions with
w1(0) = w2(0) = 0 such that, for each x, y ∈ D0,

‖H(x)− H(y)‖ ≤ w1(‖x− y‖),

‖S(x)− S(y)‖ ≤ w2(‖x− y‖).

We need the following auxiliary results for the semilocal convergence analysis that follows.
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Lemma 1. Under the (H) hypotheses, the following items hold for each x, y ∈ D0:

‖F′(x)− F′(y)‖ ≤ w(‖x− y‖), (3)

‖F′(x)− F′(x0)‖ ≤ v(‖x− y‖), (4)

‖F′(x)‖ ≤ v(‖x− y‖) + β1 + β2, (5)

‖F′(x)− F(y)− F′(y)(x− y)‖ ≤
∫ 1

0
w(‖x− y‖ξ)dξ‖x− y‖, (6)

and
‖F′(x)−1‖ ≤ γ

1− γv(‖x− x0‖)
. (7)

Proof. By hypothesis (H3) and F′(x) = H(x) + S(x), we have that

‖F′(x)− F′(y)‖ = ‖
(

H(x)− H(y)
)
+
(

S(x)− S(y)
)
‖

≤ ‖H(x)− H(y)‖+ ‖S(x)− S(y)‖
≤ w1(‖x− y‖) + w2(‖x− y‖ = w(‖x− y‖)

and by (H2)

‖F′(x)− F′(x0)‖ ≤ ‖H(x)− H(x0)‖+ ‖S(x)− S(x0)‖
≤ v1(‖x− x0‖) + v2(‖x− x0‖)
= v(‖x− x0‖),

which show inequalities (3) and (4), respectively.
Then, we get, by (H1) and (H3),

‖F′(x)‖ = ‖
(

F′(x)− F(x0)
)
+ F′(x0)‖

≤ ‖F′(x)− F′(x0)‖+ ‖H(x0)‖+ ‖S(x0)‖
≤ v(‖x− x0‖) + β1 + β2,

which shows inequality (5). Using (H3), we obtain that

‖F(x)− F(y)− F′(y)(x− y)‖ = ‖
∫ 1

0
F′
(

y + ξ(x− y)− F′(y)
)

dξ(x− y)‖

≤
∫ 1

0
w(‖x− y‖ξ)dξ‖x− y‖,

which shows inequality (6). By (H1), (H2) and inequality (4), we get, in turn, that for x ∈ D0 :

‖F′(x0)
−1‖‖F′(x)− F′(x0)‖ ≤ γ(‖x− x0‖) ≤ γv(r0) < 1. (8)

It follows from inequality (8) and the Banach lemma on invertible operators [4] that F′(x)−1 exists
so that inequality (7) is satisfied.

We shall define some scalar functions and parameters to be used in the semilocal convergence
analysis. Let t0 = 0 and s(1)0 = (1 + η)γµ. Define scalar sequences {tk}, {s

(1)
k }, . . . , {s(m−1)

k } by the
following schemes:

t0 = 0, s(0)k = tk, tk+1 = sm
k ,
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s(i)k = s(i−1)
k +

[(
∫ 1

0 w((s(i−1)
k − s(i−2)

k )ξ)dξ + w(s(i−2)
k − tk))(1 + η)γ + η(1− γv(tk))](s

(i−1)
k − s(i−2)

k )

1− γv(tk)

tk+1 = s(i)k + (1− γv(tk))(s
(i)
k − s(i−1)

k ), i = 0, 1, 2, . . . , m− 1, k = 0, 1, 2, . . . . (9)

Moreover, define functions q and hq on the interval [0, r0) by

q(t) =
(1 + η)γ

∫ 1
0 w((1 + η)γµξ)dξ + (1 + η)γw(t) + η(1− γv(t))

1− γv(t)

and
hq(t) = q(t)− 1.

We have that hq(0) = η − 1 < 0 and hq → ∞ as t → r−0 . It follows from the intermediate
value theorem that function hq has zeros in interval (0, r0). Denote by rq the smallest such zero.
Then, we have that for each t ∈ [0, r0)

0 ≤ q(t) ≤ 1. (10)

Lemma 2. Suppose that equation

t(1− q(t))−
(
(1 + η)γµ + (1 + η)γ

∫ 1

0
w((1 + η)γµξ)dξ + η

)
= 0 (11)

has zeros in interval (0, rq). Denote by r the smallest such zero. Then, sequence {tk}, generated by Equation (9)
is nondecreasing, bounded from above by rq and converges to its unique least upper bound r∗, which satisfies

0 < r∗ ≤ r < rq. (12)

