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Abstract: This paper is devoted to the semilocal convergence of a Househölder-like method for
nonlinear equations. The method includes many of the studied third order iterative methods. In the
present study, we use our new idea of restricted convergence domains leading to smaller γ-parameters,
which in turn lead to the following advantages over earlier works (and under the same computational
cost): larger convergence domain; tighter error bounds on the distances involved, and at least as
precise information on the location of the solution.
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1. Introduction

Let B1 and B2 be Banach spaces and D be a non-empty open convex subset of B1. Let also L(B1, B2)

stand for the space of bounded linear operators from B1 into B2. In this study, we are concerned with
the problem of approximating a locally unique solution x∗ of the nonlinear equation:

F(x) = 0, (1)

where F : D ⊂ B1 → B2 is a nonlinear Fréchet-differentiable operator.
Beginning from t0, we can consider different third-order iterative methods to solve the scalar

equation F (t) = 0, with F : X → Y and X = Y = R, [1,2].
According to Traub’s classification [3], these third-order methods are divided into two broad

classes. On the one hand, the one-point methods, which require the evaluation of F, F′ and F′′ at the
current point only. For instance,

1. The Halley method

tn+1 = tn −
(

1
1 + 1

2 LF(tn)

)
F(tn)

F′(tn)
,

where LF(t) =
F(t)F′′(t)

F′(t)2 .

2. The Chebyshev method:

tn+1 = tn −
(

1 +
1
2

LF(tn)

)
F(tn)

F′(tn)
,
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3. The family of Newton-like methods:
tn+1 = G(tn) = tn − H(LF(tn))

F(tn)

F′(tn)
, n ≥ 0,

H(y) = ∑
j≥0

Ãjyj; Ã0 = 1, Ã1 = 1/2, Ãj ∈ R+ ∪ {0}, ∀j ≥ 2,
(2)

which includes the well-known iterative methods of the third-order Chebyshev, Halley, Super-Halley,
Ostrowski and Euler methods.

Notice that the family (2) has the inconvenience of reaching order greater than three only for
certain equations. For instance, it is known that the family (2) has fourth order of convergence for
quadratic equations, if Ã2 = 1/2.

On the other hand, the second class is the multipoint methods, which cannot require F′′.
For instance:

Two-step method
sn = tn − F(tn)

F′ (tn)
,

tn+1 = TS(tn) = sn − F(sn)

F′ (tn)
.

(3)

Notice that this iterative method cannot be included in the family (2). This way, to obtain
iterative methods with higher order than three for any function F and to be able to represent some
multipoint methods, as (3), we can consider a modification of the family (2) that allow getting this
generalization [4]. Therefore, we consider the following family, which includes all of these methods:

sn = tn −
F(tn)

F′(tn)
,

tn+1 = H(tn) = sn −
A0(F; tn)

F′(tn)
−
(

∞

∑
k=2

Ak(F; tn)

F′(tn)

[
F(tn)

F′(tn)

]k−1
)

F(tn)

F′(tn)
.

(4)

Notice that (4) is well defined if | Ak(F,t)
F′(t) | ≤ kp, for all p and k ≥ 2 and | F(t)

F′(t) | < 1.

Thus, for instance, for A0(F; t) = 0 and Ak(F; t) = Ãk−1
F′′(t)k−1

F′(t)k−2 , we obtain the previous family (2).

On the other hand, if we take Ak(F; tn) = 0, for all k ≥ 1, and:

A0(F; tn) = F(sn),

then we get the two-step method (3).
In general, the methods (2) have higher operational cost than the methods (3) when solving a

non-linear system. Another measure that takes into account the operational cost that requires an

iterative process Φ is the computational efficiency given by CE(φ, F) = o
1

θ(F) where, again, o is the
order of convergence of Φ and θ(F) is the operational cost to apply a step with the iterative process Φ,
that is the number of products needed per iteration and the number of products that appear in the
evaluation of the corresponding operator.

