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Abstract: In this paper, we consider the problem of estimating stress-strength reliability for
inverse Weibull lifetime models having the same shape parameters but different scale parameters.
We obtain the maximum likelihood estimator and its asymptotic distribution. Since the classical
estimator doesn’t hold explicit forms, we propose an approximate maximum likelihood estimator.
The asymptotic confidence interval and two bootstrap intervals are obtained. Using the Gibbs
sampling technique, Bayesian estimator and the corresponding credible interval are obtained.
The Metropolis-Hastings algorithm is used to generate random variates. Monte Carlo simulations are
conducted to compare the proposed methods. Analysis of a real dataset is performed.
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1. Introduction

The inference of stress-strength reliability in statistics is an important topic of interest. It has
many applications in practical areas. In the stress-strength modeling, R = P(Y < X) is a measure of
component reliability. If X ≤ Y, the component fails or the component may malfunction, where X is
subject to Y. R can also be considered in electrical and electronic systems. Many authors have studied
its properties for many statistical models including double exponential, Weibull, generalized Pareto and
Lindley distribution (see [1–4]). Classical and Bayesian estimation of reliability in a multicomponent
stress-strength model under a general class of inverse exponentiated distributions was researched
by Ref. [5]. Ref. [6] studied classical and Bayesian estimation of reliability in multicomponent
stress-strength model under Weibull distribution. Furthermore, Refs. [7–9] also considered the
problem of the stress-strength reliability.

The inverse Weibull (IW) distribution has attracted much attention recently. If T denotes
the random variable from Weibull model, we define X as follows X = 1/T, then the random variable
X is said to have inverse Weibull distribution. It is a lifetime probability distribution that can be
used in the reliability engineering discipline. The inverse Weibull distribution has the ability to
model failure rates, which is quite common in reliability and biological studies. The inverse Weibull
model was referred to with many different names like “Frechet-type” ([10]) and “Complementary
Weibull” ([11]). Ref. [11] discussed a graphical plotting technique to settle the suitability of the model.
Ref. [12] presented the IW distribution for modeling reliability data, this model was further discussed
by researching the failures of mechanical components subject to degradation. Ref. [13] proposed
a discrete inverse Weibull distribution and its parameters were estimated. The mixture model of two
IW distributions and its identifiability properties were studied by [14]. For the theoretical analysis of
IW distribution, we can refer to [15]. Ref. [16] proposed the generalized IW distribution and several
properties of this model. For more details on the inverse Weibull distribution, see [17].

Algorithms 2017, 10, 71; doi:10.3390/a10020071 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
http://dx.doi.org/10.3390/a10020071
http://www.mdpi.com/journal/algorithms


Algorithms 2017, 10, 71 2 of 16

In this paper, we focus on the estimation of the stress-strength reliability R = P(Y < X), where X
and Y follow the inverse Weibull distribution. As far as we know, this model has not been previously
studied, although, we believe it plays an important role in reliability analysis.

We obtain the maximum likelihood estimator (MLE), approximate maximum likelihood estimator
(AMLE) and the asymptotic distribution of the estimator. The asymptotic distribution is used to
construct an asymptotic confidence interval. We also present two bootstrap confidence intervals of R.
By using Gibbs sampling technique, we obtain Bayes estimator of R and its corresponding credible
interval. Finally, we present a real data example to illustrate the performance of different methods.

The layout of this paper is organized as follows: in Section 2, we introduce the distribution of
the inverse Weibull. In Section 3, we obtain the MLE of R. In Section 4, we derive the estimator of
R by approximating maximum likelihood equations. Different confidence intervals are presented
in Section 5. In Section 6, Bayesian solutions are introduced. In Section 7, we compare different
proposed methods using Monte Carlo simulation. A numerical example is also provided. Finally,
in Section 8, we conclude the paper.

2. Inverse Weibull Distribution

The probability density function of the known Weibull distribution is given by

f (t; α, θ) =
α

θ
tα−1e−

tα
θ , t > 0, (1)

where α > 0 is the shape parameter and θ > 0 is the scale parameter.
Let T denote the random variable from Weibull model, namely, W(α, θ). Define X as follows:

X =
1
T

. (2)

The random variable X is said to have inverse Weibull distribution, and its probability density
function (pdf) is given by

f (x; α, θ) =
α

θ
x−α−1e−

x−α

θ , x > 0. (3)

The cumulative distribution function(cdf) is given by

F(x) = e−
x−α

θ , x > 0, (4)

where α > 0 and θ > 0. The inverse Weibull distribution will be denoted by IW(α, θ).

3. Maximum Likelihood Estimator of R

In this section, we consider the problem of estimating R = P(Y < X) under the assumption that
X ∼ IW(α, θ1) and Y ∼ IW(α, θ2). Then, it can be easily calculated that

R = P(Y < X) =
θ2

θ1 + θ2
. (5)

To computer the MLE of R, first we obtain the MLEs of θ1 and θ2. Suppose X1, X2, ..., Xn is
a random sample from IW(α, θ1) and Y1, Y2, ..., Ym is a random sample from IW(α, θ2). The joint
likelihood function is:

l(α, θ1, θ2) =
αn+m

θn
1 θm

2
(

n

∏
i=1

x−α−1
i )(

m

∏
j=1

y−α−1
j )e−(∑

n
i=1

x−i α

θ1
+∑m

j=1

y−j α

θ2
).
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Then, the log-likelihood function is

L(α, θ1, θ2) = (m + n) ln α− n ln θ1 −m ln θ2 − (α + 1)

[
n

∑
i=1

ln xi +
m

∑
j=1

ln yj

]

− 1
θ1

n

∑
i=1

x−α
i −

1
θ2

m

∑
j=1

y−α
j .