Proof. Equation (11) can be written as
t1 − t0

1− q(r)
= r, (13)

since, by Equation (9),

t1 = (1 + η)γµ + (1 + η)γ
∫ 1

0
w((1 + η)γµτ)dτ + η + w((1 + η)γµ)

and r solves Equation (11). It follows from the definition of sequence {tk}, functions w1, w2, v1, v2 and
inequality (10) that

0 ≤ t0 ≤ s0 ≤ t1 ≤ s1 ≤ · · · ≤ tk ≤ sk ≤ tk+1 < r,

tk+2 − tk+1 = q(r)(tk+1 − tk) ≤ q(r)k+1(t1 − t0),

and

tk+2 ≤tk+1 + q(r)k+1(t1 − t0) ≤ tk + q(r)k(t1 − t0) + q(r)k+1(t1 − t0)

≤ · · · ≤ t1 + q(r)(t1 − t0) + · · ·+ q(r)k+1(t1 − t0)

≤ t1 − t0

1− q(r)
(1− q(r)k+2) <

t1 − t0

1− q(r)
= r.

Therefore, sequences {tk} converges to r∗, which satisfies inequality (12).

Next, we present the semilocal convergence analysis of the MMN-HSS method.



Algorithms 2017, 10, 54 5 of 11

Theorem 1. Suppose that the hypotheses (H) and hypotheses of Lemma 2 hold. Define r̄ = min{r+1 , r∗}, where
r+1 is defined in ([7], Theorem 2.1) and r∗ is given in Lemma 2. Let u = min{m∗, l∗}, m∗ = lim infk→∞mk,
l∗ = lim infk→∞lk. Moreover, suppose

u >
⌊ lnη

ln((τ + 1)θ)

⌋
, (14)

where the symbol b.c denotes the smallest integer no less than the corresponding real number, τ ∈ (0, 1−θ
θ ) and

θ := θ(α; x0) = ‖T(α; x0‖ < 1. (15)

Then, the sequence {xk} generated by the MMN-HSS method is well defined, remains in U(x0, r̄) for each
k = 0, 1, 2, . . . and converges to a solution x∗ of Equation F(x) = 0.

Proof. Notice that we showed in ([8], Theorem 2.1) that for each x ∈ U(x0, r̄)

‖T(α; x)‖ ≤ (τ + 1)θ < 1. (16)

The following statements shall be shown using mathematical induction:

‖xk − x0‖ ≤ tk − t0,
‖F(xk)‖ ≤ 1

(1+η)γ
φ(tk),

‖x(1)k − xk‖ ≤ s(1)k − tk

‖F(x(i)k )‖ ≤ 1
(1+η)γ

φ(s(i)k ),

‖x(i+1)
k − x(i)k ‖ ≤ s(i+1)

k − s(i)k , i = 1, 2, · · · , m− 2,

‖F(x(m−1)
k )‖ ≤ 1

(1+η)γ
φ(s(m−1)

k ),

‖xk+1 − x(m−1)
k ‖ ≤ tk+1 − s(m−1)

k .

(17)

We have for k = 0:
‖x0 − x0‖ = 0 ≤ t0 − t0,

‖F(x0)‖ ≤ δ ≤
γ(1− γv(t0))(s1

0 − t0)

γ(1 + η)
,

‖x(1)0 − x0‖ ≤ ‖I − T(α; x0)
l(1)0 ‖.‖F′(x0)

−1‖‖F(x0)‖ ≤ (1 + θl(1)0 ) < (1 + η)γδ = s(1)0 .

Suppose the following items hold for each i < m− 1:{
‖F(x(i)0 )‖ ≤ 1

(1+η)γ
(1− γv(t0))(s

(i+1)
0 − s(i)0 ),

‖x(i+1)
0 − x(i)0 ‖ ≤ s(i+1)

0 − s(i)0 , i = 1, 2, · · · , m− 2.
(18)

We shall prove that inequalities (18) hold for m− 1.
Using the (H) conditions, we get in turn that

‖F(x(m−1)
0 )‖ ≤ ‖F(x(m−1)

0 )− F(x(m−2)
0 )− F′(x0)(x(m−1)

0 − x(m−2)
0 ‖

+‖F(x(m−2)
0 ) + F′(x0)(x(m−1)

0 − x(m−2)
0 ‖

≤ ‖F(x(m−1)
0 )− F(x(m−2)

0 )− F′(x(m−2)
0 )(x(m−1)

0 − x(m−2)
0 )‖

+‖F′(x(m−2)
0 )− F′(x0)‖‖(x(m−1)

0 − x(m−2)
0 ‖+ η‖F(x(m−2)

0 ‖
≤
∫ 1

0 w(‖(x(m−1)
0 − x(m−2)

0 ‖ξ)dξ‖‖(x(m−1)
0 − x(m−2)

0 ‖
+w(‖x(m−2)

0 − x0‖)‖(x(m−1)
0 − x(m−2)

0 ‖+ η‖F(x(m−2)
0 )‖.