Therefore, in order to compare the efficiency of some iterative methods of the new family, we
consider the computational efficiency CE(Φ, F). Note that the methods selected in the family (4) as the
most efficient have a lower computational efficiency as more terms in the series are considered.

Notice that, for quadratic equations, the Chebyshev method and the two-step method (method
in (7) with A0(F; xn) = F(yn)) have the same algorithm:

yn = xn − F
′
(xn)−1F(xn),

xn+1 = yn − F
′
(xn)−1F(yn).

(5)
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On the other hand, we note that the family of iterative processes (7), with A2 = 1/2, has
the property of having four-order convergence when we consider quadratic equations. Therefore,
the iterative process that is more efficient in this family, for quadratic equations, is the known
Chebyshev-like method (A2 = 1/2 and Ak = 0 for k ≥ 3 in (7)). Then, we compare this iterative
process with the Chebyshev method.

This fourth-order method for quadratic equations can be written as:

yn = xn − F
′
(xn)−1F(xn),

zn = yn − F
′
(xn)−1F(yn),

xn+1 = zn − F
′
(xn)−1(2F(zn)− C(zn − yn)(zn − xn)),

(6)

For the quadratic equation, the computational efficiency, CE, for the Chebyshev method, (5) and (6)
methods in the family (7) is CE = 33/(m3+9m2+17m), CE = 43/(m3+12m2+24m), respectively. As we can
observe in Figure 1, the optimum computational efficiency is for the Chebyshev-like method given
in (6), when the system has at least six equations.

6 7 8 9 10
m

1.002

1.003

1.004

1.005

1.006

1.007

1.008

CE

Chebyshev�like

Chebyshev and Two�step

Figure 1. Computational efficiency for the Chebyshev method, (6) and (5) methods in the family (7).

Recently, in the work by Amat et al. [4], a semilocal convergence analysis was given in a Banach
space setting:

yn = xn − ΓnF(xn),

xn+1 = yn − Γn A0(F; xn)−
(

∞

∑
k=2

Γn Ak(F; xn) [ΓnF(xn)]
k−1

)
ΓnF(xn),

(7)

where Γn = [F′(xn)]−1 and the operators Ak(F;−) : D → L(
(k︷ ︸︸ ︷

D× . . .× D, B2) are some particular
k-linear operators.

An interesting application related to image denoising was presented also in [4]. The approximation,
via our family, is of a new nonlinear mathematical model for the denoising of digital images. We are able
to find the best method in the family (different of the two-step) for this particular problem. Indeed,
the founded method has order four. The denoising model that we propose in this paper permits a
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good reconstruction of the edges that are the most important visual parts of an image. See also [5,6] for
more applications.

On the other hand, the semilocal convergence analysis of method (7) was based on γ-type
conditions [7] that constitute an alternative to the classical Kantorovich-type conditions [8].
The convergence domain for the method (7) is small in general. In the present study, we use our new
idea of restricted convergence domains leading to smaller γ-parameters, which in turn lead to the
following advantages over the work in [4] (and under the same computational cost): larger convergence
domain; tighter error bounds on the distances involved and an at least as precise information on the
location of the solution.

The rest of the paper is organized as follows: the semilocal convergence analysis of the method (7)
is given in Section 2, whereas the numerical examples are presented in the concluding Section 3.

2. Semilocal Convergence

We consider Equation (1), where F is a nonlinear operator defined in a non-empty open convex
subset D of a Banach space B1 with values in another Banach space B2.

We need the definition of the γ-condition given in [7].

