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Abstract: Mobile crowdsourcing networks (MCNs) are a promising method of data collecting and
processing by leveraging the mobile devices’ sensing and computing capabilities. However, because
of the selfish characteristics of the service provider (SP) and mobile users (MUs), crowdsourcing
participants only aim to maximize their own benefits. This paper investigates the incentive mechanism
between the above two parties to create mutual benefits. By modeling MCNs as a labor market,
a contract-based crowdsourcing model with moral hazard is proposed under the asymmetric
information scenario. In order to incentivize the potential MUs to participate in crowdsourcing
tasks, the optimization problem is formulated to maximize the SP’s utility by jointly examining the
crowdsourcing participants’ risk preferences. The impact of crowdsourcing participants’ attitudes
of risks on the incentive mechanism has been studied analytically and experimentally. Numerical
simulation results demonstrate the effectiveness of the proposed contract design scheme for the
crowdsourcing incentive.
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1. Introduction

According to the International Data Corporation, the worldwide smartphone market will reach
1.84 billion units in 2020. With the rapid development of IT technologies, mobile devices are always
equipped with powerful processors, various sensors and large memories [1]. These devices can offer a
novel paradigm to collect data about individuals, human society, and environments. Numerous mobile
crowdsourcing applications have been created, such as OpenStreetMap [2] for constructing an openly
licensed map of the world, CrowdDB [3] for querying and answering, Honeybee [4] for face detection,
SignalGuru [5] for traffic signal detection, and Medusa [6] for environment sensing and data processing.

However, designing an efficient mobile crowdsourcing network (MCN) [7] is considerably
challenging. First, while participating in tasks, mobile devices may consume their resources (i.e., battery,
memory, and time) [1]. Mobile devices in MCNs are always controlled by rational users to maximize
their own benefits. Moreover, the collected data usually contains location information with potential
privacy and security threats. Mobile users (MUs) may not be willing to participate in crowdsourcing
tasks without any extra incentives. Therefore, incentive mechanisms are necessary to achieve the
win–win goal by considering the two parties’ requirements.

Recently, three primary incentive mechanisms have been suggested for MCNs, which are
entertainment-based, service-based, and monetary-based mechanisms [8]. The entertainment-based
incentive mechanism turns crowdsourcing tasks into playable games to attract crowdsourcing
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participants [9,10]. The service-based incentive mechanism attracts each crowdsourcing participant to
make important contributions for crowdsourcing mutually [11–13]. The monetary-based incentive
mechanism offers crowdsourcing participants rewards for their efforts [14–16]. Because the former two
incentive mechanisms need to obtain the domain knowledge, the third incentive mechanism is more
suitable for general crowdsourcing scenarios. Yang et al. [14] proposed two incentive mechanisms to
attract MUs to participate in crowdsourcing tasks. Zhang et al. [15] designed three online incentive
mechanisms for mobile crowdsourcing sensing. Zhao et al. [16] proposed the online incentive
mechanism for crowdsourcing tasks with a budget constraint. However, most existing works have
assumed that crowdsourcing participants will not deviate from the incentive mechanism.

Unfortunately, because of users’ mobility and mobile wireless environments’ dynamicity,
certain crowdsourcing information (i.e., crowdsourcing efforts of MUs) may not be available to
the service provider (SP), which causes network information asymmetry between the MUs and the SP.
The SP may not monitor the MUs’ crowdsourcing action in real-time, and the MUs may deviate
from the incentive mechanism. To tackle this problem, we propose a contract-based incentive
mechanism. Contract theory [17] investigates how economic parties make decisions under uncertain
conditions or make contracts with asymmetric information. Recently, it has been successfully applied to
many practical problems, for example, cooperative spectrum trading [18], mobile crowdsourcing [19],
and cooperative relay [20–22]. Duan and Lin et al. considered the cooperative incentive with
resource-exchange spectrum trading [18]. Ho et al. investigated the adaptive contract design for
crowdsourcing markets [19]. Zhang et al. proposed the incentive mechanism approach to solve
the optimal compensation package with moral hazard [23]. Our prior works developed an efficient
contract model for adverse selection in the presence of the wireless nodes’ hidden relay information [20]
and moral hazard problems [21] caused by the wireless nodes’ hidden relay actions. However, none
of these considered the risk attitudes of crowdsourcing participants (i.e., an SP, or mobile devices).
Most existing works have assumed that the MUs are risk-neutral. Practically, some MUs may want
to “gamble” too much by crowdsourcing sensing, and the crowdsourcing participants’ behavioral
features will be influenced by their attitudes on risk.

