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Abstract: This paper proposes an easily understandable Grey Wolf Optimizer (GWO) applied to the
optimal tuning of the parameters of Takagi-Sugeno proportional-integral fuzzy controllers (T-S PI-FCs).
GWO is employed for solving optimization problems focused on the minimization of discrete-time
objective functions defined as the weighted sum of the absolute value of the control error and of the
squared output sensitivity function, and the vector variable consists of the tuning parameters of the
T-S PI-FCs. Since the sensitivity functions are introduced with respect to the parametric variations of
the process, solving these optimization problems is important as it leads to fuzzy control systems
with a reduced process parametric sensitivity obtained by a GWO-based fuzzy controller tuning
approach. GWO algorithms applied with this regard are formulated in easily understandable terms
for both vector and scalar operations, and discussions on stability, convergence, and parameter
settings are offered. The controlled processes referred to in the course of this paper belong to a family
of nonlinear servo systems, which are modeled by second order dynamics plus a saturation and dead
zone static nonlinearity. Experimental results concerning the angular position control of a laboratory
servo system are included for validating the proposed method.

Keywords: Grey Wolf Optimizer; Takagi-Sugeno proportional-integral fuzzy controllers; process
parametric sensitivity; stability; convergence; parameter settings; angular position

1. Introduction

Fuzzy control has proven efficiency in coping with various simple and complex processes.
The combinations with nature-inspired optimization algorithms, also known as metaheuristics,
have a positive impact on the performance of fuzzy control systems as they contribute to the systematic
design and tuning. Some recent applications of metaheuristics to the parameter tuning of fuzzy
controllers dedicated to servo systems will be outlined as follows. Representative overviews on such
industrial applications are offered in [1–3]. Proportional-integral-derivative (PID)-fuzzy controllers
are tuned in [4,5] using Particle Swarm Optimization (PSO)-based approaches and are tested by
experiments or simulations on an electrical direct current (DC) drive benchmark and a laboratory
micro air vehicle controller, respectively. A hybrid PSO and pattern search optimized PI-fuzzy controller
is applied in [6] to the automatic generation control of multi-area power systems and is validated by
simulation. The Gravitational Search Algorithm (GSA) is employed in [7,8] in the optimal tuning of
PI- and PID-fuzzy controllers for DC servo systems and load frequency control in power systems and
is validated by simulation and experimental results. Charged System Search algorithms are applied
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in [9] to the optimal tuning of PI-fuzzy controllers for DC servo systems. Ant Colony Optimization is
applied in [10,11] to the optimal tuning of fuzzy controllers for robots and ball and bam systems.

The Grey Wolf Optimizer (GWO) algorithm is proposed in [12] on the basis of modeling grey
wolf social hierarchy and hunting habits towards finding prey, represented by the solution to the
optimization problem. The social hierarchy is simulated by categorizing the population of search agents
into four types of individuals, i.e., alpha, beta, delta, and omega, based on their fitness. The search
process is modeled with the aim of mimicking the hunting behavior of grey wolfs making use of
three stages, searching, encircling, and attacking the prey. The first two stages are dedicated to
exploration and the last one covers the exploitation. The reduced number of search parameters is
an important advantage of GWO algorithms reflected in various applications, which include blackout
risk prevention in smart grids [13], training multi-layer perceptrons [14], optimization of reactive
power dispatch [15], solutions to benchmarks generally used to test optimization algorithms [16],
hyperspectral band selection [17], maximum power point tracking [18], and optimal tuning of PI- and
PID-fuzzy controllers [19–21].

This work builds upon the authors’ previous results on the optimal tuning of Takagi-Sugeno
proportional-integral fuzzy controllers (T-S PI-FCs) and fuzzy models by means of various standard
nature-inspired algorithms like: Gravitational Search Algorithm [7,22], Charged System Search [9],
adaptive variations [23], or applications of multiple optimization algorithms [3,24]. This paper proposes
an easily understandable presentation of GWO. Based on this, GWO is later applied in an innovative
method for the optimal tuning of T-S PI-FCs to ensure fuzzy control systems with a reduced process
parametric sensitivity by the inclusion of sensitivity functions in the objective functions, which are
minimized by the GWO in appropriately defined optimization problems. The presentation is focused
on a family of servo systems considered as controlled processes, which are modeled by second-order
dynamics with an integral component, variable parameters, along with a saturation and dead zone
static nonlinearity. The results are confirmed through comparisons with other metaheuristics that have
the same unsupervised characteristics.

This paper is organized as follows: the optimization problem is set in the next section. GWO is
presented and analyzed in Section 3 along with the tuning approach for T-S PI-FCs dedicated to the
considered family of servo systems. The case study that targets the GWO-based tuning of T-S PI-FCs
for the angular position control of a nonlinear DC servo system is treated in Section 4. The conclusions
are summarized in Section 5.