Definition 1. Suppose that F : D → B2 is five-times Fréchet-differentiable. Let β > 0 and x0 ∈ D. We say
that F satisfies the γ-condition, if Γ0 = F

′
(x0)

−1 ∈ L(B2, B1) and for each x ∈ D:

‖Γ0F(x0)‖ ≤ β,

‖Γ0F
′′
(x0)‖ ≤ 2γ

(1− γ‖x− x0‖)2 ,

‖Γ0F
′′′
(x)|| ≤ 6γ2

(1− γ‖x− x0||)4 = f
′′′
(‖x− x0‖),

‖Γ0F(iv)(x0)‖ ≤ 24γ3,

‖Γ0F(v)(x)‖ ≤ 120γ4

(1− γ‖x− x0‖)6 = f (v)(‖x− x0‖),

where:

f (t) = β− t +
γt2

1− γt
. (8)

Then, the following semilocal convergence result for the method defined in (7) under γ-type
conditions was given in [4], Theorem 1:

Theorem 1. Assume that the operator F satisfies for each x ∈ D:

‖[F′(x)]−1 Ak(F; x)‖ ≤ kp, ∀k ≥ 2, . . . , p > 0 and ‖[F′(x)]−1F(x)‖ < 1, (9)

the γ-condition and hypotheses:

α ≤ βγ ≤ 3− 2
√

2,

A0( f , t) ≥ 0,

(
∞

∑
k=2

Ak( f ; t)
f ′(t)

[
f (t)
f ′(t)

]n−1
)
≥ 0,

(10)

with f given in (30) and U(x0, R) ⊆ D, where R = (1− 1√
2
) 1

γ . Then, sequences {xn}, {yn} generated by the
method (7) are well defined in U(x0, R), remain in U(x0, t∗) for each n = 0, 1, 2 . . . and converge to a solution
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x∗ ∈ U(x0, t∗) of equation F(x) = 0, which is unique in U(x0, R). Moreover, the following estimates hold true
for each n = 0, 1, 2 . . .:

‖yn − xn‖ ≤ sn − tn,
‖xn+1 − yn‖ ≤ tn+1 − sn,
‖yn − x∗‖ ≤ t∗ − sn,
‖xn − x∗‖ ≤ t∗ − tn,

(11)

where t0 = 0, s0 = β,

sn = tn −
f (tn)

f ′(tn)
, n ≥ 0,

tn+1 = sn −
A0( f ; tn)

f ′(tn)
−
(

∞

∑
k=2

Ak( f ; tn)

f ′(tn)

[
f (tn)

f ′(tn)

]k−1
)

f (tn)

f ′(tn)
.

and:

t∗ =
1 + α−

√
(1 + α)2 − 8α

4γ
.

Next, we show how to achieve the advantages of our approach as stated in the introduction of
this study.

Definition 2. Let F : D → B2 be a Fréchet-differentiable operator. Operator F satisfies the center γ0-Lipschitz
condition at x0, if for each x ∈ D:

‖Γ0(F′(x)− F′(x0))‖ ≤
1

(1− γ0‖x− x0‖)2 − 1.

Remark 1. Let D0 := U(x0, (1− 1√
2
) 1

γ0
) ∩ D. Then, we have that:

‖Γ0(F′(x)− F′(x0))‖ ≤
1

(1− γ0‖x− x0‖)2 − 1 < 1.

In view of the Banach lemma on invertible operators [8], Γ0 = F
′
(x0)

−1 ∈ L(B2, B1) and:

‖[F′(x)]−1F′(x0)‖ ≤
(

2− 1
(1− γ0‖x− x0‖)2

)−1
. (12)

The corresponding result using the γ-condition given in [7] is:

‖[F′(x)]−1F′(x0)‖ ≤
(

2− 1
(1− γ‖x− x0‖)2

)−1
. (13)

for each x ∈ D. However, if D0 ⊆ D, then γ0 ≤ γ, so if γ0 < γ, the estimate (12) is more precise
than (13), leading to more precise majorizing sequences, which in turn lead to the advantages already
stated. Indeed, we need the following definition.
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Definition 3. Let F : D → B2 be a five-times Fréchet-differentiable, which satisfies the center γ0-condition.
We say that operator F satisfies the δ-γ-condition at x0, if for each x ∈ D0:

‖Γ0F(x0)‖ ≤ β,

‖Γ0F
′′
(x0)‖ ≤

2δ

(1− δ‖x− x0‖)2 ,

‖Γ0F
′′′
(x)|| ≤ 6δ2

(1− δ‖x− x0||)4 = f
′′′
1 (‖x− x0‖),

‖Γ0F(iv)(x0)‖ ≤ 24δ3,

‖Γ0F(v)(x)‖ ≤ 120δ4

(1− δ‖x− x0‖)6 = f (v)1 (‖x− x0‖).