(6)

α̂, θ̂1 and θ̂2, the MLEs of the parameters α, θ1 and θ2, can be numerically obtained by solving
the following equations:

∂L
∂α

=
m + n

α
−

n

∑
i=1

ln xi −
m

∑
j=1

ln yj +
1
θ1

n

∑
i=1

x−α
i ln xi +

1
θ2

m

∑
j=1

y−α
j ln yj = 0, (7)

∂L
∂θ1

= − n
θ1

+
1
θ2

1

n

∑
i=1

x−α
i = 0, (8)

∂L
∂θ2

= −m
θ2

+
1
θ2

2

m

∑
j=1

y−α
j = 0. (9)

From (8) and (9), we obtain

θ̂1(α) =
1
n

n

∑
i=1

x−α
i and θ̂2(α) =

1
m

m

∑
j=1

y−α
j . (10)

Putting the expressions of θ̂1(α) and θ̂2(α) into (7), we obtain

m + n
α
− 1

α

[
n

∑
i=1

ln xα
i +

m

∑
j=1

ln xα
j

]
+

∑n
i=1 x−α

i ln xi
1
n ∑n

i=1 x−α
i

+
∑m

j=1 y−α
j ln yj

1
m ∑m

j=1 y−α
j

= 0. (11)

Therefore, α̂ can be obtained as a fixed point solution of the non-linear equation of the form

h(α) = α, (12)

where

h(α) =
−m− n + ∑n

i=1 ln xα
i + ∑m

j=1 ln yα
j

∑n
i=1 x−α

i ln xi
1
n ∑n

i=1 x−α
i

+
∑m

j=1 y−α
j ln yj

1
m ∑m

j=1 y−α
j

. (13)

Using a simple iterative procedure h(α(j)) = α(j+1), where α(j) is the j-th iterate of α̂, we stop
the iterative procedure when |α(j) − α(j+1)| is adequately small less than a specified level. Once we
obtain α̂, then θ̂1 and θ̂2 can be calculated from (10). Therefore, we obtain the MLE of R = P(Y < X) as

R̂ =

1
m ∑m

j=1 y−α̂
j

1
n ∑n

i=1 x−α̂
i + 1

m ∑m
j=1 y−α̂

j
. (14)

4. Approximate Maximum Likelihood Estimator of R

The MLEs do not take explicit forms; therefore, we approximate the likelihood equation and
derive explicit estimators of the parameters.
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Since the random variable X follows IW(α, θ), then V = ln X has the extreme value distribution
with pdf as

f (v; µ, σ) = − 1
σ

e
v−µ

σ −e
v−µ

σ , −∞ < v < +∞, (15)

where µ = − 1
α ln θ and σ = − 1

α . The µ and σ are location and scale parameters, respectively. The pdf
and cdf of the standard extreme value distribution can be obtained as

g(v) = e−v−e−v
, G(v) = e−e−v

. (16)

Suppose X(1) < X(2) < ... < X(n) and Y(1) < Y(2) < ... < Y(m) are the ordered Xis and Yjs,

we assume the following notations: T(i) = ln X(i), Z(i) =
T(i)−µ1
−σ , i = 1, ..., n and S(j) = ln Y(j),

W(j) =
S(j)−µ2
−σ , j = 1, ..., m, where µ1 = − 1

α ln θ1, µ2 = − 1
α ln θ2 and σ = − 1

α .
The log-likelihood function of the data T(1), ..., T(n) and S(1), ..., S(m) is

L(µ1, µ2, σ) ∝ −(m + n) ln(−σ) +
n

∑
i=1

ln g(z(i)) +
m

∑
j=1

ln g(w(j)). (17)

Differentiating (17) in regard to µ1, µ2 and σ, the score equations are obtained as

∂L
∂µ1

=
1
σ

n

∑
i=1

g′(z(i))
g(z(i))

= 0, (18)

∂L
∂µ2

=
1
σ

m

∑
j=1

g′(w(j))

g(w(j))
= 0, (19)

∂L
∂σ

= −(m + n)
1
σ
− 1

σ

n

∑
i=1

g′(z(i))
g(z(i))

z(i) −
1
σ

m

∑
j=1

g′(w(j))

g(w(j))
w(j) = 0. (20)

We note that the function h(z(i)) =
g′(z(i))
g(z(i))

makes the score Equation (18) nonlinear and intricate.

Thus, we approximate the function h(z(i)) =
g′(z(i))
g(z(i))

by expanding it in a Taylor series around

ci = E(Z(i)). Furthermore, we also approximate the function h(w(j)) =
g′(w(j))

g(w(j))
by expanding it

in a Taylor series around dj = E(W(j)). From [18], it is known that

G(Z(i))
d
= U(i),

where U(i) is the i-th order statistic from the uniform U(0, 1) distribution. Therefore,

Z(i)
d
= G−1(U(i)),

and

ci = EZ(i) ≈ G−1(EU(i)) = G−1(i/(n + 1)).

We use the following notations, pi =
i

n+1 , pj =
j

m+1 ; therefore, ci = G−1(pi) = − ln(− ln pi),
dj = G−1(pj) = − ln(− ln pj).
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Expanding the function h(z(i)) and h(w(j)) and keeping the first two terms, we have

h(z(i)) =
g′(z(i))
g(z(i))

≈ h(ci) + h′(ci)(z(i) − ci) ≡ ai − biz(i), i = 1, ..., n,

h(w(j)) =
g′(w(j))

g(w(j))
≈ h(dj) + h′(dj)(w(j) − dj) ≡ aj − bjz(j), j = 1, ..., m,

where

ai = h(ci)− cih′(ci) = ln pi(ln(− ln pi)− 1)− 1,

bi = −h′(ci) = − ln pi,

aj = h(dj)− djh′(dj) = ln pj(ln(− ln pj)− 1)− 1,

bj = −h′(dj) = − ln pj.