2. Problem Setting

The control system structure is presented in Figure 1, where: P—the process, which belongs to
a family of nonlinear servo systems, FC—the fuzzy controller, F—the reference input filter, r—the
reference input, r1—the reference input filtered through F, y—the controlled output, u—the control
signal, and e—the control error. The load-type disturbance inputs are not applied in Figure 1 as the
integral component of the controller copes with them.
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m(t) =



−1, if u(t) ≤ −ub,
[u(t) + uc]/(ub − uc), if − ub < u(t) < −uc,

0, if − uc ≤ |u(t)| ≤ ua,
[u(t)− ua]/(ub − ua), if ua < u(t) < ub,

1, if u(t) ≥ ub,[ .
x1(t)
.
x2(t)

]
=

[
0 1
0 −1/TΣ

][
x1(t)
x2(t)

]
+

[
0

kP/TΣ

]
m(t),

y(t) = [ 1 0 ] [ x1(t) x2(t) ]
T

,

(1)

where: t ≥ 0—the continuous time, kP > 0—the servo system gain, TΣ > 0—the small time constant,
u(t)—a pulse width modulated signal, x1(t) = α(t)—the angular position, x2(t) = ω(t)—the angular
speed, m(t)—the output of the saturation and dead zone static nonlinearity with the parameters that
fulfill 0 < ua < ub, 0 < uc < ub, and T—matrix transposition.

The nonlinearity in Equation (1) is neglected in the transfer function of the simplified model of
the process

P(s) = kEP/[s(1 + TΣs)], (2)

where kEP is the equivalent process gain, with the expression

kEP =

{
kP/(ub − uc), if − ub < u(t) < −uc,

kP/(ub − ua), if ua < u(t) < ub.
(3)

The transfer function P(s) is used in linear and fuzzy controller design, and PI controllers are
recommended in [25,26]. The PI controllers are used in the block FC in Figure 1 and their transfer
function is

C(s) = k c(1 + sTi)/s = kC[1 + 1/(sTi)], k C = kcTi, (4)

where k C > 0 (or kc > 0) is the controller gain and Ti > 0 is the integral time constant.
Since the simplified model P(s) is used in the controller design, and it is characterized by only

two parameters, it is justified to consider that the process parameters kP and TΣ are variable and the
other ones are constant. The process parameter vector is

α = [ α1 α2 ]
T
= [ kP TΣ ]

T
, (5)

which leads to the definition of the state sensitivity functions λ
αj
υ , υ = 1...n, and the output sensitivity

function σ:

λ
αj
υ =

[
∂xυ
∂αj

]
0

,σαj =

[
∂y
∂αj

]
0

, υ = 1...n, j ∈ {1, 2}, (6)

where the subscript 0 is inserted to outline the nominal value of the process parameter αj, j ∈ {1, 2},
and n is the number of state variables of the fuzzy control system.

The Extended Symmetrical Optimum (ESO) method [25,26] is recommended to tune the two PI
controller parameters because it ensures a compromise to the control system performance indices
(percent overshoot, settling time, rise time, phase margin, etc.) of the linear control system by means of
a single design parameter βwithin the recommended domain 1 < β ≤ 20. The PI tuning conditions
specific to the ESO method are

kc = 1/(β
√
βkEPT2

Σ), Ti = βTΣ, kC = 1/(
√
βkEPTΣ), (7)

and the transfer function of the reference input filter F that contributes to performance enhancement is

F(s) = 1/(1 + β TΣs). (8)
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The T-S PI-FCs ensure further performance enhancement by design and tuning starting with
the linear PI controllers. The typical structure and input membership functions of a T-S PI-FC are
presented in Figure 2, where q−1 is the backward shift operator, TISO-FC is the Two Inputs-Single
Output fuzzy controller block modeled by a nonlinear input-output static map, ∆e(td) is the increment
of the control error, and ∆u(td) is the increment of the control signal.
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These two increments are obtained by discretizing the continuous-time PI controller by Tustin’s
method, which leads to the recurrent equation of the incremental discrete-time PI controller and its
parameters K P and µ [27–29]

∆u(td) = K P[∆e(td) + µ e(td)],
K P = kc(Ti − Ts/2), µ = 2 Ts/(2 Ti − Ts),

(9)

where td ∈ Z, td ≥ 0 is the discrete time index and Ts > 0 is the sampling period.
The TISO-FC block in the T-S PI-FC structure uses the weighted average method for defuzzification,

and the SUM and PROD operators in the inference engine. The complete rule base of this block consists
of the following two rules [21]:

IF (e(td) IS N AND ∆ e(td) IS N) OR (e(td) IS P AND ∆ e(td) IS P)
THEN ∆ u(td) = η K P [∆ e(td) + µ e(td)],