Clearly, we have that δ ≤ γ.
Now, we define the scalar sequences {s̄n}, {t̄n} by:

t0 = 0, s0 = β,

sn = tn − f1(tn)
f ′1(tn)

n ≥ 0,

tn+1 = sn −
A0( f1; t̄n)

f ′0(t̄n)
−
(

∞

∑
k=2

Ak( f1; t̄n)

f ′1(t̄n)

[
f1(t̄n)

f ′1(t̄n)

]k−1
)

f1(t̄n)

f ′1(t̄n)
.

(14)

where function f1 is defined on the interval [0, 1/δ) by:

f1(t) = β− t +
δt2

1− δt
, (15)

for some t ∈ (0, 1
δ ).

Moreover, define constants α0, t̄∗, t̄∗∗ and R0 by α0 = δβ, t̄∗ =
1+α0−

√
(1+α0)2−8α0
4δ , t̄∗∗ =

1+α0+
√

(1+α0)2−8α0
4δ and R0 = (1− 1√

2
) 1

γ0
.

If condition:
α0 ≤ 3− 2

√
2 (16)

holds, then function f1 has two real roots t̄∗ and t̄∗∗ such that:

β ≤ t̄∗ ≤
(

1 +
1√
2

)
β ≤

(
1− 1√

2

)
1
δ
≤ t̄∗∗ ≤ 1

2δ
.

Moreover, we have for each t ∈ [0, t̄∗): f1(t) > 0, f ′1(t) =
1−2(1−δt)2

(1−δt)2 < 0 and:

f (i)1 (t) =
i!δi−1

(1− δt)(2 + i)
, i = 2, 3, . . . .

Notice that:
α ≤ 3− 2

√
2⇒ α0 ≤ 3− 2

√
2 (17)

but not necessarily vice versa, unless, if γ = δ.
We need a series of auxiliary results.
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Lemma 1. Suppose that α0 ≤ 3− 2
√

2, A0( f1; t) ≥ 0 and
∞

∑
k=2

Ak( f1; t)
f ′1(t)

[
f1(t)
f ′1(t)

]k−1

≥ 0. Then, sequences

{sn}, {tn} generated by (14) are well defined for each n = 0, 1, 2, . . . and converge monotonically to t̄∗ so that:

0 ≤ tn ≤ sn ≤ tn+1 < t̄∗. (18)

Proof. Simply replace f , α, t∗, sn, tn in the proof of Lemma 2 [4] by f1, α0, t̄∗, s̄n, t̄n, respectively.

Lemma 2. (a) Let f1 be the real function given in (15). Then, the following assertion holds:

f1(t̄n+1) =
(

1
2 f ′′1 (t̄n)

A0( f1;t̄n)
f ′1(t̄n)2 − 1

)
A0( f1; t̄n)

+ f ′′1 (t̄n)
A0( f1; t̄n)

f ′1(t̄n)

(
1 +

h̃( f1; t̄n)

f ′1(t̄n)

)
f1(t̄n)

f ′1(t̄n)

+
1
2

f ′′1 (t̄n)

(
f1(t̄n)

f ′1(t̄n)

)2

+
1
2

f ′′1 (t̄n)

(
h̃( f1; t̄n) f1(t̄n)

f ′1(t̄n)

)2

+

(
f ′′1 (t̄n) f1(t̄n)

f ′1(t̄n)2 − 1
)

h̃( f1; t̄n) f1(t̄n)

f ′1(t̄n)

+
∫ t̄n+1

t̄n
f ′′′1 (t)(t̄n+1 − t)dt,

where:

h̃( f1; t̄n) =
∞

∑
k=2

Ak( f1; t̄n)

f ′1(tn)

