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Abstract:



This paper is devoted to the semilocal convergence of a Househölder-like method for nonlinear equations. The method includes many of the studied third order iterative methods. In the present study, we use our new idea of restricted convergence domains leading to smaller [image: there is no content]-parameters, which in turn lead to the following advantages over earlier works (and under the same computational cost): larger convergence domain; tighter error bounds on the distances involved, and at least as precise information on the location of the solution.
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1. Introduction


Let [image: there is no content] and [image: there is no content] be Banach spaces and D be a non-empty open convex subset of [image: there is no content]. Let also [image: there is no content] stand for the space of bounded linear operators from [image: there is no content] into [image: there is no content]. In this study, we are concerned with the problem of approximating a locally unique solution [image: there is no content] of the nonlinear equation:


[image: there is no content]



(1)




where [image: there is no content] is a nonlinear Fréchet-differentiable operator.



Beginning from [image: there is no content], we can consider different third-order iterative methods to solve the scalar equation [image: there is no content], with [image: there is no content] and [image: there is no content], [1,2].



According to Traub’s classification [3], these third-order methods are divided into two broad classes. On the one hand, the one-point methods, which require the evaluation of F, [image: there is no content] and [image: there is no content] at the current point only. For instance,

	
The Halley method


tn+1=tn−11+12LF(tn)F(tn)F′(tn),








where [image: there is no content]



	
The Chebyshev method:


tn+1=tn−1+12LF(tn)F(tn)F′(tn),











	
The family of Newton-like methods:


tn+1=G(tn)=tn−H(LF(tn))F(tn)F′(tn),n≥0,H(y)=∑j≥0A˜jyj;A˜0=1,A˜1=1/2,A˜j∈R+∪{0},∀j≥2,



(2)









which includes the well-known iterative methods of the third-order Chebyshev, Halley, Super-Halley, Ostrowski and Euler methods.



Notice that the family (2) has the inconvenience of reaching order greater than three only for certain equations. For instance, it is known that the family (2) has fourth order of convergence for quadratic equations, if [image: there is no content].



On the other hand, the second class is the multipoint methods, which cannot require [image: there is no content]. For instance:



Two-step method


sn=tn−F(tn)F′(tn),tn+1=TS(tn)=sn−F(sn)F′(tn).



(3)







Notice that this iterative method cannot be included in the family (2). This way, to obtain iterative methods with higher order than three for any function F and to be able to represent some multipoint methods, as (3), we can consider a modification of the family (2) that allow getting this generalization [4]. Therefore, we consider the following family, which includes all of these methods:


[image: there is no content]



(4)







Notice that (4) is well defined if [image: there is no content] for all p and [image: there is no content] and [image: there is no content].



Thus, for instance, for [image: there is no content] and [image: there is no content], we obtain the previous family (2). On the other hand, if we take [image: there is no content], for all [image: there is no content], and:


[image: there is no content]








then we get the two-step method (3).



In general, the methods (2) have higher operational cost than the methods (3) when solving a non-linear system. Another measure that takes into account the operational cost that requires an iterative process [image: there is no content] is the computational efficiency given by [image: there is no content] where, again, o is the order of convergence of [image: there is no content] and [image: there is no content] is the operational cost to apply a step with the iterative process [image: there is no content], that is the number of products needed per iteration and the number of products that appear in the evaluation of the corresponding operator.



Therefore, in order to compare the efficiency of some iterative methods of the new family, we consider the computational efficiency [image: there is no content]. Note that the methods selected in the family (4) as the most efficient have a lower computational efficiency as more terms in the series are considered.



Notice that, for quadratic equations, the Chebyshev method and the two-step method (method in (7) with [image: there is no content]) have the same algorithm:


yn=xn−F′(xn)−1F(xn),xn+1=yn−F′(xn)−1F(yn).



(5)







On the other hand, we note that the family of iterative processes (7), with [image: there is no content], has the property of having four-order convergence when we consider quadratic equations. Therefore, the iterative process that is more efficient in this family, for quadratic equations, is the known Chebyshev-like method ([image: there is no content] and [image: there is no content] for [image: there is no content] in (7)). Then, we compare this iterative process with the Chebyshev method.



