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Abstract: We introduce a seismic signal compression method based on nonparametric Bayesian
dictionary learning method via clustering. The seismic data is compressed patch by patch, and
the dictionary is learned online. Clustering is introduced for dictionary learning. A set of
dictionaries could be generated, and each dictionary is used for one cluster’s sparse coding. In
this way, the signals in one cluster could be well represented by their corresponding dictionaries.
A nonparametric Bayesian dictionary learning method is used to learn the dictionaries, which
naturally infers an appropriate dictionary size for each cluster. A uniform quantizer and an adaptive
arithmetic coding algorithm are adopted to code the sparse coefficients. With comparisons to other
state-of-the art approaches, the effectiveness of the proposed method could be validated in the
experiments.

Keywords: Seismic Signal Compression; Nonparametric Bayesian Dictionary Learning; Clustering;
Sparse Representation

1. Introduction

The-oi-Oil companies are increasing their investment in seismic explorationdtie-to-the-strong

fluetuations—in—erude—oil-prices, as oil is an indispensable resource for economic development.
A large number of sensors(always—more—than—10000typically more than 10,000) are required to

collect the seismic signals, which are generated by an active excitation source. Similar to other
distributed vibration data collection methods [1,2], using cable for data transmission in seismic signal
acquisitions is a typical approach. To improve the quality of depth images and simplify acquisition
logistics, replacing cabling with wireless technology should be a new trend in seismic exploration.
Benefitting from recent advances in wireless sensersensors, large areas could be measured with a
dense arrangement of thousands of seismic sensor—which-sensors. This will create high quality
of depth images with sufficienttextures—It-will-produce-a large amount of data to be collected
daily;—but-._However, the network throughput for single sensor is always limited ;for-example
(e.g., 150 kbps down to 50 kbps). Therefore, it is necessary to compress the seismic signals before
transmission. How to represent the seismic signals efficiently with a transform or a set-efbasis-basis
set could be quite important for seismic signal compression. A lossy compression gain of approximate
approximately three has been achieved for the compression of seismic signals using the Diserete
CosineTransformdiscrete cosine transform (DCT) [3]. To preserve the important features, a twe
dimensional-two-dimensional seismic-adaptive DCT is proposed [4]. However, complicated signals
could not be well represented by the orthogonal basis used in above-methods-the methods above.
Multiscale geometric analysis methods (stich-ase.g., Rigielet, Contourlet and Curvelet{5;6}-are- [5,6])
have been favored in recent years. By neglecting the orthogonality and completeness, complicated
signals could be well represented by inducing a lot of redundancy component. Thereby, the
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representation of the signals is sparse. For example, Curvelet is adopted in seismic interpretation
by exploring the directional features of the seismic data [5]. Another application of Curvelet in
seismic signal processing is seismic signal denosingdenoising [6]. From a small subset of randomly
selected seismic traces, seismic signals are recovered, while noise could be efficiently reduced from
the migration amplitudes with the help of sparsity.

In the above methods, DCT or Curvelet couldbe seemed-as-is used to represent the signals, and
could be deemed a set of fixed basis;used-to-represent-thesignal. Recent research effort-has-efforts

have been dedicated to learning a set of adaptive basis, called as-a-dictionary, forthe purpese of sparse

representationa dictionary. Hence, the signals could be sparsely represented. The dimensionality
of the representation space could be higher than the input space. Moreover, the dictionary is

inferred from signal-tselfsignals themselves. These two properties lead to an improvement in the
sparsity of the representation. Therefore, sparse dictionary learning could be widely used in the
fields of compression,—especially-compression—especially in image compression applications. An

image compression scheme using a recursive least squares dictionary learning algorithm in the 9/7
wavelet domain is proposed[7]. This method is called as a compression method based on Offline
Dictionary Learning(OffDL) {7}in this paper. It achieves a better performance than using dictionaries
learned by other methods. [8] presents a boosted dictionary learning framework. In this work, an
ensemble of complementary specialized dictionaries are constructed for sparse image compression.
A compression scheme using dictionary learning and universal trellis eodied-coded quantization for
complex synthetic aperture radar(SAR) images is proposed in [9], which achieves superior quality
of decode-decoded images compared with JPEG, JPEG2000, and CCSDS standards. In the above
methods, an-offline training data is necessary for learning the dictionary for the sparse representation
of the online testing data. Thus, its compression performance depends on the correlation between
the offline training data and the online testing data. [10] proposes an input-adaptive compression
approach. Each input image is coded with a learned dictionary by itself. In this way, both the
adaptivity and generality are achieved. An online learning-based-learning-based intra-frame video
coding approach is proposed to exploit the texture sparsity of natural images[11]. This is denoted as
a compression method based on Dictionary Learning by Online Dictionary transmitting(DLOD){1.
In this method, to synchronize the dictionary used in the coder and decoder, the residual between the
current dictionary and the previous one is necessary for sending. This will increase the rates.