[
f1(t̄n)

f ′1(t̄n)

]k−1

and Ak( f1;−) : R→ R are real differentiable functions.
(b) If F has a continuous third-order Fréchet-derivative on D, then the following assertion holds:

F(xn+1) =
(

1
2 F′′(xn)Γn A0(F; xn)Γn − I

)
A0(F; xn)

+F′′(xn)Γn A0(F; xn)
(

I + Γn H̃(F; xn)
)

ΓnF(xn)

+ 1
2 F′′(xn)ΓnF(xn)ΓnF(xn)

+ 1
2 F′′(xn)

(
ΓnH̃(F; xn)ΓnF(xn)

)2

+ (F′′(xn)ΓnF(xn)Γn − I) H̃(F; xn)ΓnF(xn)

+
∫ xn+1

xn
F′′′(x)(xn+1 − x)dx,

where:

H̃(F; xn) =
∞

∑
k=2

Ak(F; xn) (ΓnF(xn))
k−1

and Ak(F;−) : D → L(
(k︷ ︸︸ ︷

D× . . .× D, Y) are some particular k-linear operators.
(c) ‖Γ0F(xn+1)‖ ≤ f1(t)(t̄n+1).

Proof. (a) Simply use function f1 instead of f in the proof of Lemma 3 in [4].
(b) The same with Lemma 5 in [4].
(c) Use f1 instead of f in Lemma 5 [4].
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Lemma 3. Suppose F satisfies the γ0-center-condition on D and the δ-γ-condition on D0. Then, the following
items hold:

(a) F′(x)−1 ∈ L(Y, X) and:

‖F′(x)−1F′(x0)‖ ≤ −
1

f ′0(‖x− x0‖)
, for each x ∈ D

where:

f0(t) = b− t +
γ0t2

1− γ0t

(b) ‖Γ0F(m−1)(x)‖ ≤ f (m−1)
1 (‖x− x0‖), m = 3 or m = 5.

Proof. (a) See Remark 1.
(b) Simply replace function f by f1 in Lemma 4 in [4].

Lemma 4. Suppose F satisfies the γ-condition on D. Then, the following items hold:

(a) F satisfies the γ0-condition on D and the δ-γ-condition on D0;
(b) γ0 ≤ γ;
(c) δ ≤ γ;

Moreover, if α ≤ 3− 2
√

2, then ᾱ0 = b0γ ≤ 3− 2
√

2, α0 ≤ 3− 2
√

2,

‖F′(x)−1F′(x0)‖ ≤ −
1

f ′0(‖x− x0‖)
≤ − 1

f ′(‖x− x0‖)
,

and:
‖Γ0F′(x0)‖ ≤ −

1
f ′1(‖x− x0‖)

≤ − 1
f ′(‖x− x0‖)

.

Furthermore, (15) supposes that γ0 ≤ δ and from (18); we have:

‖F′(x)−1F′(x0)‖ ≤ −
1

f ′0(‖x− x0‖)
≤ − 1

f ′1(‖x− x0‖)
.

Proof. The assertions hold from Lemma 3, (18), the definition of functions f0, f1, f and the definition
of γ0, γ and δ-condition.

Theorem 2. Suppose that the operator F satisfies the conditions of Lemma 1, 2, 3, (9), (18), and A0( f1; t) >= 0
hold. Then, sequences {xn}, {yn}, generated by the method (7) are well defined in U(x0, t∗), remain in U(x0, t∗)
for each n = 0, 1, 2, . . . , and converge to a solution x∗ ∈ U(x0, t∗) of equation F(x) = 0. The limit point x∗

is the only solution of equation F(x) = 0 in U(x0, R0). Moreover, the following estimates are true for each
n = 0, 1, 2, . . .:

‖yn − xn‖ ≤ s̄n − t̄n,
‖xn+1 − yn‖ ≤ t̄n+1 − s̄n,
‖yn − x∗‖ ≤ t̄∗ − s̄n,
‖xn − x∗‖ ≤ t̄∗ − tn,

(19)

where t∗ = limn tn.