This fourth-order method for quadratic equations can be written as:


yn=xn−F′(xn)−1F(xn),zn=yn−F′(xn)−1F(yn),xn+1=zn−F′(xn)−1(2F(zn)−C(zn−yn)(zn−xn)),



(6)







For the quadratic equation, the computational efficiency, [image: there is no content], for the Chebyshev method, (5) and (6) methods in the family (7) is [image: there is no content], [image: there is no content], respectively. As we can observe in Figure 1, the optimum computational efficiency is for the Chebyshev-like method given in (6), when the system has at least six equations.


Figure 1. Computational efficiency for the Chebyshev method, (6) and (5) methods in the family (7).
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Recently, in the work by Amat et al. [4], a semilocal convergence analysis was given in a Banach space setting:


[image: there is no content]



(7)




where [image: there is no content] and the operators [image: there is no content] are some particular k-linear operators.



An interesting application related to image denoising was presented also in [4]. The approximation, via our family, is of a new nonlinear mathematical model for the denoising of digital images. We are able to find the best method in the family (different of the two-step) for this particular problem. Indeed, the founded method has order four. The denoising model that we propose in this paper permits a good reconstruction of the edges that are the most important visual parts of an image. See also [5,6] for more applications.



On the other hand, the semilocal convergence analysis of method (7) was based on [image: there is no content]-type conditions [7] that constitute an alternative to the classical Kantorovich-type conditions [8]. The convergence domain for the method (7) is small in general. In the present study, we use our new idea of restricted convergence domains leading to smaller [image: there is no content]-parameters, which in turn lead to the following advantages over the work in [4] (and under the same computational cost): larger convergence domain; tighter error bounds on the distances involved and an at least as precise information on the location of the solution.



The rest of the paper is organized as follows: the semilocal convergence analysis of the method (7) is given in Section 2, whereas the numerical examples are presented in the concluding Section 3.




2. Semilocal Convergence


We consider Equation (1), where F is a nonlinear operator defined in a non-empty open convex subset D of a Banach space [image: there is no content] with values in another Banach space [image: there is no content].



We need the definition of the [image: there is no content]-condition given in [7].



Definition 1.

Suppose that [image: there is no content] is five-times Fréchet-differentiable. Let [image: there is no content] and [image: there is no content]. We say that F satisfies the γ-condition, if [image: there is no content] and for each [image: there is no content]:


∥Γ0F(x0)∥≤β,∥Γ0F″(x0)∥≤2γ(1−γ∥x−x0∥)2,∥Γ0F″′(x)||≤6γ2(1−γ∥x−x0||)4=f″′(∥x−x0∥),∥Γ0F(iv)(x0)∥≤24γ3,∥Γ0F(v)(x)∥≤120γ4(1−γ∥x−x0∥)6=f(v)(∥x−x0∥),








where:


[image: there is no content]



(8)









Then, the following semilocal convergence result for the method defined in (7) under γ-type conditions was given in [4], Theorem 1:



Theorem 1.

Assume that the operator F satisfies for each [image: there is no content]:


∥[F′(x)]−1Ak(F;x)∥≤kp,∀k≥2,…,p>0and∥[F′(x)]−1F(x)∥<1,



(9)




the γ-condition and hypotheses:


α≤βγ≤3−22,A0(f,t)≥0,∑k=2∞Ak(f;t)f′(t)f(t)f′(t)n−1≥0,



(10)




with f given in (30) and [image: there is no content], where [image: there is no content]. Then, sequences [image: there is no content], [image: there is no content] generated by the method (7) are well defined in [image: there is no content], remain in [image: there is no content] for each [image: there is no content] and converge to a solution [image: there is no content] of equation [image: there is no content], which is unique in [image: there is no content]. Moreover, the following estimates hold true for each [image: there is no content]:


[image: there is no content]



(11)




where [image: there is no content], [image: there is no content],


sn=tn−f(tn)f′(tn),n≥0,tn+1=sn−A0(f;tn)f′(tn)−∑k=2∞Ak(f;tn)f′(tn)f(tn)f′(tn)k−1f(tn)f′(tn).








and:


[image: there is no content]













Next, we show how to achieve the advantages of our approach as stated in the introduction of this study.