IF (e(td) IS ZE) OR (e(td) IS N AND ∆ e(td) IS ZE) OR (e(td) IS N AND ∆ e(td) IS P) OR (e(td) IS P
AND ∆ e(td) IS ZE) OR (e(td) IS P AND ∆ e(td) IS P) THEN ∆ u(td) = K P [∆ e(td) + µ e(td)],

(10)

where the parameter η, 0 < η < 1, contributes to the reduction of the control system overshoot.
The application of the modal equivalence principle [30] leads to the tuning equation

B∆e = µ Be, (11)

and the parameters of the T-S PI-FC are grouped in the parameter vector ρ:

ρ = [ β Be η ]
T

. (12)

The optimization problems that ensure the sensitivity reduction with respect to the modifications
of the process parameter αj are defined as

ρ∗ = arg min
ρ∈Dρ

Jαj(ρ), Jαj(ρ) =
∞

∑
td=0
{|e(td,ρ)|+ (γαj

)2[σαj(td,ρ)]2}, j ∈ {1, 2}, (13)

where γαj
, j ∈ {1, 2}, are the weighting parameters, with the subscript indicating the process

parameters indicated in Equation (5), ρ∗ is the optimal parameter vector, i.e., the optimal value



Algorithms 2017, 10, 68 5 of 15

of the vector ρ, and Dρ is the feasible domain of ρ. The stability of the fuzzy control is recommended
to be taken into consideration in order to set the domain Dρ, and useful approaches are reported
in [23,27–29,31–36].

The objective function Jαj(ρ) is referred to as the weighted sum of the absolute value of the
control error and of the squared output sensitivity function, but the state sensitivity functions can be
included as well. Other objective functions can also be considered, inspired from several applications
with classical and modern algorithms [37–42].

The state sensitivity models of the fuzzy control system with respect to αj are derived using
Equation (6), with n = 4 for T-S PI-FCs. Accepting that the control signal u is changing at the discrete
sampling intervals and the zero-order hold is included in the fuzzy control system structure for digital
control, the number of four state variables results from the fact that the state variables x3 and x4 of the
T-S PI-FC are defined in terms of [7]. The expression of the state sensitivity model of the fuzzy control
system with respect to the parameter kP of the family of nonlinear servo systems is [7]

λ
kP
1 (td + 1) = λ

kP
1 (td) + TΣ0[1− exp(−Ts/TΣ0)]λ

kP
2 (td) + [Ts + TΣ0 exp(−Ts/TΣ0)− TΣ0]x30(td)

+kP0[Ts + TΣ0 exp(−Ts/TΣ0)− TΣ0]λ
kP
3 (td) + [Ts + TΣ0 exp(−Ts/TΣ0)− TΣ0] fTISO−FC0(td)

−kP0[Ts + TΣ0 exp(−Ts/TΣ0)− TΣ0]
[

∂ fTISO−FC0(td)
∂e(td)

]
0
λ

kP
1 (td)− kP,0[Ts + TΣ0 exp(−Ts/TΣ0)

−TΣ0]
[

∂ fTISO−FC0(td)
∂∆e(td)

]
0
λ

kP
4 (t),

λ
kP
2 (td + 1) = exp(−Ts/TΣ0)λ

kP
2 (td) + [1− exp(−Ts/TΣ0)]x3,0(td) + kP0[1− exp(−Ts/TΣ0)]λ

kP
3 (td)

+[1− exp(−Ts/TΣ0)] fTISO−FC0(td)− kP0[1− exp(−Ts/TΣ0)]
[

∂ fTISO−FC0(td)
∂e(td)

]
0
λ

kP
1 (td)

−kP0[1− exp(−Ts/TΣ0)]
[

∂ fTISO−FC0(td)
∂∆e(td)

]
0
λ

kP
4 (td),

λ
kP
3 (td + 1) = λ

kP
3 (td)−

[
∂ fTISO−FC0(td)

∂e(td)

]
0
λ

kP
1 (td)−

[
∂ fTISO−FC0(td)

∂∆e(td)

]
0
λ

kP
4 (td),

λ
kP
4 (td + 1) = −λkP

1 (td),
σkP(td) = λ

kP
1 (td),

(14)

and the expression of the state sensitivity model of the fuzzy control system with respect to the
parameter TΣ is [7]

λ
TΣ
1 (td + 1) = λ

TΣ
1 (t) + [1− exp(−Ts/TΣ0) + (Ts/TΣ0) exp(−Ts/TΣ0)]x20(td)

+TΣ0[1− exp(−Ts/TΣ0)]λ
TΣ
2 (td) + kP0[exp(−Ts/TΣ0)

−(Ts/TΣ0) exp(−Ts/TΣ0)− 1] fTISO−FC0(td)− kP0[Ts + TΣ0 exp(−Ts/TΣ0)

−TΣ0]
[

∂ fTISO−FC0(td)
∂e(td)