Proof. We shall show the estimates (19). Using mathematical induction as a consequence of the
following recurrence relations:

(M1
k ) xk ∈ Ū(x0, t̄k);
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(M2
k ) ‖F′(xk)

−1F′(x0)‖ ≤ − 1
f ′0(t̄k)

≤ − 1
f ′1(t̄k)

;

(M3
k ) ‖yk − xk‖ ≤ s̄k − t̄k;

(M4
k ) yk ∈ Ū(x0, s̄k);

(M5
k ) ‖xk+1 − xk‖ ≤ t̄k+1 − s̄k.

Items (Mi
0), i = 1, 2, 3, 4, 5 are true by the initial conditions. Suppose (Mi

k) are true for
k = 0, 1, . . . , n. Then, we shall show that they hold for n + 1. We have in turn that:

‖xk+1 − x0‖ ≤ ‖xk+1 − yk‖+ ‖yk − xk‖+ ‖xk − x0‖
≤ (t̄k+1 − s̄k) + (s̄k − t̄k+1) + (t̄k+1 − t̄0) = t̄k+1,

so (M1
k+1) is true. By Lemma 4 and condition γ0 ≤ δ, we get that Γk+1 ∈ L(Y, X) and:

‖Γk+1F′(x0)‖ ≤ −
1

f ′0(‖xk+1 − x0‖
≤ − 1

f ′0(t̄k+1)
≤ − 1

f ′1(t̄k+1)
,

so (M2
k+1) is true. By Lemma 2, we obtain in turn that Γk+1 ∈ L(Y, X) and:

‖Γ0F′(xk+1)‖ ≤ f ′1(t̄k+1),

so:
‖yk+1 − xk+1‖ = ‖ − Γk+1F(xk+1)‖ ≤ ‖Γk+1F′(x0)‖‖Γ0F(xk+1)‖

≤ − f ′1(t̄k+1)

f ′1(t̄k+1)
= s̄k+1 − t̄k+1,

‖yk+1 − x0‖ ≤ ‖yk+1 − xk‖+ ‖xk − yk−1‖+ ‖yk−1 − xk−1‖+ ‖xk−1 − x0‖
≤ (s̄k+1 − t̄k) + (t̄k − s̄k−1) + (s̄k−1 − t̄k−1) + (t̄k−1 − t̄0) = s̄k+1,

and:

‖xk+1 − yk‖ ≤ ‖
1
2

LF(xk)
∞

∑
k=3

Γk Ak(F; xk)(ΓkF(xk))
k−1‖‖yk − xk‖ ≤ t̄k+1 − t̄k,

so (M4
k+1) and (M5

k+1) are also true, which completes the induction.

Remark 2. We have so far weakened the sufficient semilocal convergence conditions of the method (7) (see (17))
and have also extended the uniqueness of the solution ball from U(x0, R) to U(x0, R0), since for γ0 < γ, we
have that R < R0. It is worth noticing that these advantages are obtained under the same computational cost,
since in practice, the computation of constant γ requires the computation of constants γ0 and δ as special cases.

Next, it follows by a simple inductive argument and the definition of the majorizing sequences
that the error bounds on the distances ‖xn+1 − xn‖, ‖xn+1 − yn‖, ‖xn − yn‖, ‖yn+1 − yn‖, ‖xn − x∗‖
and ‖yn − x∗‖ can be improved. In particular, we have:

Proposition 1. Under the hypotheses of Theorem 2 and Lemma 4, further suppose that for each
u, u1, u2, v, v1, v2 ∈ [0, R], the following hold:

u− f1(u)
f ′1(u)

≤ v− f (v)
f ′(v)

, for u ≤ v,

− f1(u)
f ′1(u)

≤ − f (v)
f ′(v)