Therefore, (18)–(20) can be represented as

∂L
∂µ1
≈ 1

σ

n

∑
i=1

(ai − biz(i)) = 0, (21)

∂L
∂µ2
≈ 1

σ

m

∑
j=1

(aj − bjw(j)) = 0, (22)

∂L
∂σ
≈ − 1

σ

(
m + n +

n

∑
i=1

(ai − biz(i))z(i) +
m

∑
j=1

(aj − bjw(j))w(j)

)
= 0. (23)

The estimator of µ1 and µ2 can be obtained from Equations (21) and (22), as

µ̃1 = A1 + B1σ̃, (24)

µ̃2 = A2 + B2σ̃, (25)

where

A1 =
∑n

i=1 biT(i)

∑n
i=1 bi

, A2 =
∑m

j=1 bjS(j)

∑m
j=1 bj

, B1 =
∑n

i=1 ai

∑n
i=1 bi

, B2 =
∑m

j=1 aj

∑m
j=1 bj

. (26)

The estimator of σ < 0 can be determined as the unique solution of the quadratic equation

Cσ2 + Dσ− E = 0, (27)

where

C = (m + n) + B1

n

∑
i=1

ai + B2

m

∑
j=1

aj − B2
1

n

∑
i=1

bi − B2
2

m

∑
j=1

bj = m + n,

D =
n

∑
i=1

ai(A1 − T(i))− 2B1

n

∑
i=1

bi(A1 − T(i)) +
m

∑
j=1

aj(A2 − S(j))− 2B2

m

∑
j=1

bj(A2 − S(j)),

E =
n

∑
i=1

bi(T(i) − A1)
2 +

m

∑
j=1

bj(S(j) − A2)
2 > 0.

Therefore,

σ̃ =
−D−

√
D2 + 4E(m + n)

2(m + n)
, (28)
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Once σ̃ is obtained, µ̃1 and µ̃2 can be derived immediately. Hence, the AMLE of R is given by

R̃ =
θ̃2

θ̃1 + θ̃2
, (29)

where

α̃ = − 1
σ̃

, θ̃1 = e
1
σ̃ (A1+B1σ̃), θ̃2 = e

1
σ̃ (A2+B2σ̃).

5. Confidence Intervals of R

In this section, we present an asymptotic confidence interval (C.I.) of R and two C.I.s based on
the non-parametric bootstrap methods.

5.1. Asymptotic Confidence Interval of R

In this subsection, we derive the asymptotic distribution of the MLE θ̂ = (α̂, θ̂1, θ̂2) and R̂.
Based on the asymptotic distribution of R̂, the corresponding asymptotic confidence interval of R is
obtained. We denote the exact Fisher information matrix of θ = (α, θ1, θ2) as J(θ) = −E(I; θ), where
I = [Iij]i,j=1,2,3, Iij = ∂2L/∂θi∂θj and L is given in (6):

I(θ) =


∂2L
∂α2

∂2L
∂α∂θ1

∂2L
∂α∂θ2

∂2L
∂θ1∂α

∂2L
∂θ2

1

∂2L
∂θ1∂θ2

∂2L
∂θ2∂α

∂2L
∂θ2∂θ1

∂2L
∂θ2

2

 =

 I11 I12 I13

I21 I22 I23

I31 I32 I33

 .

It is easy to see that

I11 = −m + n
α2 − 1

θ1

n

∑
i=1

(ln xi)
2x−α

i −
1
θ2

m

∑
j=1

(ln yj)
2y−α

j ,

I12 = I21 = − 1
θ2

1

n

∑
i=1

x−α
i ln xi,

I13 = I31 = − 1
θ2

2

m

∑
j=1

y−α
j ln yj,

I22 =
n
θ2

1
− 2

θ3
1

n

∑
i=1

x−α
i ,

I33 =
m
θ2

2
− 2

θ3
2

m

∑
j=1

y−α
j ,

I23 = I32 = 0.
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Moreover,

J11 = −E(∂2L
∂α2 ) =

1
α2

[
(m + n)(1 + γ′′(2)) + n(ln θ1)

2 + m(ln θ2)
2 + 2γ′(2)(n ln θ1 + m ln θ2)

]
,

J12 = J21 =
1
θ2

1

n

∑
i=1

E(x−α
i ln xi) = −

n
θ1α

[
ln θ1 + γ′(2)

]
,

J13 = J31 =
1
θ2

2

m

∑
j=1

E(y−α
j ln yj) = −

m
θ2α

[
ln θ2 + γ′(2)

]
,

J22 =
n
θ2

1
,

J33 =
m
θ2

2
,

J23 = J32 = 0,

where γ(α) =
∫ ∞

0 xα−1e−xdx is the Gamma function.