In this paper, we focus on how to compress seismic signals in—an—online-way—with the
nonparametrlc bayesa&w]ﬁwg& dictionary learnmg method via clustermg Se1sm1c signals of

enerated from a seismic wave and recorded by different sensors, and are highl correlated
Clustering is introduced for seismic signal compression based on dictionary learning. We-optimize

for-a—A set of dictionaries ;—one—for-each—cluster,for-which—the-signals—from—the same seismie

enerated, and each dictionary is used for one cluster’s sparse codm In this way, the signals

in one cluster can be well-represented by their corresponding dictionaries. The dictionaries are
learned by the nonparametric Bayesian dictionary learning methodis-tsed-to-learn-the-dietionaries,

which naturally infers an appropriate dictionary size for each cluster. Furthermore, the transmitted
online seismic signals are utilized to train these-dictionaries,-which-could-exists-both-in-the-coder

and-decoderthe dictionaries. Thus, the dictionary-transmission-and-synchronization-problem-is-well

solvedcorrelation of training data and testing data could be relatively high. A uniform quantizer and
an adaptive arithmetic coding algorithm are used to code the sparse coefficients. Experimental results

demonstrate better rate-distortion performance over other seismic signal compression schemes,
validating-which validates the effectiveness of the proposed method. The rest of this paper is
organized as follows: In Section 22, we introduce a seismic signal compression method based on
offline dictionay learning. A seismic signal compression method using nonparametric bayesian
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dictionary learning via clustering is introduced in Section 3—3. Experimental results are presented
in Section 44, and conclusion is made in Section 5-5. _

2. Seimsie-Seismic Signal Compression based-Based on Offline Dictionary Learning

In this section, we will introduce how to compress seismic signals in the offline dictionary

learning wayapproach (OffDL)[7}—As-stated-above [7]. Compared with a fixed basis set, learning
an adaptive set-of-basis-basis set to a specific set of signals could result in better performancethan

afixed-set-of basis—Suppese-. Supposing input signals Y = {y;};=1 g € RM*K  the dictionary
D € RMxN ,.and the sparse vector W = {w;},_1 g € RN*K then y; could be welrkrepresented
by a linear eembinations-combination of the basis from the dictionary D: y; = Dw; + €;. €; could
be seemed-seen as the noise from the deviation of the linear model. To synchronize the dictionary

used-in the coder and decoder, ene-cheice-isto-send-thelearned-dictionary P—However—this-will
inerease-the-rates-by-the-transmission-of-the-dictionary—Therefore,it-is-typieakit is possible to use a

pre-learned dictionary by an offline training data;existing-in-the-coder-and-decoder—Inspired-from
. Inspired by this idea, the diagram of the seismic signal compression method based on the offline

dictionary learning is shown Figure-1—in Figure 1. It includes two steps: offline training and online
testing. In the offline training step, an-offline training data is adepted-used to train the dictionary D.
In the online testing step, the input testing data is sparsely represented by the tramed dlctlonary D,
the-result-of-whieh-and the result is a sparse matrix W. 5

The-quantized-The sparse matrix is separately-quantized and separated into the nonzero coeff1c1ents
and their positions. The positions could be seemed-seen as a binary matrix, where 0 and 1 denote the
coefficients of the current positionare-’s zero and nonzero value separately. Finally, they-are separately
coded-by-entropy coding algorithms —are used to code them.