Definition 2.

Let [image: there is no content] be a Fréchet-differentiable operator. Operator F satisfies the center [image: there is no content]-Lipschitz condition at [image: there is no content], if for each [image: there is no content]:


[image: there is no content]













Remark 1.

Let [image: there is no content]. Then, we have that:


[image: there is no content]













In view of the Banach lemma on invertible operators [8], Γ0=F′(x0)−1∈L(B2,B1) and:


[image: there is no content]



(12)







The corresponding result using the γ-condition given in [7] is:


[image: there is no content]



(13)




for each [image: there is no content]. However, if [image: there is no content], then [image: there is no content], so if [image: there is no content], the estimate (12) is more precise than (13), leading to more precise majorizing sequences, which in turn lead to the advantages already stated. Indeed, we need the following definition.



Definition 3.

Let [image: there is no content] be a five-times Fréchet-differentiable, which satisfies the center [image: there is no content]-condition. We say that operator F satisfies the δ-γ-condition at [image: there is no content], if for each [image: there is no content]:


∥Γ0F(x0)∥≤β,∥Γ0F″(x0)∥≤2δ(1−δ∥x−x0∥)2,∥Γ0F″′(x)||≤6δ2(1−δ∥x−x0||)4=f1″′(∥x−x0∥),∥Γ0F(iv)(x0)∥≤24δ3,∥Γ0F(v)(x)∥≤120δ4(1−δ∥x−x0∥)6=f1(v)(∥x−x0∥).








Clearly, we have that [image: there is no content].



Now, we define the scalar sequences [image: there is no content], [image: there is no content] by:


t¯0=0,s¯0=β,s¯n=t¯n−f1(t¯n)f1′(t¯n)n≥0,t¯n+1=s¯n−A0(f1;t¯n)f0′(t¯n)−∑k=2∞Ak(f1;t¯n)f1′(t¯n)f1(t¯n)f1′(t¯n)k−1f1(t¯n)f1′(t¯n).



(14)




where function [image: there is no content] is defined on the interval [image: there is no content] by:


[image: there is no content]



(15)




for some [image: there is no content].





Moreover, define constants [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] by [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content].



If condition:


[image: there is no content]



(16)




holds, then function [image: there is no content] has two real roots [image: there is no content] and [image: there is no content] such that:


[image: there is no content]











Moreover, we have for each [image: there is no content]: [image: there is no content], [image: there is no content] and:


f1(i)(t)=i!δi−1(1−δt)(2+i),i=2,3,….











Notice that:


[image: there is no content]



(17)




but not necessarily vice versa, unless, if [image: there is no content].



We need a series of auxiliary results.



Lemma 1.

Suppose that [image: there is no content], [image: there is no content] and [image: there is no content] Then, sequences [image: there is no content], [image: there is no content] generated by (14) are well defined for each [image: there is no content] and converge monotonically to [image: there is no content] so that:


[image: there is no content]



(18)









Proof. 

Simply replace f, α, [image: there is no content], [image: there is no content], [image: there is no content] in the proof of Lemma 2 [4] by [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], respectively. ☐





Lemma 2.


	(a) 

	
Let [image: there is no content] be the real function given in (15). Then, the following assertion holds:


f1(t¯n+1)=12f1″(t¯n)A0(f1;t¯n)f1′(t¯n)2−1A0(f1;t¯n)+f1″(t¯n)A0(f1;t¯n)f1′(t¯n)1+h˜(f1;t¯n)f1′(t¯n)f1(t¯n)f1′(t¯n)+12f1″(t¯n)f1(t¯n)f1′(t¯n)2+12f1″(t¯n)h˜(f1;t¯n)f1(t¯n)f1′(t¯n)2+f1′′(t¯n)f1(t¯n)f1′(t¯n)2−1h˜(f1;t¯n)f1(t¯n)f1′(t¯n)+∫t¯nt¯n+1f1‴(t)(t¯n+1−t)dt,








where:


[image: there is no content]








and [image: there is no content] are real differentiable functions.