, for u ≤ v,

u1 − g1(u2) ≤ v1 − g(u2), for u1 ≤ v1, u2 ≤ v2, u1 ≤ u2, v1 ≤ v2,

g1(u) ≤ g(v), for u ≤ v,

(20)
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where functions g and g1 are defined by:

g(t) =
A0( f , t)

f ′(t)
+

(
∞

∑
k=2

Ak( f ; t)
f ′(t)

[
f (t)
f ′(t)

]k−1
)

f (t)
f ′(t)

and:

g1(t) =
A0( f1, t)

f ′1(t)
+

(
∞

∑
k=2

Ak( f1; t)
f ′1(t)

[
f1(t)
f ′1(t)

]k−1
)

f1(t)
f ′1(t)

Then, the following estimates hold:
s̄n ≤ sn, (21)

s̄n − t̄n ≤ sn − tn, (22)

t̄n+1 ≤ tn+1, (23)

t̄n+1 − s̄n ≤ tn+1 − sn, (24)

t̄∗ ≤ t∗. (25)

Proof. Estimates (21), (22) and (23) follow using a simple inductive argument from conditions given
in (20) Moreover, the estimate (25) follows by letting n→ ∞ in the estimate (21).

Remark 3. Clearly, under the hypotheses of Proposition 1, the error bounds on the distances are at least as tight,
and the information on the location of the solution x∗ is at least as precise with the new technique.

The result of Theorem and Proposition 1 can be improved further, if we use another approach to
compute the upper bounds on the norms ‖ΓkF′(x0)‖.

Definition 4. Suppose that there exists L0 > 0 such that the center-Lipschitz condition is satisfies:

‖Γ0(F′(x)− F′(x0))‖ ≤ L0‖x− x0‖ (26)

for each x ∈ D holds. Define D∗0 = D ∪U(x0, 1
L0
).

Then, we have that:
‖Γ0(F′(x)− F′(x0))‖ ≤ L0‖x− x0‖ < 1,

so F′(x)−1 ∈ L(Y, X) and:

‖F′(x)−1F′(x0)‖ ≤
1

1− L0‖x− x0‖
= − f̄ ′0(‖x− x0‖)−1, (27)

where f̄0(t) =
L0
2 t2 − t + β. Estimate (27) is more precise than (12) if:

f̄ ′0(t) ≤ f ′0(t), for each t ∈ [0, ρ], (28)

where ρ = min{ 1
L0

, R0}. If
1
L0

< R0, (29)

then D∗0 is a strict subset of D. This leads to the construction of an at least as tight function f2 as f1.
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Definition 5. Let F : D → B2 be five-times Fréchet-differentiable, which satisfies the center-Lipschitz
condition (26). We say that the operator F satisfies the λ-γ-condition at x0, if for each x ∈ D∗0 :

‖Γ0F(x0)‖ ≤ β,

‖Γ0F
′′
(x0)‖ ≤ 2λ

(1− λ‖x− x0‖)2 ,

‖Γ0F
′′′
(x)|| ≤ 6λ2

(1− λ‖x− x0||)4 = f
′′′
2 (‖x− x0‖),

‖Γ0F(iv)(x0)‖ ≤ 24λ3,

‖Γ0F(v)(x)‖ ≤ 120λ4

(1− λ‖x− x0‖)6 = f (v)2 (‖x− x0‖),

where function f2 is defined on the interval [0, 1
λ ) by:

f2(t) = β− t +
λt2

1− λt
. (30)

Define scalar sequences { ¯̄tn}, { ¯̄sn}, points ¯̄t∗, ¯̄t∗∗ as, {t̄n}, {s̄n}, points t̄∗, t̄∗∗, respectively, by
replacing function f1 by f2, and suppose:

α∗0 := λβ ≤ 3− 2
√

2.

We have by (29) that:
λ ≤ δ

so:
α0 ≤ 3− 2

√
2⇒ α∗0 ≤ 3− 2

√
2.

Then, with above changes, the condition (28) also replacing the condition in Lemma 3 (a) and the
center-Lipschitz condition (26) replacing the γ0-center gamma condition, we can recover the results
after Definition 4 until Remark 3 in this setting.