Nonzero
flici .
Sparse Matrix W Coefficients Entropy Coding
Comp
Testing Sparse — Bits
Data Representation Quantization
Entropy Coding
Correlated The Positions of Nonzero
Data Coefficients

Online Testing

Dictionary D Offline Training

Training Dictionary
Data Learning

Figure 1. Diagram of seismic signal compression based on offline dictionary learning.

optimize the dictionary D and sparse matrix W, sparsity could be used as the regulation
term, then the two variables D and W could be solved by two alternating stages: 1) Sparse

representation—For-representation—for a fixed dictionary D, w; eoule—can be solved by some
sparse representation algorithmssteh-as-OrderReeursive- Matching Pursuit, such as order recursive
matching pursuit (ORMP)[i2}-and Partial-Search [12] and partial search (PS) [13]. 2) Dictionary
updating—When-updating—when w; is fixed, the dictionary eould-can be updated by some-methods
M%%wmmmmwcmmmmm [14]
and K-SVD[15]. e Tree-Structured—lteration-Tuned—and—Aligned—Dietionarytree-structured
&&@M&@MM(HTD has-been—proposed-{16}—1It-showsusing-TSITD
for-compressing —images-belonging—to-specificclasses—eould-was proposed in [16]. TSITD can

outperform other image compression algorithms in compression images belonging to specific classes.
A classification and update step are repeated to train the dictionary in TSITD. Nevertheless, it is hard

givfg@gg to determine the number of e}assclasses and dictionary size in each iterationef—TSFPD.«"'r"hese

Hewever—%hes&ee%%hed&eﬁeﬂafyﬂs—a}way&set—aﬁpﬁe%e%ﬁ*e% Utlhzmg nonparametrlc Baye51an
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methods like the beta process [17], we eould-can infer the number of dictionary elements needed to fit
the data. This could reduce the size of the binary matrix generated from the quantized sparse matrix,
which is beneficial for compression. To yield posterior distributions rather than point estimation for
the dictionary and signals, nenparametrie-bayesianthe nonparametric Bayesian dictionary learning
model based on beta-proeessBeta Process Factor Analysis(BPFA)[18] demonstrates its efficiency both
in inferring a suitable dictionary size and sparse representation.

3. Seismic Signal Compression using-Using Nonparametric Bayesian Dictionary Learning via
Clustering

The-drawbaek—of-abeve- The performance of the seismic signal compression method is—its

efficieney-highly-depending-based on offline dictionary learning highly depends on the correlation
%ﬁ%ﬁ%ﬁﬁ%ﬁﬁMOfﬂlne tralmng data and onhne testing data. However,

dthe correlation is
not always high. In this section, we will 1ntroduce a seismic 51gnal compressmn method using
nonparametric bayesian-Bayesian dictionary learning via clustering. In a typical seismic survey,
seismic waves are usually generated by special vibrators mounted on trucks. The seismic waves
are reflected by subsurface formations, and return to the surface, where they are recorded by seismic
sensors. The trucks are always moved to different locations, where different shots are generated by
the vibrators. Obviously, seismic signals from the same seismic wave are similarhighly correlated. If
these similar-signals-cotld-becorrelated signals are clustered into the same group and each group
learns its dictionary, the representation of these signals could be very sparse. This is useful for
compression. Furthermore, we use the transmittee-online seismic signals to train the dictionaries,

%hu&fhedieﬁeﬁaﬁe&eet&érbeﬂpdﬁed»syﬂehmﬂeus}ybe%hwhlch are updated synchronously in the

coder and decoder. W Meanwhile, the
correlation of the online training data and testing data eeu}érbea}way&gﬂafan%eehwsv}l&}l Similar
to other compression methods, it is eommon-typical to divide seismic signals into small patches for
transmission. The seismic signals recorded by one sensor corresponding to a single shot is-always
called-as-are always called a trace. In our method, traces of each patch are divided into small
segments, which are placed as columns for dictionary learning. Suppose seismic signals of current
patch are denoted as Xp = [x1, ..., X, ..., Xn], and seismic signals of previous L patches are denoted as

Xp_1 to Xp_1. X; is the i’ segment in Xp, the dimension of which is M x 1. The numberof segments
for-each-patehis-the same—As seismic signals of the previous L patches are transmitted to the decoder

and the seismic signals from adjacent patches are highly correlated, we could use these signals (both
exists-existing in the coder and decoder) to learn the dictionaries for the sparse representation of
seismic signals from the current patch. The diagram of the proposed method is shown in Figure
2—2. As mentioned above, clustering is introduced for dictionary learning. A set of dictionaries ;

one-foreach-cluster-is generated. Then-seismic-signals-of-current-patch-could-be-well-reconstruected
with—these-dictionariesin-a—sparserepresentation—-way—It-Seismic signals of the current patch are
sparsely represented according to their cluster’s dictionaries. This includes the following steps: 1)
Online training—Fransmitted-training—transmitted seismic signals are used to learn the parameters
of clustering and the dictionary of each cluster. 2) Online testing—Firstlytesting—firstly, seismic
signals are clustered with the parameters learned-in-the-above-step—Secondlygenerated from the
online training step; secondly, they are sparse-sparsely represented by the corresponding dictionary
of their eluster—Moreoverclusters. Furthermore, the sparse coefficients are quantized and coded for

transpMgsierails are as follows:

3.1. Online trainingTraining

The Mixed-Membership—Naive-mixed-membership naive Bayes model (MMNB) [19] and
BPFA are adopted-utilized to learn a set of dictionaries based on clustering, the graphical medel

representation of which is shown in Figure 3-
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Step 1: Online Training Step 2: Online Testing

Patch P — . PatchP — 2 PatchP — 1
Reconstructed ¢ 2
- 4
Seismic Data = = Original Seismic
I i z Data

1 Online Clustering

: 1
! i
i Parameters. i H :
) ' 1 | Adaptive !
Online ! |1 Arithmetic Codmg,
Clustering ! T [
I
i M1 A ! ﬁ
! S
: b . I !
_ | My \ .
chtlo'nary ! ' W, E i Wﬂ/—li i Wi :E> Umfor.m : :
Learning S R A S ! ' o 2 S J \_____ s 1 Quantization !
i I
i Dictionary i chnonary: Sparse Representation i R

Figure 2. Diagram of proposed method.

3. __Suppose that the transmitted seismic signals of the previous L patches are denoted as

Figure 3. Graphical representation of proposed model.
[YP,L, e, ?p,l] = [71, ey 7,-, s 7NxL]- The online training algorithm includes the following
steps:

1) Reduection—of feature—dimension—by Principal-Component—AnalysisFeature dimension
reduction by principal component analysis (PCA)

To reduce the feature dimension and computation time, PCA is used to generate the feature v;
from 71' as follows:
v, =RTX; (1)

where the columns of matrix R € RM*B form an orthogonal basis. It maps X; from an original space
of M variables to a new space of B variables.
2) Clustering Via MMNB

observed-data,—especially-The latent structure from the observed data could be well discovered b
robabilistic mixture model—especially the mixture models. Therefore, MMNB is used for clustering

with a gaussian-Gaussian mixture model as

V1|T 9 ZP (2)

B
HP Vz|9]c
j=1

T denotes-a-diserete-distribution-as-a-prior-over-the-clusters—The-density-ofis a prior of the discrete

distribution for clusters, and ;. is the parameters of the Gaussian model for features in cluster cis-a
Gaussian-with-the parameters-8;-={t;;9;c). Firstly, we suppose the number of clusters could be a
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12 relativerelatively large value as V. After clustering, small clusters will be merged for the requirement
13 Of dictionary learning.

184 %mf&ﬂgﬁ%kﬂ%%ﬂ&t@fsmﬁe%uarameters « merofr)@nd 0 Sﬂeh

185 OOC V
%e%@%mﬁwh*mﬂﬁeﬂcmmwwwmg%m (EM)
1z algorithms with the following two steps alternating:
188 a) E step:

For each data point v;, find the optimal parameters

[')’1 /¢1 ]_argm%XL('YI/‘Pl/ (t= 1) ( )Vi) (3)

10 y; is a Dirichlet distribution parameterever-—, and ¢; is the-a parameter for discrete distributions
100 overof the latent components p.
101 b) M step:

The-modelparameterscould-be-estimated-0;. and « can be updated as follows:

t o (t
[0, ") = arg max L0y, 2; 7, vi) @)
Espeetally; 6;c =010
e — A E dijevss
N i
2 _ Tt Pijc (vu ujc)®
0 = N
Zl (Pz jc
102 3) Dictionary learning via BPFA
193 Small clusters are merged into other clusters to keep the number of training data notteo-smatt

s large enough for dictionary learning. The following cluster merging algorithm is used (Algorithm 1).
Algorithm 1: Cluster Mergingmerging

Input: ¢; (computed by Equation 3), ] (the required minimum number of segments for each cluster), V
(the initial number of clusters), N x L (the number of segments), Ny = 0, ) = @&
fori< 1to N x Ldo

cluster the i segment into cluster C; by Er=max{¢r);C; = max;(9i);