	(b) 

	
If F has a continuous third-order Fréchet-derivative on D, then the following assertion holds:


F(xn+1)=12F″(xn)ΓnA0(F;xn)Γn−IA0(F;xn)+F″(xn)ΓnA0(F;xn)I+ΓnH˜(F;xn)ΓnF(xn)+12F″(xn)ΓnF(xn)ΓnF(xn)+12F″(xn)ΓnH˜(F;xn)ΓnF(xn)2+F″(xn)ΓnF(xn)Γn−IH˜(F;xn)ΓnF(xn)+∫xnxn+1F‴(x)(xn+1−x)dx,








where:


[image: there is no content]








and [image: there is no content] are some particular k-linear operators.




	(c) 

	
[image: there is no content].











Proof. 


	(a)

	
Simply use function [image: there is no content] instead of f in the proof of Lemma 3 in [4].




	(b)

	
The same with Lemma 5 in [4].




	(c)

	
Use [image: there is no content] instead of f in Lemma 5 [4].






 ☐





Lemma 3.

Suppose F satisfies the [image: there is no content]-center-condition on D and the δ-γ-condition on [image: there is no content]. Then, the following items hold:

	(a) 

	
[image: there is no content] and:


∥F′(x)−1F′(x0)∥≤−1f0′(∥x−x0∥),for eachx∈D








where:


[image: there is no content]












	(b) 

	
∥Γ0F(m−1)(x)∥≤f1(m−1)(∥x−x0∥),m=3orm=5.











Proof. 


	(a)

	
See Remark 1.




	(b)

	
Simply replace function f by [image: there is no content] in Lemma 4 in [4].






 ☐





Lemma 4.

Suppose F satisfies the γ-condition on D. Then, the following items hold:

	(a) 

	
F satisfies the [image: there is no content]-condition on D and the δ-γ-condition on [image: there is no content];




	(b) 

	
[image: there is no content];




	(c) 

	
[image: there is no content];






Moreover, if [image: there is no content], then [image: there is no content], [image: there is no content],


[image: there is no content]








and:


[image: there is no content]








Furthermore, (15) supposes that [image: there is no content] and from (18); we have:


[image: there is no content]













Proof. 

The assertions hold from Lemma 3, (18), the definition of functions [image: there is no content], [image: there is no content], f and the definition of [image: there is no content], γ and δ-condition. ☐





Theorem 2.

Suppose that the operator F satisfies the conditions of Lemma 1, 2, 3, (9), (18), and [image: there is no content] hold. Then, sequences [image: there is no content], [image: there is no content], generated by the method (7) are well defined in [image: there is no content], remain in [image: there is no content] for each [image: there is no content] and converge to a solution [image: there is no content] of equation [image: there is no content]. The limit point [image: there is no content] is the only solution of equation [image: there is no content] in [image: there is no content]. Moreover, the following estimates are true for each [image: there is no content]:


[image: there is no content]



(19)




where [image: there is no content]





Proof. 

We shall show the estimates (19). Using mathematical induction as a consequence of the following recurrence relations:

	([image: there is no content])

	
[image: there is no content];




	([image: there is no content])

	
[image: there is no content];




	([image: there is no content])

	
[image: there is no content];




	([image: there is no content])

	
[image: there is no content];




	([image: there is no content])

	
[image: there is no content].