Inspired by these existing works, this work investigates the crowdsourcing incentive mechanism
in the presence of asymmetric information with risk attitudes. A contract-based incentive model is
proposed to obtain the effort-incentive objective. The bonus ratio related to the MUs’ performance is
introduced to motivate the MUs to work effectively. The optimal contract designs are investigated
by jointly examining both the SP’s and MUs’ risk preferences. A moral hazard model is proposed to
incentivize the MUs to participate in crowdsourcing tasks effectively with asymmetric information.
The optimization incentive problem is formulated to maximize the SP’s expected utility subject to
the feasible conditions of the MUs. The impact of the crowdsourcing participants’ risk preferences
on the incentive mechanism has been studied analytically and experimentally. Simulations have
demonstrated the proposed incentive mechanism’s performance.

The rest of the paper is organized as follows. Section 2 introduces the system model for the
crowdsourcing incentive mechanism. The optimal contract design with risk attitudes is proposed and
discussed in Sections 3 and 4, respectively. Section 5 demonstrates the performance evaluation results,
and Section 6 concludes this work.

2. System Model for Crowdsourcing Incentive Mechanism

As shown in Figure 1, a MCN includes three basic entities: an SP, end users, and N MUs. End
users first send their requests to the SP for help. Then, the SP divides the service requests into several
small crowdsourcing tasks, which are published on the service platform. The MUs are recruited for
crowdsourcing tasks by the SP. Once these crowdsourcing tasks are finished, the SP provides the end
users with the final service.
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Figure 1. Mobile crowdsourcing network (MCN).

However, because of the selfish characteristics of the SP and MUs, crowdsourcing participants
only aim to maximize their own benefits. This paper investigates the incentive mechanism between
the above two parties to create mutual benefits. Mobile crowdsourcing is modeled as a labor market.
The SP, as the employer, offers the contract to recruit certain MUs for crowdsourcing. The contract
is composed of a set of different items regarding the various combinations of the basic wage and
performance bonus. Each MU, as an employee, chooses one item from the contract when participating in
crowdsourcing tasks.

Moreover, in this context, to characterize the behaviour of crowdsourcing participants regarding
their willingness to participate in crowdsourcing tasks, the participants’ behaviour can be categorized
as risk-averse or risk-neutral [24]. A risk-averse MU does not want to obtain too great a profit by
participating in crowdsourcing tasks. A risk-averse SP appreciates higher profit but demands a basic
level of service, whereas a risk-neutral participant is an entity whose objective is only to maximize the
SP’s profit.

2.1. Utility of Mobile Users

Suppose that the ith MU offers its crowdsourcing effort ei to obtain the reward from the SP. The SP
can achieve profit πi with the help of the ith MU. As a result of some measurement errors, the SP’s
achieved profit may be slightly different from the actual effort exerted by the MU. Therefore, we
assume that the SP’s actual achieved profit πi is a noisy signal, which is given as

πi = θiei + δ (1)

where θi is the profit per unit crowdsourcing effort, and δ is a normally distributed random variable
with δ ∼ N (0, σ2).

The more the crowdsourcing resources the MUs consume, the greater the crowdsourcing cost
the MUs pay. Moreover, we assume that Ci(ei) grows more rapidly in the large crowdsourcing effort
than it does in the small crowdsourcing effort. Therefore, Ci

′(ei) > 0 and Ci
′′(ei) > 0. For simplicity,

the crowdsourcing cost Ci(ei) of the ith MU is assumed to be quadratic:

Ci(ei) = cie2
i /2 (2)
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where ci is the ith MU’s crowdsourcing cost coefficient, which can describe the ith MU’s crowdsourcing
cost information (i.e., battery, memory, and computing power). We note that different crowdsourcing
scenarios may have a different crowdsourcing cost.

We assume that the SP offers the payment WMi to the ith MU in the linear form [25] defined as

WMi = αi + βiπi −
ci
2

e2
i (3)

where αi is the ith MU’s basic wage, and βi ∈ [0, 1] is the bonus coefficient related to the crowdsourcing
performance. Considering the different crowdsourcing actions, MUs may obtain different bonuses.