]
0
λ

TΣ
1 (td)− kP0[Ts + TΣ0 exp(−Ts/TΣ0)− TΣ0]

[
∂ fTISO−FC0(td)

∂∆e(td)

]
0
λ

TΣ
4 (td),

λ
TΣ
2 (td + 1) = −(Ts/T2

Σ0)[exp(−Ts/TΣ0)]x2,0(td) + [exp(−Ts/TΣ0)]λ
TΣ
2 (td)

+kP0[1− exp(−Ts/TΣ0)]λ
TΣ
3 (td)− (kP0Ts/T2

Σ0)[exp(−Ts/TΣ0)] fTISO−FC0(td)

−kP0[1− exp(−Ts/TΣ0)]
[

∂ fTISO−FC0(td)
∂e(td)

]
0
λ

TΣ
1 (td)− kP0[1− exp(−Ts/TΣ0)]λ

TΣ
4 (td),

λ
TΣ
3 (td + 1) = λ

TΣ
3 (td)−

[
∂ fTISO−FC0(td)

∂e(td)

]
0
λ

TΣ
1 (td)−

[
∂ fTISO−FC0(td)

∂∆e(td)

]
0
λ

TΣ
4 (td),

λ
TΣ
4 (td + 1) = −λTΣ

1 (td),
σTΣ(td) = λ

TΣ
1 (td),

(15)

where the state variables of the T-S PI-FC are defined in terms of

x3(td) = u(td − 1), x4(td) = e(td − 1), (16)

fTISO−FC is the nonlinear input-output map of TISO-FC, and the dynamics of the reference input filter
are not accounted for. The subscript 0 in Equations (14) and (15) outlines the nominal value of the
process parameter (as already shown in relation with Equation (6)) and also the nominal trajectory
of the fuzzy control system (i.e., the nominal state variables) and the nominal expression of the
input-output map of TISO-FC.
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3. Grey Wolf Optimizer, Analysis, and Optimal Tuning Approach

This section presents the general description of GWO with the aim of introducing it later into the
optimization problems described in the previous section. Based on this information a novel optimal
tuning approach is defined in the last part of the section.

3.1. Grey Wolf Optimizer and Analysis

The operating mechanism of GWO according to its standard formulation given in [12] starts
with the random initialization of the agents that comprise the wolf pack. A total number of N agents
(i.e., grey wolves) is used, and each agent is assigned to a position vector Xi(k)

Xi(k) = [ x1
i (k) ... x f

i (k) ... xq
i (k)]

T
, i = 1...N, (17)

where x f
i (k) is the position of ith agent in the f th dimension, f = 1...q, k is the index of the current

iteration, k = 1...kmax, and kmax is the maximum number of iterations.
The search process specific to GWO continues with the exploration stage, which models the search

for the prey. During this stage the positions of the top three agents, namely the alpha (α), beta (β),
and delta (δ) agents, dictate the search pattern by diverging from other agents and converging to the
prey, representing the optimal solution.

The exploitation stage models the attack on the prey. The top three agents constrain the other
agents (the omega (ω) agents) to update their positions according to theirs. The following notations
are used for the top three agent position vectors, i.e., the first three best solutions obtained at each
iteration (or the alpha, beta, and delta solutions):

Xl(k) = [ xl1(k) ... xl f (k) ... xlq(k) ]
T

, l ∈ {α,β, δ}, (18)

the three vector solutions Xα(k), Xβ(k), and Xδ(k) are obtained by the following selection process:

Jαj(X
α(k)) = min

i=1...N
{Jαj(Xi(k))| Xi(k) ∈ Dρ},

Jαj(X
β(k)) = min

i=1...N
{Jαj(Xi(k))| Xi(k) ∈ Dρ\{Xα(k)}},

Jαj(X
δ(k)) = min

i=1...N
{Jαj(Xi(k))| Xi(k) ∈ Dρ\{Xα(k), Xβ(k)}},

(19)

and they fulfill the condition

Jαj(X
α(k)) < Jαj(X

β(k)) < Jαj(X
δ(k)). (20)

A set of search coefficients is then defined:

a f
l (k) = a f (k)(2r f

1l − 1),
c f

l (k) = 2r f
2l , l ∈ {α,β, δ},

(21)

where r f
1l and r f

2l are uniformly distributed random numbers within 0 ≤ r f
1l ≤ 1, 0 ≤ r f

2l ≤ 1, f = 1...q,
and the coefficients a f (k) are linearly decreased from 2 to 0 during the search process:

a f (k) = 2[1− (k− 1)/(kmax − 1)], f = 1...q. (22)

The approximate distances between the current solution and the alpha, beta, and delta solutions,
i.e., di f