¢ij represents the j element of the column vector ¢;—;

end

while N; < ] do

forc + 1toV do

find the smallest cluster k, the number of segments in which is Ny (Nj # 0);
020Uk

end
fori< 1to N x L do
if C; == k then
| merge the segments of cluster k into new cluster by C; = max;(¢;;),j & Q.
end

end
end
Output: C;

Y. = [yc1,---,YcH] represents the segments in cluster ¢, which are clustered from Y The
number of elusterclusters (denoted as Nj,;) eotld-can be smaller than V. For each cluster, BPFA is
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an efficient method to learn a dictionary, which naturally infers a suitable dictionary size. It eould-can

be described as
yi =Dw;+€;, w;=12z0Os;

dk ~ N(O, P_llp), S; ~ N(O ’)/S_llK)

agp bo( 1))
K’ K

vs ~ Gamma(cg, dgy), e ~ Gammal(ey, fo)

€ ~N(0, ’)’e_llp), 7 ~ Beta(—-

K K
z; ~ [ [Bernoulli(rry), 7 ~ | [ Beta(ap/K,bo(K—1)/K)
k=1 k=1

Equation (5) v

MWWW%%MW@%MHWQ is the

©)

elementwise-or Hadamard-veetorproduct—Ip-and-dot product, and Ip(IxrepresentsaP<PorK-<xK
) is an identity matrix. The-eonstants-ay, by, co, do, €9, and fy are called-hyperparameters—Consecutive
elements-hyperparameters. As the variables in the above hierarchical-model-are-in-model are from
the conjugate exponential familyand-the-inference-could-be-implemented-by-function, a variational
Bayesian or Markov chain Monte Carlo methods [20] like Gibbs sampling could be used for inference.
Online-The online training algorithm based on MMNB and BPFA is described as Algorithm 2.

Algorithm 2: Online Training-Algorithm-training algorithm based on MMNB and BPFA

Input: X (input seismic signals), Nj; (the number of clusters), N x L (the number of segments), I (the
number of iterations), ay, by, o, do, €o, fo. zx(o), 1)
Initialization: : Choose T ~ Dirichlet(a)
Choose a component p ~ Discrete( )
Construct a set of dictionaries as
D = (d¥,...,d0,. .., a9 d¥ ~ N(0,P11p), c € [1,Ny]
Draw the following values: sg?), eg.)), ﬂc(,? ), 'ygg) , y£2>, z£?> as Equation (5)
fori< 1to N x Ldo
Compute v; from ?i ;

end
fort+ 1toIdo

208 fori < 1to N x L do

Compute 'ylgt)
Compute 95;)

and ([)Et) based on Equation (3);
and a(!) based on Equation (4);

end
end
Generate Y, based on Algorithm 1;
forc <+ 1to N,,; do
fort < 1toIdo
Generate the dictionary D((;t) using the-BPFA with Gibbs sampling based on Equation (5);
end
end

Output: D, = DV (c € [1, Ny]), & = a(), 8 = o)

206 3.2. Online testinglesting

207 1) Online clustering and sparse representation
208 Online clustering for the-seismic signals of the current patch Xp could be seemed-seen as the E

o step (Equation 3) with the parameters « and 6 generated by Algorithm 2. Sparse representation for

2

o
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the-segments of each cluster could also be solved from Equation (5) when the cluster’s dictionary D
is given. In this way, Gibbs sampling eotld-can be used for sparse representation.

2) Quantization and entropy coding

To transmit the sparse coefficients, a uniform quantizer is applied with a fixed quantization
step A.  Moreover, an adaptive arithmetic coding algorithm [21] for mixture models is
used to code the quantized coefficients. Let [Wp_p,,Wp_4] = [Wl,. ., WE, L. .,WN'"] be
the quantized coefficients of the previous L patches, which are separately—separate from Ny,
clusters. We suppose that each nonzero coefficient take—a—valuefrom-belongs to an alphabet
A e [-2Num=1 - —1,1,..., 2N Veomposed-of 2N symbels. A mixture of Ny, probability
distributions { fwc} Could be seemed-seen as a combination of Ny, probability density function
fwe. Therefore, the probablhty of the quantized coefficients with the value k eeuld-can be written as
follows:

Nﬂl
=) p(@=c)fwe(k) (6)
c=1
where fwe (k) = gc Z +<22W g¢(-) is the frequency count table of the cluster ¢, and & is the number

of nonzero coefficients. ¢ is a positive integer, which eeuld-can be optimized by a-an EM algorithm.
Henee;the-The quantized coefficients Wp of etrrentpateh-ecould-the current patch can be coded with
the adaptive arithmetic coding algorithm based on the probability (Equation 6) existing in the coder
and decoder. We also send the nonzero coefficients” positions and their cluster number, which are
coded by an arithmetic coding algorithm.