Theorem 1. As n→ ∞ and m→ ∞ and n
m → p, then

(√
m(α̂− α),

√
n(θ̂1 − θ1),

√
m(θ̂2 − θ2)

) d→ N3

(
0, A−1(α, θ1, θ2)

)
,

where

A(α, θ1, θ2) =

 a11 a12 a13

a21 a22 0
a31 0 a33

 ,

and

a11 =
1
α2

[
(1 + p)(1 + γ′′(2)) + p(ln θ1)

2 + (ln θ2)
2 + 2γ′(2)(p ln θ1 + ln θ2)

]
= lim

n,m→∞

J11

m
,

a12 = a21 = −
√

p
θ1α

[
lnθ1 + γ′(2)

]
= lim

n,m→∞

√
p

n
J12,

a13 = a31 = − 1
θ2α

[
lnθ2 + γ′(2)

]
= lim

n,m→∞

1
m

J13,

a22 =
1
θ2

1
= lim

n,m→∞

1
n

J22,

a33 =
1
θ2

2
= lim

n,m→∞

1
m

J33,

a23 = a32 = 0.

Proof. We can use the asymptotic properties of MLEs to prove it.

Theorem 2. As n→ ∞ and m→ ∞ and n
m → p, then

√
n(R̂− R)→ N(0, B),

where

B =
1

uA(θ1 + θ2)4

[
θ2

1(a11a22 − a12a21) + θ2
2(a11a33 − a13a31)− 2θ1θ2a12a13

]
, (30)

and uA = a11a22a33 − a13a22a31 − a12a21a33.
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Proof. By using Theorem 1 and the delta method, we immediately derive the asymptotic distribution
of R̂ as follows:

√
n(R̂− R)→ N(0, B),

where

B = ct
A A−1cA,

with

cA =


∂R
∂α
∂R
∂θ1
∂R
∂θ2

 =
1

(θ1 + θ2)2

 0
−θ2

θ1

 ,

A−1 =
1

uA

 a22a33 −a12a33 −a22a13

−a21a33 a11a33 − a13a31 a21a13

−a22a31 a12a31 a11a22 − a12a21

 ,

and

uA = a11a22a33 − a13a22a31 − a12a21a33.

Therefore,

B = ct
A A−1cA =

1
uA(θ1 + θ2)4

[
(a11a33 − a13a31)θ

2
2 + (a11a22 − a12a21)θ

2
1 − 2θ1θ2a12a13

]
.

We can derive the 100(1− γ)% confidence interval for R using Theorem 2 as(
R̂− z1− γ

2

B̂√
n

, R̂ + z1− γ
2

B̂√
n

)
,

where zr is 100γth percentile of N (0, 1). The confidence interval of R can be derived by using
the estimate of B in (30). To estimate B, we use the MLEs of α, θ1 and θ2 and the following:

â11 =
1
α̂2

[
(1 + p)(1 + γ′′(2)) + p(ln θ̂1)

2 + (ln θ̂2)
2 + 2γ′(2)(p ln θ̂1 + ln θ̂2)

]
,

â12 = â21 = −
√

p

θ̂1α̂

[
ln θ̂1 + γ′(2)

]
,

â13 = â31 = − 1
θ̂2α̂

[
ln θ̂2 + γ′(2)

]
,

â22 =
1
θ̂2

1
,

â33 =
1
θ̂2

2
.

5.2. Bootstrap Confidence Intervals

In this subsection, two confidence intervals based on the non-parametric bootstrap methods are
proposed: (i) the percentile bootstrap method (Boot-p) (see [19]) and (ii) the bootstrap-t method (Boot-t)
(see [20]).
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The algorithms for conducting the confidence intervals of R are presented as follows:

(i) Boot-p method:

Step 1: From the sample x1, x2, ..., xn and y1, y2, ..., ym compute α̂, θ̂1 and θ̂2.
Step 2: Generate a bootstrap sample x∗1 , ..., x∗n using α̂ and θ̂1 and generate a bootstrap sample

y∗1 , ..., y∗m using α̂ and θ̂2. Based on x∗1 , ..., x∗n and y∗1 , ..., y∗m, compute the estimate of R, say R̂∗.
Step 3: Repeat Step 2 NBOOT times.
Step 4: Let H1(x) = P(R̂∗ ≤ x) be the cumulative distribution function(cdf) of R̂∗. Define

R̂Boot−p = H−1
1 (x) for a given x. Thus, the approximate 100(1− z)% C.I. of R is given by:(

R̂Boot−p(
z
2
), R̂Boot−p(1−

z
2
)
)

.

Note: In this paper, R̂∗ can be computed using (14) in Step 2.

(ii) Boot-t method:

Step 1: From the sample x1, ..., xn and y1, ..., ym, compute α̂, θ̂1 and θ̂2.
Step 2: Generate a bootstrap sample x∗1 , ..., x∗n using α̂ and θ̂1 and generate a bootstrap sample

y∗1 , ..., y∗m using α̂ and θ̂2. Based on x∗1 , ..., x∗n and y∗1 , ..., y∗m, compute the estimate of R as R̂∗ and
the statistic is

T∗ =
√

n(R̂∗ − R̂)√
Var(R̂∗)

.

Step 3: Repeat Step 2 NBOOT times.
Step 4: Let H2(x) = P(T∗ ≤ x) be the cumulative distribution function(cdf) of T∗. Define

R̂Boot−t = R̂ + n−
1
2

√
Var(R̂)H−1

2 (x) for a given x. Thus, the approximate 100(1− z)% C.I. of R is
given by: (

R̂Boot−t(
z
2
), R̂Boot−t(1−

z
2
)
)

.

Note: In this paper, Var(R̂∗) can be obtained using Theorem 2 in Step 2.