α(k), di f
β(k), and di f

δ (k), respectively, are

di f
l (k) = |c f

l (k)xl f (k)− x f
i (k)|, i = 1...N, l ∈ {α,β, δ}. (23)
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The components (agents) of the updated alpha, beta, and delta solutions are computed as

xl f (k + 1) = xl f (k)− a f
l (k)d

i f
l (k), f = 1...q, i = 1...N, l ∈ {α,β, δ}, (24)

and they lead to the updated expressions of the agents’ positions obtained as the arithmetic mean of
the updated alpha, beta, and delta agents:

x f
i (k + 1) = [xα f (k + 1) + xβ f (k + 1) + xδ f (k + 1)]/3, f = 1...q, i = 1...N. (25)

The vector counterpart of Equation (25) is the formula that gives the update vector solution
Xi(k + 1):

Xi(k + 1) = [Xα(k + 1) + Xβ(k + 1) + Xδ(k + 1)]/3, i = 1...N. (26)

The GWO consists of the following steps that are formulated by the revision of the steps presented
in [20,21]:

Step 1. The initial random grey wolf population, represented by N agents’ positions in the
q-dimensional search space, is generated. The iteration index is initialized to k = 0 and the maximum
number of iterations is set to kmax.

Step 2. The performance of each member of the population of agents is evaluated by simulations
and/or experiments conducted on the fuzzy control system. The evaluation leads to the objective
function value by mapping the GWO onto the optimization problems using

Xi(k) = ρ, i = 1...N. (27)

Step 3. The first three best solutions obtained so far, i.e., Xα(k), Xβ(k), and Xδ(k), are identified
using Equation (19).

Step 4. The search coefficients are calculated using Equations (21) and (22).
Step 5. The agents are moved to their new positions by computing Xi(k+1) in terms of Equations (24),

(25), and (26).
Step 6. The updated vector solution Xi(k + 1) ∈ Dρ is validated by checking the steady-state

condition for the fuzzy control system with the T-S PI-FC parameter vector ρ = Xi(k + 1), so far [7]

|y(td f )− r(td f )| ≤ εy|r(td f )− r(0)|, (28)

where td f is the final time moment. Theoretically td f → ∞ as pointed out in Equation (13), but td f
takes practically a finite value in order to capture the transients in the fuzzy control system responses.
The stability analysis of the fuzzy control system can be also employed with this regard.

Step 7. The iteration index k is incremented and the algorithm continues with step 2 until kmax

is reached.
Step 8. The algorithm is stopped and the final solution obtained so far is actually the solution to

the optimization problems defined in Equation (13):

ρ∗ = arg min
i=1...N

Jαj(Xi(kmax)). (29)

The substitution of di f
l (k) taken from Equation (23) in Equation (24) leads to

xl f (k + 1) = xl f (k)− a f
l (k)|c

f
l (k)xl f (k)− x f

i (k)|, f = 1...q, i = 1...N, l ∈ {α,β, δ}. (30)

The computation of the arithmetic mean in Equation (30) for l ∈ {α,β, δ} and then the application
of Equation (25) at the iterations k + 1 and k are organized as the following state-space equation:
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x f
i (k + 1) = x f

i (k)− [a f
α(k)|c

f
α(k)xα f (k)− x f

i (k)|+ a f
β(k)|c

f
β(k)xβ f (k)− x f

i (k)|
+a f

δ(k)|c
f
δ(k)xδ f (k)− x f

i (k)|]/3, f = 1...q, i = 1...N,
(31)

which indicates a nonlinear dynamic system. Such expressions are used in [43–45] for other
metaheuristics as well (PSO and GSA) and are then associated with stability analyses. However,
the nonlinearity in Equation (31) makes the GWO analysis more difficult in comparison with [43–45].

Equation (31) is then expressed in the equivalent form

x f
i (k + 1)− x f

i (k) = −[a f
α(k)|c

f
α(k)xα f (k)− x f

i (k)|+ a f
β(k)|c

f
β(k)xβ f (k)− x f

i (k)|
+a f

δ (k)|c
f
δ (k)xδ f (k)− x f

i (k)|]/3, f = 1...q, i = 1...N,
(32)

and since the right-hand term in Equation (32) is negative, this indicates that

x f
i (k + 1)− x f

i (k) ≤ 0, f = 1...q, i = 1...N, k = 1...kmax. (33)

Using k = kmax in Equation (22) and then Equation (21), the coefficients obtain the expressions

a f (kmax) = a f
α(kmax) = a f

β(kmax) = a f
δ(kmax) = 0, f = 1...q, i = 1...N. (34)

Using Equation (34) in Equation (32) for k = kmax, this gives the condition for the final values of
the agents’ positions

x f
i (kmax + 1) = x f

i (kmax) ≤ 0, f = 1...q, i = 1...N. (35)

In addition, Equation (35) used in combination with Equation (33) gives the following condition
related to the dynamics of the agents’ positions:

x f
i (k + 1)− x f

i (k) < 0, f = 1...q, i = 1...N, k = 1...kmax − 1. (36)

Concluding, Equation (36) indicates that {x f
i (k)}k=1...kmax

is a monotonic strictly decreasing
sequence as this will guarantee the convergence of GWO. Therefore, it is recommended to initialize as
large as possible values of x f

i (1), f = 1...q, i = 1...N.
The stability analysis of the dynamics of the agents’ positions starts with the definition of the

Lyapunov function candidate

V(x f
i (k)) = (x f

i (k))
2
, f = 1...q, i = 1...N, k = 1...kmax − 1 (37)

that fulfils the conditions

V(x f
i (k)) > 0, ∀x f

i (k) 6= 0, f = 1...q, i = 1...N, k = 1...kmax − 1,
V(0) = 0.