3. Concluding Remarks

The results obtained so far in this paper are based on the idea of restricted convergence domains,
where the gamma constants (or Lipschitz constants) and consequently the corresponding sufficient
semilocal convergence conditions, majorizing functions and sequences are determined by considering
the set D0 (or D∗0 ), which can be a strict subset of the set D on which the operator F is defined. This
way, one expects (see also the numerical examples) that the new constants will be at least as small
as the ones in [4] leading to the advantages as already stated before. The smaller the subset of D is
containing the iterates {xn} of the method (7), the tighter the constants are. When constructing such
sets (see, e.g., D0 or D∗0 ), it is desirable if possible not to add hypotheses, but to stay with the same
information. Otherwise, the comparison between old and new results will not be fair. Looking in
this direction, we can improve our results also, if we simply redefine sets D0 and D∗0 , respectively,
as follows:

D̃0 = D ∪U(y0, R̃0)

and:
D̃∗0 = D ∪U(y0,

1
L0
− β),

where:
R̃0 = R̄0 − β
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Notice that D̃0 ⊆ D0 ⊆ D and D̃∗0 ⊂ D∗0 ⊆ D. Clearly, the preceding results can be rewritten with D̃0

(or D̃∗0 ) replacing D0 (or D∗0 ). These results will be at least as good as the ones using D0 (or D∗0 ), since
the constants will be at least as tight. Notice:

(a) We are still using the same information, since y0 is defined by the second sub-step of the
method (7) for n = 0, i.e., it depends on the initial data (x0, F)

(b) The iterates {xn} lie in D̃0 (or D̃∗0 ), which is an at least as precise a location as D0 (or D∗0 ).
Moreover, the solution x∗ ∈ U(y0, R̃0) (or x∗ ∈ U(y0, 1

L0
− β)), which is a more precise

location than U(x0, R0) (or U(x0, 1
L0
)).

Finally, the results can be improved further as follows:

• Case related to the center γ0-condition (see Definition 2): Suppose that there exists β1 ≥ 0 such that:

‖x1 − y0‖ ≤ β1

and:
β + β1 < R0.

Then, there exists t1 such that:
β + β1 < t1 < R0.

Define the set ˜̃D0 by:
˜̃D0 := D ∪U(x1, t1).

Then, we clearly have that:
˜̃D0 ⊆ D̃0 ⊆ D0.

Suppose the conditions of Definition 4 hold, but on the set ˜̃D0. Then, these conditions will hold for
some parameter δ̄ and function f̄1, which shall be at least as tight as δ, f1, respectively. In particular,
the sufficient convergence conditions shall be:

ᾱ0 = δ̄β ≤ 3− 2
√

2

and:
α0 ≤ 3− 2

√
2⇒ α∗0 ≤ 3− 2

√
2⇒ ᾱ0 ≤ 3− 2

√
2.

The majorizing sequences {κn}, {µn} shall be defined:

κ0 = 0, µ0 = β, κ1 = β + β1, µ1 = β,

and {κn}, {µm}, m = 1, 2 . . . , n = 2, . . . as sequences {¯̄sn}, {¯̄tn}, but with f̄1 replacing function f1.
Then, the conclusions of Theorem 2 will hold in this setting. Notice that the estimate ‖x1 − y0‖ ≤ β1

still uses the initial data as ‖y0 − x0‖ ≤ β1.
• Case related to the center-Lipschitz condition (26): Similarly, to the previous case, but:

˜̃D∗0 := D ∪U(x1, t1).

Then, again, we have that:
˜̃D0 ⊆ D̃∗0 ⊆ D∗0 .

• An example:

Let us consider X = Y = R3, D = U(0, 1), x∗ = (0, 0, 0) and the nonlinear operator F(x, y, z) =
(ex − 1, e−1

2 y2 + y, z).

In this case, we can consider γ0 = (e−1)
2 < γ = e

2 , [9].
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