6. Bayesian Inference on R

In this section, the Bayes estimate of R can be obtained under assumption that the shape parameter
α and scale parameters θ1 and θ2 are random variables. According to the likelihood function in Section 3,
we note that α has a positive exponent and θ1 and θ2 have negative exponents, respectively, so we
can assume that θ1 and θ2 have independent Inverse Gamma pdf and α follows Gamma distribution.
We choose this family such that prior-to-posterior updating yields a posterior that is also in the family:

π(θ1) =
ba1

1
γ(a1)

θ
−(1+a1)
1 e−

b1
θ1 , θ1 > 0, (31)

π(θ2) =
ba2

2
γ(a2)

θ
−(1+a2)
2 e−

b2
θ2 , θ2 > 0, (32)

where all the hyper-parameters ai and bi (i = 1, 2) are assumed to be known and non-negative.
The prior density function of α is denoted as π(α), and we assume that it has

a Gamma (0, 1) distribution.
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We have the likelihood function based on the above assumptions as

L(data|α, θ1, θ2) = αm+nθ−n
1 θ−m

2 (
n

∏
i=1

x−α−1
i )(

m

∏
j=1

y−α−1
j )e−

1
θ1

∑n
i=1 x−α

i e−
1

θ2
∑m

j=1 y−α
j . (33)

The joint density of the data, α, θ1 and θ2 becomes

P(data, α, θ1, θ2) = L(data|α, θ1, θ2)π(α)π(θ1)π(θ2). (34)

Therefore, the joint posterior density of α, θ1 and θ2 given the data is

P(α, θ1, θ2|data) =
P(data, α, θ1, θ2)∫ ∞

0

∫ ∞
0

∫ ∞
0 L(data, α, θ1, θ2)dαdθ1dθ2

. (35)

Since the expression (35) cannot be written in a closed form, the Bayes estimate of R and
the corresponding credible interval of R are derived adopting the Gibbs sampling technique:

P(α, θ1, θ2|data) ∝ αm+n−1θ
−(n+1+a1)
1 θ

−(m+1+a2)
2 (∏n

i=1 x−α−1
i )(∏m

j=1 y−α−1
j )

exp
{
− 1

θ1
(∑n

i=1 x−α
i + b1)− 1

θ2
(∑m

j=1 y−α
j + b2)− α

}
.

The posterior pdfs of α, θ1 and θ2 can be obtained based on the expression P(α, θ1, θ2|data) as
the following:

θ1|α, θ2, data ∼ IG(n + a1, b1 +
n

∑
i=1

x−α
i ),

θ2|α, θ1, data ∼ IG(m + a2, b2 +
m

∑
j=1

y−α
j ),

fα(α|θ1, θ2, data) ∝ αm+n−1
n

∏
i=1

x−α−1
i

m

∏
j=1

y−α−1
j exp

{
− 1

θ1
(

n

∑
i=1

x−α
i + b1)−

1
θ2
(

m

∑
j=1

y−α
j + b2)− α

}
.

The posterior pdf of α is not known. We use the Metropolis–Hastings method with normal
proposal distribution to generate random numbers from this distribution.

The algorithm of Gibbs sampling is described as follows:
Step 1: Start with an initial guess (α(0), θ

(0)
1 , θ

(0)
2 ).

Step 2: Set t = 1.

Step 3: Generate θ
(t)
1 form IG(n + a1, b1 + ∑n

i=1 x−α(t−1)

i ).

Step 4: Generate θ
(t)
2 form IG(m + a2, b2 + ∑m

j=1 y−α(t−1)

j ).

Step 5: Using the Metropolis–Hastings method, generate α(t) from fα(α(t−1)|θ(t)1 , θ
(t)
2 , data).

• Generate a new candidate value δ from N(ln α(t−1), 1).
• Set α′ = exp(δ).

• calculate p = min(1, fα(α′ |θ(t)1 ,θ(t)2 ,data)

fα(α(t−1) |θ(t)1 ,θ(t)2 ,data)
).

• Update α(t) with probability p; otherwise set α(t) = α(t−1).

Step 6: Compute R(t) from (14).
Step 7: Set t = t + 1.
Step 8: Repeat step 3–7, M times.
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The approximate posterior mean of R is

Ê(R|data) =
1
M

M

∑
t=1

R(t), (36)

and the approximate posterior variance of R is

ˆVar(R|data) =
1
M

M

∑
t=1

(R(t) − Ê(R|data))2. (37)

Using the method proposed by [21], we immediately construct the 100(1− γ)% highest posterior
density (HPD) credible interval as

(R[ γ
2 M], R[(1− γ

2 )M]), (38)

where R[ γ
2 M] and R[(1− γ

2 )M] are the [ γ
2 M]-th smallest integer and the [(1− γ

2 )M]-th smallest integer of
{Rt, t = 1, 2, ..., M}.

7. Numerical Simulations and Data Analysis

In this section, we present a Monte Carlo simulation study and a real data set to illustrate different
estimation methods proposed in the preceding sections.

7.1. Numerical Simulations Study

Since we cannot compare the performances of the different methods theoretically, some simulation
results to compare the performances of the different methods are presented. We mainly compute the
biases and mean square errors (MSEs) of the MLEs, AMLEs and Bayes estimates. The asymptotic C.I.
of R and two C.I.s based on the non-parametric bootstrap methods are obtained. We also conduct the
Bayes estimates and HPD credible intervals of R. Here, we assume that a1 = a2 = b1 = b2 = 0.0001.
We consider sample sizes (n, m) = (10, 10), (20, 15), (25, 25), (30, 40), (50, 50). For parameter values,
we assume that θ2 = 1 , θ1 = 0.5, 1, 1.5, 2, 3 and α = 2. All the results are based on the 1000 replications.
For the bootstrap methods, we compute the confidence intervals based on 300 resampling. The Bayes
estimates are based on 1000 sampling, namely, M = 1000. In each case, the nominal level for the C.I.s
or the credible intervals is 0.95.