(38)

The expression of the increment of V is

∆V(x f
i (k)) = V(x f

i (k + 1))−V(x f
i (k)) = (x f

i (k + 1))
2
− (x f

i (k))
2

= [x f
i (k + 1)− x f

i (k)][x
f
i (k + 1) + x f

i (k)], f = 1...q, i = 1...N, k = 1...kmax − 1.
(39)

Using Equation (36) in Equation (37), the sufficient condition ∆V(x f
i (k)) < 0 for the global

asymptotic stability of the origin of dynamics of the agents’ positions is

x f
i (k + 1) + x f

i (k) > 0, f = 1...q, i = 1...N, k = 1...kmax − 1. (40)
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Using x f
i (k + 1) taken from Equation (31) in Equation (40), Equation (40) is then transformed into

2x f
i (k) > [a f

α(k)|c
f
α(k)xα f (k)− x f

i (k)|+ a f
β(k)|c

f
β(k)xβ f (k)− x f

i (k)|
+a f

δ(k)|c
f
δ(k)xδ f (k)− x f

i (k)|]/3, f = 1...q, i = 1...N, k = 1...kmax − 1.
(41)

Since the right-hand term in Equation (41) is strictly positive, Equation (41) leads to the first
sufficient condition for the agents’ positions:

x f
i (k) > 0, f = 1...q, i = 1...N, k = 1...kmax − 1, (42)

which also implies that

xα f (k) > 0, xβ f (k) > 0, xδ f (k) > 0, f = 1...q, i = 1...N, k = 1...kmax − 1. (43)

Using Equations (42) and (43) and the properties of the modulus, the right-hand term in Equation
(41) is upper bounded in terms of

[a f
α(k)|c

f
α(k)xα f (k)− x f

i (k)|+ a f
β(k)|c

f
β(k)xβ f (k)− x f

i (k)|
+a f

δ(k)|c
f
δ(k)xδ f (k)− x f

i (k)|]/3 ≤ [a f
α(k)(c

f
α(k)xα f (k) + x f

i (k))
+a f

β(k)(c
f
β(k)xβ f (k) + x f

i (k)) + a f
δ(k)(c

f
δ(k)xδ f (k) + x f

i (k))]/3,
f = 1...q, i = 1...N, k = 1...kmax − 1.

(44)

To sum up, in order to fulfill the condition ∆V(x f
i (k)) < 0 for the global asymptotic stability of

the origin of dynamics of the agents’ positions, it is sufficient to fulfill the following condition, as it
results from Equations (41) and (44) and the transitive property of inequalities:

2x f
i (k) > [a f

α(k)(c
f
α(k)xα f (k) + x f

i (k)) + a f
β(k)(c

f
β(k)xβ f (k) + x f

i (k))

+a f
δ(k)(c

f
δ(k)xδ f (k) + x f

i (k))]/3, f = 1...q, i = 1...N, k = 1...kmax − 1,
(45)

which is equivalent to

x f
i (k)[6− (a f

α(k) + a f
β(k) + a f

δ(k))] > a f
α(k)c

f
α(k)xα f (k) + a f

β(k)c
f
β(k)xβ f (k)+a f

δ(k)c
f
δ(k)xδ f ,

f = 1...q, i = 1...N, k = 1...kmax − 1.
(46)

Since Equation s (21) and (22) lead to

0 < a f
α(k) ≤ 2, 0 < a f

β(k) ≤ 2, 0 < a f
δ(k) ≤ 2, f = 1...q, i = 1...N, k = 1...kmax − 1, (47)

the left-hand term in Equation (46) fulfills the condition

x f
i (k)[6− (a f

α(k) + a f
β(k) + a f

δ(k))] ≥ 0, f = 1...q, i = 1...N, k = 1...kmax − 1. (48)

Summing up, the stability analysis should be re-organized in order to check the sufficient stability
conditions of Equations (42) and (46) at each iteration. This stability check is recommended to be
carried out in step 6 in order to validate the next vector solution by dropping out those agents that do
not fulfill the conditions of Equations (42) and (46).