Items ([image: there is no content]), [image: there is no content] are true by the initial conditions. Suppose ([image: there is no content]) are true for [image: there is no content]. Then, we shall show that they hold for [image: there is no content]. We have in turn that:


∥xk+1−x0∥≤∥xk+1−yk∥+∥yk−xk∥+∥xk−x0∥≤(t¯k+1−s¯k)+(s¯k−t¯k+1)+(t¯k+1−t¯0)=t¯k+1,








so ([image: there is no content]) is true. By Lemma 4 and condition [image: there is no content], we get that [image: there is no content] and:


[image: there is no content]








so ([image: there is no content]) is true. By Lemma 2, we obtain in turn that [image: there is no content] and:


[image: there is no content]








so:


∥yk+1−xk+1∥=∥−Γk+1F(xk+1)∥≤∥Γk+1F′(x0)∥∥Γ0F(xk+1)∥≤−f1′(t¯k+1)f1′(t¯k+1)=s¯k+1−t¯k+1,










∥yk+1−x0∥≤∥yk+1−xk∥+∥xk−yk−1∥+∥yk−1−xk−1∥+∥xk−1−x0∥≤(s¯k+1−t¯k)+(t¯k−s¯k−1)+(s¯k−1−t¯k−1)+(t¯k−1−t¯0)=s¯k+1,








and:


[image: there is no content]








so ([image: there is no content]) and ([image: there is no content]) are also true, which completes the induction. ☐





Remark 2.

We have so far weakened the sufficient semilocal convergence conditions of the method (7) (see (17)) and have also extended the uniqueness of the solution ball from [image: there is no content] to [image: there is no content], since for [image: there is no content], we have that [image: there is no content]. It is worth noticing that these advantages are obtained under the same computational cost, since in practice, the computation of constant γ requires the computation of constants [image: there is no content] and δ as special cases.





Next, it follows by a simple inductive argument and the definition of the majorizing sequences that the error bounds on the distances [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] can be improved. In particular, we have:



Proposition 1.

Under the hypotheses of Theorem 2 and Lemma 4, further suppose that for each [image: there is no content], the following hold:


u−f1(u)f1′(u)≤v−f(v)f′(v),foru≤v,−f1(u)f1′(u)≤−f(v)f′(v),foru≤v,u1−g1(u2)≤v1−g(u2),foru1≤v1,u2≤v2,u1≤u2,v1≤v2,g1(u)≤g(v),foru≤v,



(20)




where functions g and [image: there is no content] are defined by:


[image: there is no content]








and:


[image: there is no content]











Then, the following estimates hold:


[image: there is no content]



(21)






[image: there is no content]



(22)






[image: there is no content]



(23)






[image: there is no content]



(24)






[image: there is no content]



(25)









Proof. 

Estimates (21), (22) and (23) follow using a simple inductive argument from conditions given in (20) Moreover, the estimate (25) follows by letting [image: there is no content] in the estimate (21). ☐





Remark 3.

Clearly, under the hypotheses of Proposition 1, the error bounds on the distances are at least as tight, and the information on the location of the solution [image: there is no content] is at least as precise with the new technique.





The result of Theorem and Proposition 1 can be improved further, if we use another approach to compute the upper bounds on the norms [image: there is no content].



Definition 4.

Suppose that there exists [image: there is no content] such that the center-Lipschitz condition is satisfies:


[image: there is no content]



(26)




for each [image: there is no content] holds. Define [image: there is no content].





Then, we have that:


[image: there is no content]








so [image: there is no content] and:


[image: there is no content]



(27)




where [image: there is no content] Estimate (27) is more precise than (12) if:


f¯0′(t)≤f0′(t),for eacht∈[0,ρ],



(28)




where [image: there is no content]. If


[image: there is no content]



(29)




then [image: there is no content] is a strict subset of D. This leads to the construction of an at least as tight function [image: there is no content] as [image: there is no content].



Definition 5.

Let [image: there is no content] be five-times Fréchet-differentiable, which satisfies the center-Lipschitz condition (26). We say that the operator F satisfies the λ-γ-condition at [image: there is no content], if for each [image: there is no content]:


∥Γ0F(x0)∥≤β,∥Γ0F″(x0)∥≤2λ(1−λ∥x−x0∥)2,∥Γ0F″′(x)||≤6λ2(1−λ∥x−x0||)4=f2″′(∥x−x0∥),∥Γ0F(iv)(x0)∥≤24λ3,∥Γ0F(v)(x)∥≤120λ4(1−λ∥x−x0∥)6=f2(v)(∥x−x0∥),








where function [image: there is no content] is defined on the interval [image: there is no content] by:


[image: there is no content]



(30)









Define scalar sequences [image: there is no content], [image: there is no content], points [image: there is no content], [image: there is no content] as, [image: there is no content], [image: there is no content], points [image: there is no content], [image: there is no content], respectively, by replacing function [image: there is no content] by [image: there is no content], and suppose:


[image: there is no content]











We have by (29) that:


[image: there is no content]








so:


[image: there is no content]











Then, with above changes, the condition (28) also replacing the condition in Lemma 3 [image: there is no content] and the center-Lipschitz condition (26) replacing the [image: there is no content]-center gamma condition, we can recover the results after Definition 4 until Remark 3 in this setting.




3. Concluding Remarks


The results obtained so far in this paper are based on the idea of restricted convergence domains, where the gamma constants (or Lipschitz constants) and consequently the corresponding sufficient semilocal convergence conditions, majorizing functions and sequences are determined by considering the set [image: there is no content] (or [image: there is no content]), which can be a strict subset of the set D on which the operator F is defined. This way, one expects (see also the numerical examples) that the new constants will be at least as small as the ones in [4] leading to the advantages as already stated before. The smaller the subset of D is containing the iterates [image: there is no content] of the method (7), the tighter the constants are. When constructing such sets (see, e.g., [image: there is no content] or [image: there is no content]), it is desirable if possible not to add hypotheses, but to stay with the same information. Otherwise, the comparison between old and new results will not be fair. Looking in this direction, we can improve our results also, if we simply redefine sets [image: there is no content] and [image: there is no content], respectively, as follows:


[image: there is no content]








and:


[image: there is no content]








where:


[image: there is no content]








Notice that [image: there is no content] and [image: there is no content]. Clearly, the preceding results can be rewritten with [image: there is no content] (or [image: there is no content]) replacing [image: there is no content] (or [image: there is no content]). These results will be at least as good as the ones using [image: there is no content] (or [image: there is no content]), since the constants will be at least as tight. Notice:

	(a)

	
We are still using the same information, since [image: there is no content] is defined by the second sub-step of the method (7) for [image: there is no content], i.e., it depends on the initial data [image: there is no content]




	(b)

	
The iterates [image: there is no content] lie in [image: there is no content] (or [image: there is no content]), which is an at least as precise a location as [image: there is no content] (or [image: there is no content]). Moreover, the solution [image: there is no content] (or [image: there is no content]), which is a more precise location than [image: there is no content] (or [image: there is no content]).









Finally, the results can be improved further as follows:

	
Case related to the center [image: there is no content]-condition (see Definition 2): Suppose that there exists [image: there is no content] such that:


[image: there is no content]








and:


[image: there is no content]








Then, there exists [image: there is no content] such that:


[image: there is no content]








Define the set [image: there is no content] by:


[image: there is no content]








Then, we clearly have that:


[image: there is no content]








Suppose the conditions of Definition 4 hold, but on the set [image: there is no content]. Then, these conditions will hold for some parameter [image: there is no content] and function [image: there is no content], which shall be at least as tight as δ, [image: there is no content], respectively. In particular, the sufficient convergence conditions shall be:


[image: there is no content]








and:


[image: there is no content]








The majorizing sequences [image: there is no content], [image: there is no content] shall be defined:


[image: there is no content]








and [image: there is no content], [image: there is no content], [image: there is no content] as sequences [image: there is no content], [image: there is no content], but with [image: there is no content] replacing function [image: there is no content]. Then, the conclusions of Theorem 2 will hold in this setting. Notice that the estimate [image: there is no content] still uses the initial data as [image: there is no content]



	
Case related to the center-Lipschitz condition (26): Similarly, to the previous case, but:


[image: there is no content]








Then, again, we have that:


[image: there is no content]











	
An example:



Let us consider [image: there is no content], [image: there is no content], [image: there is no content] and the nonlinear operator [image: there is no content].



In this case, we can consider [image: there is no content], [9].
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