We also obtain the average biases and MSEs of the MLEs, AMLEs and Bayes estimates over
1000 replications in Table 1. From Table 1, we can find that the Bayes estimates are almost as efficient
as the MLEs and the AMLEs for all sample sizes. Interestingly, in most of the cases, the MSEs of the
Bayes estimate are smaller than the MSEs of the MLEs or AMLEs. We can find that the biases and
MSEs of the MLEs and AMLEs are very close. As the sample size (n, m) increases, the MSEs of the
estimates decrease as expected.

Table 2 reports the results of 95% asymptotic C.I. of R, we also obtain C.I.s based on the bootstrap
methods and the HPD credible interval. We represent the results of the average confidence/credible
lengths and the coverage probabilities. From Table 2, the coverage probabilities reach the nominal
level 95% with the increase of the sample sizes. We observe that the MLE method is the most valid
procedure to obtain the confidence intervals. The AMLEs and the Bayes estimates are the second best
confidence intervals. Interestingly, we find that the HPD credible intervals provide the most highest
coverage probabilities. The Boot-p confidence intervals perform better than Boot-t confidence intervals,
in terms of coverage probabilities. One point we should know is that the bootstrap method depends on
the number of resampling. For small sample sizes (n, m), the coverage probabilities for the MLEs and
AMLEs are less than the nominal levels, with the increase of sample sizes (n, m), they perform well.
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Table 1. Biases and mean square errors(MSEs) of the maximum likelihood estimate (MLE), approximate
maximum likelihood estimate (AMLE) and Bayes estimate of R, when α = 2, θ2 = 1 and for different
values of θ1.

(n, m) θ1 = 0.5 θ1 = 1 θ1 = 1.5 θ1 = 2 θ1 = 3

(10, 10)
0.0919(0.0165) −0.0094(0.0079) −0.0082(0.0108) −0.0223(0.0137) −0.0098(0.0090)
0.0881(0.0158) −0.0088(0.0078) −0.0207(0.0137) −0.0145(0.0143) −0.0054(0.0091)
0.0721(0.0120) −0.0084(0.0065) 0.0018(0.0083) −0.0036(0.0111) 0.0138(0.0078)

(20, 15)
0.0281(0.0078) 0.0095(0.0074) −0.0098(0.0079) −0.0188(0.0091) −0.0127(0.0065)
0.0317(0.0078) 0.0061(0.0075) −0.0068(0.0078) −0.0161(0.0095) −0.0079(0.0065)
0.0207(0.0086) 0.0090(0.0064) 0.0034(0.0079) −0.0056(0.0078) 0.0043(0.0060)

(25, 25)
0.0132(0.0037) 0.0060(0.0025) 0.0025(0.0067) 0.0057(0.0045) −0.0270(0.0049)
0.0132(0.0038) 0.0062(0.0024) 0.0040(0.0068) 0.0047(0.0045) −0.0242(0.0049)
0.0055(0.0036) 0.0061(0.0022) 0.0076(0.0063) 0.0128(0.0041) −0.0165(0.0045)

(30, 40)
−0.0094(0.0014) −0.0039(0.0010) −0.0714(0.0051) −0.0048(0.0024) −0.0510(0.0038)
−0.0092(0.0014) −0.0064(0.0011) −0.0760(0.0051) −0.0060(0.0023) −0.0504(0.0038)
−0.0135(0.0015) −0.0040(0.0009) −0.065(0.0042) 0.0058(0.0023) −0.0302(0.0035)

(50, 50)
−0.0182(0.0005) −0.0087(0.0007) −0.0033(0.0038) 0.0007(0.0017) −0.0035(0.0027)
−0.0192(0.0005) −0.0080(0.0006) −0.0033(0.0039) 0.0012(0.0017) −0.0022(0.0027)
−0.0217(0.0006) −0.0079(0.0006) −0.0008(0.0036) 0.0051(0.0015) 0.0023(0.0025)

In each cell, the average biases are provided and corresponding MSEs are presented within brackets. The first
to the third row corresponds the results for MLEs, AMLEs and Bayes estimates respectively.

Table 2. Average confidence lengths and coverage probabilities.

(n, m) θ1 = 0.5 θ1 = 1 θ1 = 1.5 θ1 = 2 θ1 = 3

(10, 10)

0.3879(0.90) 0.4205(0.91) 0.4074(0.90) 0.3880(0.93) 0.3377(0.89)
0.3894(0.90) 0.4206(0.92) 0.4079(0.90) 0.3907(0.93) 0.3403(0.90)
0.4044(0.89) 0.4526(0.92) 0.4303(0.91) 0.4042(0.92) 0.3469(0.91)
0.5179(0.90) 0.4526(0.90) 0.5425(0.90) 0.5240(0.90) 0.3939(0.90)
0.3997(0.95) 0.4113(0.95) 0.4028(0.93) 0.3931(0.95) 0.3546(0.94)

(20, 15)

0.3201(0.92) 0.3480(0.92) 0.3427(0.92) 0.3176(0.92) 0.2862(0.91)
0.3205(0.93) 0.3480(0.93) 0.3430(0.94) 0.3186(0.93) 0.2873(0.91)
0.3305(0.92) 0.3657(0.93) 0.3577(0.94) 0.3275(0.93) 0.2915(0.92)
0.3810(0.90) 0.4089(0.91) 0.4020(0.94) 0.3814(0.91) 0.3531(0.90)
0.3281(0.95) 0.3427(0.93) 0.3390(0.95) 0.3207(0.96) 0.2953(0.96)