(19)
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Then, we also obtain that

‖(x(m−1)
0 − x(m−2)

0 ‖ ≤ s(m−1)
0 − s(m−2)

0 ,

‖x(m−2)
0 − x0‖ ≤ ‖x

(m−2)
0 − x(m−3)

0 ‖+ · · ·+ ‖x(1)0 − x0‖

≤ (s(m−2)
0 − s(m−3)

0 ) + · · ·+ (s(1)0 − t0)

≤ s(m−2)
0 − t0 = s(m−2)

0

and
‖F(x(m−2)

0 ‖ ≤ 1
(1 + η)γ

(1− γv(t0))(s
(m−1)
0 − s(m−2)

0 ).

Hence, we get from inequality (19) that

‖F(x(m−1)
0 )‖ ≤

∫ 1

0
w((s(m−1)

0 − s(m−2)
0 )ξ)dξ(s(m−1)

0 − s(m−2)
0 )

+ w(s(m−2)
0 − t0)(s

(m−1)
0 − s(m−2)

0 ) +
η(1− γv(t0))

(1 + η)γ
(s(m)

0 − s(m−1)
0 ) (20)

≤ 1− γv(t0)

(1 + η)γ
(s(m)

0 − s(m−1)
0 ).

Then, we have by Equation (9) that

‖x1 − x(m−1)
0 ‖ ≤ ‖I − T(α; x0)

l(m)
0 ‖‖F′(x0)

−1‖‖F(x(m−1)
0 )‖

≤ (1 + ((τ + 1)θ)l(m)
0 )γ

1
(1 + η)γ

(1− γv(t0))(s
(m)
0 − s(m−1)

0 )) = t1 − s(m−1)
0

holds, and the items (17) hold for k = 0. Suppose that the items (17) hold for all nonnegative integers
less than k. Next, we prove the items (17) hold for k.

We get, in turn, by the induction hypotheses:

‖xk − x0‖ ≤ ‖xk − x(m−1)
k−1 ‖+ ‖x(m−1)

k−1 − x(m−2)
k−1 ‖+ · · ·+ ‖x(1)k−1 − x(0)k−1‖+ ‖xk−1 − x0‖,

≤ (tk − s(m−1)
k−1 ) + (s(m−1)

k−1 − s(m−2)
k−1 ) + · · ·+ (s(1)k−1 − tk−1) + (tk−1 − t0),

= tk − t0 < r∗ < r.

In view of xk−1, x(1)k−1, · · · , x(m−1)
k−1 ∈ U(x0, r), we have

‖F(xk)‖ ≤‖F(xk)− F(x(m−1)
k−1 )− F′(xk−1)(xk − x(m−1)

k−1 )‖

+ ‖F(x(m−1)
k−1 ) + F′(xk−1)(xk − x(m−1)

k−1 ‖

≤‖F(xk)− F(x(m−1)
k−1 )− F′(x(m−1)

k−1 )(xk − x(m−1)
k−1 )‖

+ ‖F′(x(m−1)
k−1 )− F′(xk−1)‖‖(xk − x(m−1)

k−1 ‖+ η‖F(x(m−1)
k−1 ‖ (21)

≤
∫ 1

0
w(‖(xk − x(m−1)

k−1 ‖ξ)dξ‖‖(xk − x(m−1)
k−1 ‖

+ w(‖x(m−1)
k−1 − xk−1‖)‖xk − x(m−1)

k−1 ‖+ η(1− γv(tk−1))

(1 + η)γ
(s(m)

k−1 − s(m−1)
k−1 )

≤ (1− γv(tk))

(1 + η)γ
(s(m)

k − s(m−1)
k ).
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We also get that
‖xk − x(m−1)

k−1 ‖ ≤ tk − s(m−1)
k−1 , (22)

‖x(m−1)
k−1 − xk−1‖ ≤ ‖xm−1

k−1 − x(m−2)
k−1 ‖+ · · ·+ ‖x(1)k−1 − xk−1‖,

≤ (s(m−1)
k−1 − s(m−2)

k−1 ) + · · ·+ (s(1)k−1 − tk−1), (23)

≤ s(m−1)
k−1 − tk−1

and
‖F(x(m−1)

k−1 )‖ ≤ 1
1 + η)γ

(1− γv(tk−1))(s
(m)
k−1 − s(m−1)

k−1 ). (24)

It follows that

‖x(1)k − xk‖ ≤ ‖I − T(α; xk)
l(1)k ‖‖F′(xk)

−1‖‖F(xk)‖

≤ (1 + θl(1)k )
γ

1− γv(tk)

1− γv(tk)

(1 + η)γ
(s(1)k − tk)

≤ s(1)k − tk.