Moreover, Equation (42) indicates that GWO is recommended to solve optimization problems
where the variables take positive values. Such problems occur in the optimal tuning of the parameters
of several linear and fuzzy controllers or of the positive parameters specific to linear and nonlinear
models, including fuzzy ones.
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The convergence and stability for negative values of the variables cannot be guaranteed using the
above approach. They are guaranteed because of the operating mechanism of GWO, which uses the best
three agents at each iteration and drives the solution towards the solution to the optimization problem.

Equations (42) and (46) can be viewed as the basis in the development of adaptive GWO using
the knowledge from adaptive PSO, GSA, and CSS [9,23]. One such approach can be supported by
replacing the linear decrease of the coefficients a f (k) in Equation (22) with an exponential one:

a f (k) = 2e/(e− 1){exp[−(k− 1)/(kmax − 1)]− 1/e}, f = 1...q, k = 1...kmax. (49)

Fuzzy logic can be involved in adaptive GWO in order to exploit the advantages of the nonlinear
input-output maps of fuzzy systems [46–50]. The hybridization with other algorithms is a good option
because of the small numbers of GWO; metaheuristics or classical algorithms can be used with this
regard in several applications [51–54].

3.2. Optimal Tuning Approach

The GWO is mapped onto the optimization problems defined in Equation (13) by the relationships
given in Equations (20), (26) and (27). The optimal tuning approach for T-S PI-FC consists of the
following steps built around the approach suggested in [21] and the GWO implementation according
to the previous sub-section:

Step A. The ESO method is applied to tune the parameters of the linear PI controllers, Ts is set, and
the discrete-time PI controllers expressed in Equation (9) are obtained. The particular expressions of the
state sensitivity models of the fuzzy control system are derived in accordance with Equations (14) and (15).

Step B. The weighting parameters γαj
, j ∈ {1, 2}, specified in Equation (13) are set such that they

meet the performance specifications of the fuzzy control system. The parameter td f is set according to
step 6 of GWO, and the domain Dρ is set to include all constraints imposed to the elements of ρ.

Step C. GWO implemented according to Sub-Section 3.1 is applied to solve the optimization
problems defined in Equation (13), which produce the optimal values of the parameter vector ρ∗ and
the optimal parameters β∗, Be

∗, and η∗:

ρ∗ = [ β∗ Be
∗ η∗ ] = [ ρ1

∗ ρ2
∗ ρ3

∗ ]
T

. (50)

Step D. The optimal value of the parameter B∆e, namely B∆e
∗ , results from the following particular

expression of Equation (11):
B∆e
∗ = µ Be

∗. (51)

Step E. The transfer function of the reference input filter is obtained from the following particular
expression of Equation (8):

F(s) = 1/(1 + β∗ TΣ0s). (52)

As illustrated in Equation (52), the steps A to E have been applied for the controllers tuned using
the nominal values of the process that belongs to the family of nonlinear servo systems modeled in
Equation (1). However, other control approaches can be used [29,33,34,55–57].

4. Case Study

Both GWO and the tuning approach are validated in this section by the design and tuning of T-S
PI-FCs for the angular position control of an experimental setup [58]. The experimental setup operates
in the Intelligent Control Systems Laboratory of the Politehnica University of Timisoara, Romania.
The nominal values of the parameters of the process models of Equations (1) and (2) have been
obtained by least squares identification algorithms as ua = 0.15, ub = 1, uc = 0.15, kP0 = kEP0 = 140,
and TΣ0 = 0.92 s. The simulations were performed using the Matlab environment being run on several



Algorithms 2017, 10, 68 11 of 15

machines with various configurations, thus parallelizing the computations in order to reduce the
execution time.

The weighting parameters presented in Equation (13) have been defined to satisfy a ratio of {0.1, 1, 10}
of the initial values of the terms presented in the sums. The following values have been used:

(γkP
)2 ∈ {0.006858, 0.06858, 0.6858},

(γTΣ
)2 ∈ {0.0066695, 0.066695, 0.66695}.

(53)

The upper limit of the sums in Equation (13) has been set to td f = 2000 instead of td f → ∞ ,
which corresponds to the evaluation of the objective functions by experiments conducted on a time
horizon of 20 s. The vector variables ρ of the objective functions have been initialized and are then
validated to belong to the feasible (search) domain Dρ

Dρ = {β|3 ≤ β ≤ 17} × {Be|20 ≤ Be ≤ 40} × {η|0.25 ≤ η ≤ 0.75}. (54)

The dynamic regimes characterized by r = r0 = 40 rad step type modification applied to the
reference input and disturbance input d = d0 = 0 have been used. The integral term in the T-S PI-FC
structure carries out the disturbance rejection.

The parameters of GWO have been defined based on the designers’ experience and aim to achieve
an acceptable balance between convergence and computational resources as N = 20 and kmax = 100.

The optimal controller parameters and the associated minimum objective function values of the
two optimization problems defined in Equation (13) are presented in Tables 1 and 2.