(25, 25)

0.2501(0.93) 0.2729(0.94) 0.2634(0.93) 0.2509(0.96) 0.2244(0.95)
0.2502(0.93) 0.2729(0.95) 0.2637(0.94) 0.2512(0.95) 0.2245(0.95)
0.2510(0.93) 0.2774(0.94) 0.2696(0.92) 0.2555(0.96) 0.2250(0.96)
0.2756(0.93) 0.2961(0.93) 0.2765(0.92) 0.2755(0.93) 0.2354(0.95)
0.2537(0.96) 0.2700(0.96) 0.1884(0.95) 0.2512(0.95) 0.2286(0.96)

(30, 40)

0.2278(0.96) 0.2496(0.94) 0.2437(0.94) 0.2261(0.96) 0.2059(0.95)
0.2279(0.96) 0.2496(0.95) 0.2436(0.95) 0.2263(0.96) 0.2062(0.94)
0.2296(0.95) 0.2522(0.95) 0.2482(0.95) 0.2275(0.97) 0.2050(0.94)
0.2482(0.94) 0.2682(0.94) 0.2588(0.95) 0.2458(0.92) 0.2267(0.93)
0.2284(0.97) 0.2470(0.95) 0.2423(0.97) 0?2272(0.97) 0.2090(0.95)

(50, 50)

0.1788(0.96) 0.1948(0.96) 0.1887(0.95) 0.1780(0.97) 0.1553(0.96)
0.1788(0.96) 0.1948(0.96) 0.1887(0.96) 0.1781(0.96) 0.1554(0.95)
0.1789(0.96) 0.1952(0.95) 0.1890(0.94) 0.0812(0.96) 0.1598(0.96)
0.1848(0.94) 0.2013(0.94) 0.1942(0.92) 0.1845(0.95) 0.1588(0.95)
0.1784(0.97) 0.1935(0.96) 0.1880(0.96) 0.1778(0.96) 0.1620(0.97)

In each cell, the average confidence lengths are provided and the corresponding coverage probabilities are
given within brackets. The first to the fifth row corresponds the results for MLEs, AMLEs, Boot-p method,
Boot-t method and Bayes estimates respectively.
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7.2. Data Analysis

We consider a real data set to illustrate the methods of inference discussed in this article.
These strength data sets in Tables 3 and 4 were analyzed previously by [3,22]. We know that if
the random variable X follows W(α, θ), the random variable T = 1

X has the IW(α, θ). Hence, we
have the following data sets from the inverse Weibull distribution. These data are presented in
Tables 5 and 6. We analyze the data by adding 0.5 from both data sets. We fit the inverse Weibull
models to the two data sets separately. The estimated shape and scale parameters, log-likelihood
values, Kolmogorov-Smirnov (K-S) distances and corresponding p-values are presented in Table 7.
The expected frequencies and the observed frequencies based on the fitted models are also presented
in the Tables 8 and 9. We also obtain the chi-square values of 5.9914 and 5.9915. Obviously, the inverse
Weibull model fits very well to Data Set 1 and Data Set 2.

The K-S values and the corresponding p-values in Table 10 show that the inverse Weibull models
with equal shape parameters fit reasonably well to the modified data sets. It is clear that we cannot
reject the null hypothesis that the two shape parameters are equal.

Table 3. Strength measured in GPA for carbon fibers tested under tension at gauge lengths of 20 mm.

1.312 1.314 1.479 1.552 1.700 1.803 1.861 1.865 1.944 1.958
1.966 1.997 2.006 2.021 2.027 2.055 2.063 2.098 2.140 2.179
2.224 2.240 2.253 2.270 2.272 2.274 2.301 2.301 2.359 2.382
2.382 2.426 2.434 2.435 2.478 2.490 2.511 2.514 2.535 2.554
2.566 2.570 2.586 2.629 2.633 2.642 2.648 2.684 2.697 2.726
2.770 2.773 2.800 2.809 2.818 2.821 2.848 2.880 2.954 3.012
3.067 3.084 3.090 3.096 3.128 3.233 3.433 3.585 3.585

Table 4. Strength measured in GPA for carbon fibers tested under tension at gauge lengths of 10 mm.

1.901 2.132 2.203 2.228 2.257 2.350 2.361 2.396 2.397 2.445
2.454 2.474 2.518 2.522 2.525 2.532 2.575 2.614 2.616 2.618
2.624 2.659 2.675 2.738 2.740 2.856 2.917 2.928 2.937 2.937
2.977 2.996 3.030 3.125 3.139 3.145 3.220 3.223 3.235 3.243
3.264 3.272 3.294 3.332 3.346 3.377 3.408 3.435 3.493 3.501
3.537 3.554 3.562 3.628 3.852 3.871 3.886 3.971 4.024 4.027
4.225 4.395 5.020

Table 5. Transformed Data Set 1.

0.762 0.761 0.676 0.644 0.588 0.555 0.537 0.536 0.514 0.511
0.509 0.501 0.499 0.495 0.493 0.487 0.485 0.477 0.467 0.459
0.450 0.446 0.444 0.441 0.440 0.440 0.435 0.435 0.424 0.420
0.420 0.412 0.411 0.411 0.404 0.402 0.398 0.398 0.394 0.392
0.390 0.389 0.387 0.380 0.380 0.379 0.378 0.373 0.371 0.367
0.361 0.361 0.357 0.356 0.355 0.354 0.351 0.347 0.339 0.332
0.326 0.324 0.324 0.323 0.320 0.309 0.291 0.279 0.279

Table 6. Transformed Data Set 2.