Online-testing-algorithm-could-The online testing algorithm can be summarized as Algorithm 3.

Algorithm 3: Online Testing-Adgerithm-testing algorithm based on MMNB and BPFA

Input: Xp = [xq,...,xn], I (iteration number), D:(c¢ € [1, Ny]), «, 0

Initialization: : Draw the following values: sg)) , eg.)) , 71'6(}?) , 'yg), 7,9, zg?) as Equation (5)
fori + 1to N do

Compute v; from x;;

Compute v; and ¢; using Equation (3);

end
Generate Y, based on Algorithm 1;
forc < 1to N,; do

fort < 1toIdo
Compute z(%) and sg) with the givegiven dictionary D, based on Equation (5);
(t) =z0 5.

ci ci ’

Compute w
end
end

()

Quantize w,
Output: A

and use the probability model (Equation 6) to code it, generate the code A.

3.3. Performance Analysis

In our algorithm, ;—the coded information includes the value of nonzero coefficients, their
position information, and their cluster information. The position information is a binary sequence
where 0 indicates a zero and 1 denotes a nonzero value. This binary sequence eottld-can be encoded
using an adaptive arithmetic coder. We suppose the input data is Xp € RM*N from patch P, including
Ny, clusters. The corresponding dictionary of cluster c is denoted as D.. By using BPFA, the dictionary
size of different clustercould-bedistrinetclusters can be distinct, denoted as D, € RM*I°. The number
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of nonzero elements in cluster ¢ is expressed as E;. The total rate R could-can be approximately
computed as:

N
N xlog, (Ny) + Y. g+ Sum x p
1

R= Mx N @

Nm
21 Where Sum = Z Ec,and g = NxI°x f (NX e) is the entropy of coefficients” positions. p is the

22 entropy of nonzero coefficients. Multiple segments eould-can be combined together, sharing the same

w

s cluster information for the reduction of rate.
The reconstruction quality is evaluated by SNR as follows:

2.

w

2
-,
SNR = 101og,, 8™ ®)
&

noise

23¢ - where &gjgna1 and enoise are the variances of the signal and the noise, respectively.

235 4. Experimental Results

236 The seismic data [22] is adopted to validate the performance of proposed method{22}1tineludes
27 . _The Bison 120-Channels sensor is used for seismic data collection. The length of the test area was
s around 300 m, and the receiver interval was 1 m. It included 72 sensors, and each sensor includes
» included 135 traces. For each trace, 1600 time samples are-were used in our experiments. The seismic
2a0  signals are-were divided into small segments for dictionary learning and sparse representation. The
21 dimension of each segment is-was 16 x 1. Some test samples (50 traces from one sensor) are shown in

2

w

N
w

242 Figure 44.

Trace Number

200

600 -

800 -

Sample Number

1000

1200 -

1400 -

1600 -

Figure 4. Some test samples.
2a3 4.1, Experiment-of Clustering Experiment

248 Firstly, we earrycarried out the experiment of clustering based on MMNB for seismic signals.
2s A clustering algorithm based on the Naive-naive Bayes (NB) model{23}is- [23] was adopted for
2e6  comparison. We use-used perplexity [24] as the measurement, which eeule-can be given by
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P Li1 log p(xi)
perplexity = exp{ Y m, 1% )
A log-likelihood log p(x;) is assigned to each segment x;. m; is the number of features extracted
from x;, and 7 is the number of segments. We use-used 6 patches as the testing data and 6 previous
patches as the training data. The experimental results are shown in Table +-and-Table 2-MMNB-has
1 and Table 2. MMNB had a lower (better) perplexity on most of the training and testing data when
compared with NB.

Table 1. Perplexity of mixed-membership naive Bayes model (MMNB) and NB on the Training
Batatraining data.

Training datasetdata 1 2 3
MMNB 6:1836-+6:619-0.184 £ 0.019 01667 +0-0180.167 £ 0.018  6:3425+6:614-0.143 +0.014

Table 2. Perplexity of MMNB and NB on the Testing-Datatesting data.