Table 1. Weighting parameter and controller parameters for the minimization of JkP .

(γkP
)2 B∗∆e B∗e η∗ β∗ k∗c T∗i JkP min

0.006858 0.085588 40 0.747404 5.08539 0.003443 4.67856 32604.4
0.06858 0.085016 40 0.740636 5.11954 0.003431 4.70998 118689
0.6858 0.012792 20 0.250669 17 0.001883 15.64 873561

Table 2. Weighting parameter and controller parameters for the minimization of JTΣ .

(γTΣ
)2 B∗∆e B∗e η∗ β∗ k∗c T∗i JTΣ min

0.0066695 0.0855753 40 0.75 5.08614 0.00344263 4.67925 32497.9
0.066695 0.0844424 40 0.736102 5.1543 0.00341979 4.74196 109271
0.66695 0.0127918 20 0.250173 17 0.00188304 15.64 864912

The quality of GWO is analyzed through three sets of performance indices that try to quantify the
use of allocated resources and asses the search process. The first set of performance indexes used in
the analysis of the solution quality is the average value of the objective functions JkP and JTΣ obtained
by running several independent runs of GWO and are referred to as Avg(JkPmin) and Avg(JTΣmin):

Avg(JkPmin) = (1/Nbest)
Nbest

∑
j=1

JkPmin
(j), Avg(JTΣmin) = (1/Nbest)

Nbest

∑
j=1

JTΣmin
(j), (55)

where JkPmin and JTΣmin are the values obtained by running GWO, Nbest is the number of best values
(i.e., the smallest values) obtained for the objective functions, and the superscript j, j = 1...Nbest,
indicates the values of the objective functions obtained by one of the best Nbest runs of GWO, namely by
the run j, j = 1...Nbest. The value Nbest = 5 is considered in the context of the current analysis. The values
of this performance index have already been presented in Tables 1 and 2 for a fair assessment.
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For the second set of performance indices, viz. the convergence speed cs, the number of evaluations
of the objective functions until the minimum value is found is looked at. This index is presented as
an average value of GWO runs for the first performance index.

The third set of performance indices is introduced with the aim of evaluating the recall of the
search process. This set of indices, referred to as the accuracy rate ar, is defined in terms of the
percentage of standard deviation of the objective function value with respect to the average value:

ar = StDev%(Jmin) = 100StDev(Jmin)/Avg(Jmin),

StDev(Jmin) =

√
1

Nbest−1

Nbest
∑

j=1
(Jmin

(j) − Avg(Jmin))
2
, Jmin ∈ {JkPmin, JTΣmin}.

(56)

GWO has been compared with the other two metaheuristics to solve the same optimization
problems defined in Equation (13). The resulting parameters from [7,9] for the two metaheuristics GSA
and PSO that were considered based on their unsupervised characteristics show similar values to the
ones already presented.

Another set of experimental results is presented in Table 3 as the values of the performance indices
cs and ar. These results show that no algorithm has a clear advantage as the values of these sets of
performance indices are close. However, GWO is the overall best metaheuristics from the point of
view of cs, and PSO is the overall best one as far as ar is concerned. The same conclusion has been
drawn in [21] for a different optimization problem.

Table 3. Average values of cs and ar.

(γkP
)2 cs for GWO ar for GWO cs for PSO ar for PSO cs for GSA ar for GSA

0.006858 1865 0.9279 1933 0.0077 2322 0.8329
0.06858 1237 0.1327 1185 0.0011 1477 0.1191
0.6858 1461 0.2946 1559 0.0070 1685 0.1334

(γTΣ
)2 cs for GWO ar for GWO cs for PSO ar for PSO cs for GSA ar for GSA

0.0066695 1313 0.8496 2169 0.0071 1634 0.7626
0.066695 965 0.1254 1080 0.1326 990 0.1745
0.66695 1529 0.2387 1578 0.0057 1997 0.1080

Typical responses for these fuzzy control systems are presented in [21].

5. Conclusions

This paper has proposed an easily understandable optimization algorithm (GWO) applied to the
optimal tuning of the parameters of T-S PI-FCs, showing good results in comparison with the other
two metaheuristics in the fuzzy control of a family of nonlinear servo systems.

The convergence and stability analysis of GWO indicate that GWO is mainly dedicated to
optimization problems where the variables are strictly positive. However, the operating mechanism of
GWO based on the use of the best three agents makes it useful in other optimization problems as well
without guaranteeing the convergence.

GWO is advantageous over other metaheuristics because of the reduced number of random
parameters and user-selected parameters. This illustrates its potential in solving various optimization
problems with a reduced user experience and fair comparison with similar metaheuristics.

The performance obtained by GWO is encouraging and comparable to PSO and GSA.
Future research will be focused on the performance improvement of GWO by its inclusion in adaptive
and hybrid optimization algorithms.
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