0.526 0.469 0.454 0.449 0.443 0.426 0.424 0.417 0.417 0.409
0.407 0.404 0.397 0.397 0.396 0.395 0.388 0.383 0.382 0.382
0.381 0.376 0.374 0.365 0.365 0.350 0.343 0.342 0.340 0.340
0.336 0.334 0.330 0.320 0.319 0.318 0.311 0.310 0.309 0.308
0.306 0.306 0.304 0.300 0.299 0.296 0.293 0.291 0.286 0.286
0.283 0.281 0.281 0.276 0.260 0.258 0.257 0.252 0.249 0.248
0.237 0.228 0.199
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Table 7. Scale parameter, shape parameter, log-likelihood, K-S distances and p-values of the fitted
inverse Weibull models to Data Sets 1 and 2.

Data Set Scale Parameter Shape Parameter Log-Likelihood K-S p-Value

1 4.9497 12.6152 71.8967 0.0417 0.9997
2 19.0814 13.6228 79.4095 0.0846 0.7572

Table 8. Expected frequencies and observed frequencies for modified Data Set 1 when fitting the inverse
Weibull model.

Intervals Expected Frequencies Observed Frequencies

0.00–0.25 0.03 0
0.25–0.40 32.15 33
0.40–0.50 24.21 24
0.50–0.70 11.23 10
0.70–∞ 1.38 2

Table 9. Expected frequencies and observed frequencies for modified Data Set 2 when fitting the inverse
Weibull model.

Intervals Expected Frequencies Observed Frequencies

0.00–0.19 0.01 0
0.19–0.30 21.06 19
0.30–0.40 29.48 32
0.40–0.50 9.23 11
0.50–∞ 3.22 1;

Table 10. Scale parameter, shape parameter, log-likelihood, K-S distances and p-values of the fitted
inverse Weibull models to Data Sets 1 and 2. Here, we assume that the two shape parameters
are identical.

Data Set Scale Parameter Shape Parameter Log-Likelihood K-S p-Value

1 5.3471 13.0933 71.8159 0.0424 0.9996
2 16.7168 13.0933 79.3215 0.0732 0.8878

Based on Equations (14) and (29), we provide that the MLE and AMLE of R are 0.7576 and 0.7571.
The 95% confidence intervals of MLE, AMLE, Boot-p method and Boot-t method are obtained as
(0.6917, 0.8235), (0.6911, 0.8231), (0.6993, 0.8197), (0.7015, 0.8421), respectively.

The Bayesian estimate of R is also presented based on Equation (36). In the previous sections, we
assume that θ1 and θ2 have independent IG priors, α has a Gamma (0, 1) prior and a1 = a2 = b1 =

b2 = 0.0001. Under certain assumptions, we can conduct the Bayesian estimate of R as 0.7437 and
the 95% HPD credible interval of R can be obtained as (0.6690, 0.8102).

8. Inference on R with All Different Parameters

In the sections above, we assume that the shape parameters are taken to be equal. In order
to expand the paper, in this section, we study the inference of R with all different parameters.
We consider the problem of estimating R = P(Y < X) under the assumption that X ∼ IW(α1, θ1) and
Y ∼ IW(α2, θ2). Then, it can be easily calculated that

R = P(Y < X) = 1−
∫ ∞

0

α2

θ2
y−α2−1e−

y−α2
θ2 e−

y−α1
θ1 dy. (39)
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To computer the MLE of R, we first obtain the MLEs of θ1 and θ2. Suppose X1, X2, · · · , Xn is
a random sample from IW(α1, θ1) and Y1, Y2, ..., Ym is a random sample from IW(α2, θ2). The joint
likelihood function is:

l(α1, θ1, α2, θ2) =
αn

1
θn

1

αm
2

θm
2
(

n

∏
i=1

x−α1−1
i )(

m

∏
j=1

y−α2−1
j )e−∑n

i=1
x
−α1
i
θ1 e−∑m

j=1

y
−α2
j
θ2 .

Then, the log-likelihood function is

L(α1, θ1, α2, θ2) =n ln α1 + m ln α2 − n ln θ1 −m ln θ2 − (α1 + 1)
n

∑
i=1

ln xi − (α2 + 1)
m

∑
j=1

ln yj

− 1
θ1

n

∑
i=1

x−α1
i − 1

θ2

m

∑
j=1

y−α2
j .

(40)

Then, similar to the previous approaches, we can obtain the point estimates and interval estimates
of R by using the MLE, AMLE and Bayesian method. Furthermore, we also can get bootstrap confidence
intervals of R.

9. Conclusions

In this paper, we have addressed the estimator of R = P(Y < X) for the inverse Weibull
distribution. We assume independent inverse Weibull random variables with equal shape parameters
but different scale parameters.

We obtain the maximum likelihood estimator of R and its asymptotic distribution. Note that
MLEs do not have explicit forms, and we propose the approximate maximum likelihood estimator of R.
The confidence interval of R is obtained using the asymptotic distribution. Two bootstrap confidence
intervals are also obtained. By using the Gibbs sampling technique, we present the Bayesian estimator
of R and the corresponding credible interval. The Metropolis–Hastings algorithm with the normal
proposal distribution is used to generate random numbers from a given density function. Monte Carlo
simulations are conducted to compare the proposed methods. Analysis of a real dataset is performed.
In the future, we will consider the MLE, AMLE, asymptotic C.I., bootstrap C.I.s and Bayesian inference
of R = P(Y < X) for inverse Weibull distribution based on incomplete data such as progressively
type-II censored samples.
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