Suppose that the following items hold for any positive integers less than m− 1:{
‖F(x(i)0 )‖ ≤ 1

(1+η)γ
(1− γv(tk))(s

(i+1)
k − s(i)k ),

‖x(i+1)
k − x(i)k ‖ ≤ s(i+1)

k − s(i)k , i = 1, 2, · · · , m− 2.
(25)

We will prove items (25) hold for m− 1. As in inequality (21), we have that

‖F(x(m−1)
k )‖ ≤‖F(x(m−1)

k )− F(x(m−2)
k−1 )− F′(xk)(x(m−1)

k − x(m−2)
k )‖

+ ‖F(x(m−2)
k ) + F′(xk)(x(m−1)

k − x(m−2)
k )‖

≤‖F(x(m−1)
k − F(x(m−2)

k )− F′(x(m−2)
k )(x(m−1)

k − x(m−2)
k )‖ (26)

+ ‖F′(x(m−2)
k )− F′(xk)‖‖x

(m−1)
k − x(m−2)

k−1 ‖+ η‖F(x(m−2)
k ‖

≤ 1
(1 + η)γ

(1− γv(tk))(s
(m)
k − s(m−1)

k ).

We also get that
‖x(m−1)

k − x(m−2)
k ‖ ≤ ‖s(m−1)

k − s(m−2)
k ‖, (27)

‖x(m−2)
k − xk‖ ≤ ‖xm−2

k − x(m−3)
k−1 ‖+ · · ·+ ‖x(1)k − xk‖

≤ (s(m−2)
k − s(m−3)

k ) + · · ·+ (s(1)k − tk) (28)

≤ s(m−2)
k − tk,

and
‖F(x(m−2)

k )‖ ≤ 1
(1 + η)γ

(1− γv(tk))(s
(m−1)
k − s(m−2)

k ). (29)
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Therefore,

‖xk+1 − x(m−1)
k ‖ ≤ ‖I − T(α; xk)

l(m)
k ‖‖F′(xk)

−1‖‖F(x(m−1)
k )‖

≤ (1 + θl(m)
k )

γ(1− γv(tk))(s
(m)
k − s(m−1)

k )

(1− γv(tk))(1 + η)γ
(30)

≤ tk+1 − s(m−1)
k

holds. The induction for items (17) is completed. The sequences {tk}, {sk}, · · · , s(m−1)
k converges r∗, and

‖xk+1 − x0‖ ≤ ‖xk+1 − x(m−1)
k ‖+ ‖x(m−1)

k − x(m−2)
k ‖+ · · ·+ ‖x(1)k − x(0)k ‖+ ‖xk − x0‖,

≤ (tk+1 − s(m−1)
k ) + (s(m−1)

k − s(m−2)
k ) + · · ·+ (s(1)k − tk) + (tk − t0), (31)

= tk+1 − t0 < r∗ < r.

Then, the sequence {xk} also converges to some x ∈ U(x∗, r). By letting k→ ∞ in inequality (21),
we get that

F(x∗) = 0. (32)

Remark 1. Let us specialize functions w1, w2, v1, v2 as w1(t) = L1t, w2(t) = L2t, v1(t) = K1t, v2(t) = K2t
for some positive constants K1, K2, L1, L2 and set L = L1 + L2, K = K1 + K2. Suppose that D0 = D.
Then, notice that

K ≤ L, (33)

since
K1 ≤ L1 (34)

and
K2 ≤ L2, (35)

β1 ≤ β (36)

and
β2 ≤ β, (37)

where β := max{‖H(x0)‖, ‖S(x0)‖}.
Notice that in [19], K1 = L1, K2 = L2. and β = β1 = β2. Therefore, if strict inequality holds in any of

item (34), (35), (36) or (37), the present results improve the ones in [19], (see also numerical examples).

Remark 2. The set D0 in (H3) can be replaced by D1 = D ∩U(x1, r0 − ‖x1 − x0‖) leading to even smaller
“w” and “v” functions, since D1 ⊂ D0.