Training datasetdata 1 2 3
MMNB 0:2316+0:031-0.232 £ 0.031  0:2361+0:029-0.230 £ 0.029  6:2190+-0:621-0.219 +0.021

dimekigisFect dAgpsoRrth qreatie dnsteningweyydtecftcied dstea snesainmbasedae lgridam poihie
with the same color belong to the same cluster. Two training and testing data are shown here for
demonstration. The initial number of clustering is 8. After merging of the cluster, the actual number
of clusters for data 1 (both testing and training) and data 2 are separately 6 and 5.

25 T T T T T T 25

Figure 5. Clustering Results (a)Training Data 1 (b)Testing Data 1 (¢)Training Data 2 (d)Testing Data 2.
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4.2. Dictionary Learning Experiment

4.3. Experiment-of Dictionary-Learning

Secondly, we want-wanted to validate the efficiency of Nen-parametrie BayesianDictionary

Learning—based—on—Clusteringnon-parametric Bayesian dictionary learning based on clusterin
(NBDLC). Different dictionary learning and sparse representation methods, including K-SVD+OMP,

K-SVD+ORMP, K-SVD+PS and TSITD, are compared. The initial dictionary size is-was 16 x 128
and the size of the test seismic signals in this experiment is—was 16 x 1000. In K-SVD+OMP,
K-SVD+ORMP, K-SVD+PS, TSITD, and NBDLC, the number of nonzero coefficients is separately
controlled by the sparsity and the sparsity prior parameters (a9 and bp). The experimental result is
shown in Figure 66. From Figure 66, NBDLC could have the best reconstruction quality with the
a similar number of nonzero coefficients white-compared with other dictionary learning methods.
Furthermore, the dictionary sizes are inferred from the seismic signals of each cluster in NBDLC. For
example, in our experiments, the minimum dictionary size of NBDLC is-was 16 x 83. This is beneficial
in reducing the rate of coding for nonzero coefficients’ position.
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Figure 6. Experimental result of dictionary learning.

4.3. Comparison of Compression Performance

Finally, we earry—carried out a qualitative comparison of seismic signal compression methods
based on DCT, Curvelet, Off DL, DLOD and the proposed method on four test data from different
sensors. In OffDL, am-offline data (different from the above four data) is adopted to train the
dictionary. K-SVD and PS are-were used as the dictionary learning and sparse representation method-
Pseudo-random-algorithm-is-methods. A pseudo-random algorithm was used to generate the same
random variables in the coder and decoder for the bayesian-Bayesian dictionary learning process.
In DCT and Curvelet, a desired sparsity can be obtained by only maintaining some significant
coefficients. For compression, the nonzero coefficients are quantized and coded with an adaptive
arithmetic coding algorithm. The quantization step in this experiment is 1024. The experimental
results are shown in Figure 7. Curvelet performs better than DCT in most situations,—especially
situations—especially in higher rates. OffDL, OLOD-and-proposed-method-outperform-DLOD and
the proposed method outperformed DCT and Curvelet. The compression performance of OffDL
highly depends on the correlation between the training data and the testing data. For example, for
sensor 3, its performance could be close to DLOD, yet its performance elescenes-deteriorated for
sensor 1. The performance of the proposed method is made better than Off DL and OLOD by using
the use of clustering. Although the rate will increase by transmission for the information of clustering,

the distortion could be efficiently reduced;especially-reduced—especially when the rate is high. For
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example, the rate gain of the proposed method could be approximately 22.4% and 77.8% when SNR
is about 28 dB for the seismic signals of sensor 1. Then, we could conclude that the proposed method
is an efficient method for seismic signal compression.
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Figure 7. Compression performance comparison of seismic signals from different sensors.

5. Conclusion

In this paper, we have shown how to compress seismic signal-signals efficiently by using

a clustered—based—nonparametric—bayesian—clustering-based nonparametric Bayesian dictionary
learning method. The previous transmitted data beth-existing-inthe-coder-and-decoder—is used

to train the dictionary for sparse representation. After clustering by their structural similarities,
each cluster could have its own dictionary. Then, the seismic signals of each cluster could be well
represented. Nenparametrie-bayesian-A nonparametric Bayesian dictionary learning method is used
to train the dictionary, which infers an adaptive dictionary size. Experimental results demonstrate
better rate-distortion performance over other seismic signal compression schemes, validating the
effectiveness of the proposed method.
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