3. Numerical Examples

Example 1. Suppose that the motion of an object in three dimensions is governed by system of differential equations

f ′1(x)− f1(x)− 1 = 0,

f ′2(y)− (e− 1)y− 1 = 0, (38)

f ′3(z)− 1 = 0.

with x, y, z ∈ D for f1(0) = f2(0) = f3(0) = 0. Then, the solution of the system is given for v = (x, y, z)T

by function F := ( f1, f2, f3) : D → R3 defined by
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F(v) =
(

ex − 1,
e− 1

2
y2 + y, z

)T
. (39)

Then, the Fréchet-derivative is given by

F′(v) =

ex 0 0
0 (e− 1)y + 1 0
0 0 1

 . (40)

Then, we have that x∗ = (0, 0, 0)T , w(t) = w1(t) + w2(t), v(t) = v1(t) + v2(t), w1(t) = L1t,
w2(t) = L2t, v1(t) = K1t, v2(t) = K2t, where L1 = e− 1, L2 = e, K1 = e− 2, K2 = e, η = 0.001, γ = 1
and µ = 0.01.

After solving the equation hq(t) = 0, we obtain the root rq = 0.124067. Similarly, the roots of Equation (11)
are: 0.0452196 and 0.0933513. So,

r = min{0.0452196, 0.0933513} = 0.0452196.

Therefore,
r = 0.0452196 < rq = 0.124067.

In addition, we have that
r∗ = 0.0452196

and (see [7])
r+1 = 0.020274.

So,
r̄ = min{r+1 , r∗} = min{0.020274, 0.0452196} = 0.020274.

It follows that sequence {xk} is complete, {tk} → r∗ in D and as such it converges to x∗ ∈ U(x0, r̄) =
U(0, 0.020274).

Example 2. Consider the system of nonlinear equation F(X) = 0, wherein F = (F1, · · · , Fn)T and
X = (x1, x2, . . . , xn)T , with

Fi(X) = (3− 2xi)x3/2
i − xi−1 − 2xi+1 + 1, i = 1, 2, . . . , n,

where x0 = xn+1 = 0 by convention. This system has a complex solution. Therefore, we consider the complex
initial guess X0 = (−i,−i, . . . ,−i). The derivative F′(X) is given by

F′(X) =


3
2 (3− 2x1)

√
x1 − 2x3/2

1 −2 · · · 0 0
−1 3

2 (3− 2x2)
√

x2 − 2x3/2
2 · · · 0 0

...
...

. . .
...

...
0 0 · · · −1 3

2 (3− 2xn)
√

xn − 2x3/2
n

 .

It is clear that F′(X) is sparse and positive definite. Now, we solve this nonlinear problem by
the Newton-HSS method (N-HSS), (see [10]), modified Newton-HSS method (MN-HSS), (see [22]),
three-step modified Newton-HSS (3MN-HSS) and four-step modified Newton-HSS (4MN-HSS)
method. The methods are compared in error estimates, CPU time (CPU-time) and the number of
iterations. We use experimentally optimal parameter values of α for the methods corresponding to the
problem dimension n = 100, 200, 500, 1000, see Table 1. The numerical results are displayed in Table 2.
From numerical results, we observe that MN-HSS outperforms N-HSS in the sense of CPU time and
the number of iterations. Note that, in this example, the results in [19] can not be applied since the
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operators involved are not Lipschitz. However, our results can be applied by choosing “w” and “v”
functions appropriately as in Example 3.1. We leave these details to the interested readers.

Table 1. Optimal values of α for N-HSS and MN-HSS methods.

n 100 200 500 1000

N-HSS 4.1 4.1 4.2 4.1
MN-HSS 4.4 4.4 4.3 4.3

MMN-HSS 4.4 4.4 4.3 4.3

Table 2. Numerical results.

n Method Error Estimates CPU-Time Iterations

100

N-HSS 3.98× 10−6 1.744 5
MN-HSS 4.16× 10−8 1.485 4

3MN-HSS 8.28× 10−5 1.281 3
4MN-HSS 1.12× 10−6 1.327 3

200

N-HSS 3.83× 10−6 6.162 5
MN-HSS 5.46× 10−8 4.450 4

3MN-HSS 7.53× 10−5 4.287 3
4MN-HSS 9.05× 10−7 4.108 3

500

N-HSS 4.65× 10−6 32.594 5
MN-HSS 4.94× 10−8 24.968 4

3MN-HSS 7.69× 10−5 21.250 3
4MN-HSS 9.62× 10−7 20.406 3

1000

N-HSS 4.29× 10−6 119.937 5
MN-HSS 5.32× 10−8 98.203 4

3MN-HSS 9.16× 10−5 89.018 3
4MN-HSS 8.94× 10−7 91.000 3
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