The payment WMi is approximately normally distributed with means

E
[
WMi

]
= αi + βiθiei −

ci
2

e2
i (4)

and variances
Var
[
WMi

]
= β2

i σ2 (5)

In this section, we assume that each MU has a constant absolute risk-averse (CARA) preference;
then, the ith MU’s negative exponential utility is defined as

u
(
WMi

)
= −e−ηMWMi (6)

where ηM > 0 is the ith MU’s coefficient of absolute risk aversion (ηM = −u′′
(
WMi

)
/u′

(
WMi

)
).

A larger value of ηM > 0 means that the MU has less incentive to participate in crowdsourcing tasks;
ηM = 0 means that the MU is risk-neutral. A risk-neutral MU’s decision is not affected by the degree
of crowdsourcing uncertainty.

Then, the ith MU’s expected utility u
(
WMi

)
can be written as

E
[
u
(
WMi

)]
= E

[
−e−ηMWMi

]
= −1√

2πVar[WMi ]

∫ ∞
−∞ e

−
W2

Mi
−2E

[
WMi

]
WMi

+(E
[
WMi

]
)
2
+2Var

[
WMi

]
ηMWMi

2Var
[
WMi

]
dWMi

= −1√
2πVar[WMi ]

· e
1
2 Var[WMi ]η

2
M−E[WMi ]ηM ·

∫ ∞
−∞ e

−
(

WMi
−E
[
WMi

]
+Var

[
WMi

]
ηM

)2

2Var
[
WMi

]
dWMi

= −e−ηM[E[WMi ]−
1
2 Var[WMi ]ηM],

−e−ηM[αi+βiθiei−
ci
2 e2

i −
ηM

2 β2
i σ2]

(7)

2.2. Utility of Service Provider

Considering the MUs’ crowdsourcing effort ei and the SP’s reward allocation WMi , the SP’s total
utility can be written as

WS =
N

∑
i=1

[(1− βi)πi − αi] (8)

with means

E [WS] =
N

∑
i=1

[(1− βi) θiei − αi] (9)

and variances

Var [WS] =
N

∑
i=1

(1− βi)
2σ2 (10)
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Then, similarly to the MUs, the SP’s CARA risk preferences are also considered. Thus, the SP’s
expected utility is represented as

E [u (WS)] = E
[
−e−ηSWS

]
= −e−ηS[E[WS]− 1

2 Var [WS]ηS] (11)

where ηS represents the SP’s absolute risk-averse degree. The larger ηS is, the more the SP is afraid of
risk. When ηS = 0, the SP is risk-neutral.

2.3. Problem Formulation

Considering the MUs’ selfishness and the limited resources, the MUs may intend to shirk or
act less carefully in crowdsourcing tasks. For example, because crowdsourcing tasks consume the
MUs’ resources (i.e., battery, memory, and time), the MUs may like to obtain their benefits from
the SP to maximize their own utilities with little crowdsourcing effort. Thus, the MUs may not
take the full responsibilities for their tasks. Because of the asymmetry of network information, the
MUs’ crowdsourcing actions are unobservable to the SP, which leads to the moral hazard problem.
This moral hazard problem influences the crowdsourcing’s performance. Therefore, the SP needs to
design a contract-based incentive mechanism to motivate the MUs to participate in crowdsourcing
tasks efficiently and credibly.

As shown in Figure 2, when the SP designs the optimal contract, the SP broadcasts a set of contract
items to the potential MUs. Then, after receiving the contract, the MUs willing to accept certain contract
items inform the SP of their choices. Next, after receiving the MUs’ confirmations, the SP informs the
employed MUs’ crowdsourcing tasks, and the MUs help to participate in crowdsourcing sensing or
computing. Finally, after receiving the data from the MUs, the SP checks for the required information.
If the MUs succeed in the crowdsourcing tasks, the SP rewards the MUs according to their contracts.
However, if the information fails to meet the requirement, the employed MUs obtain no reward.
Because this requires limited interaction with potential MUs, this contract-based incentive mechanism
is simple to implement, and can effectively reduce communication and computation overhead.

Service providerMobile users

offers a task with a contract

{ }
i i
, !

accepts or refuses the contract

exerts an effort or not

task completed or not

the contract is executed

Figure 2. Contract-based incentive mechanism for mobile crowdsourcing.

3. Contract-Based Crowdsourcing Incentive Mechanism

As a result of information asymmetry, the SP may not obtain the MUs’ exact crowdsourcing
efforts after contracting between the SP and the MUs. Therefore, the designed contract should ensure
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that each MU selects the optimal effort e∗i to maximize its own utility. Then, the following incentive
compatibility (IC) constraint should be satisfied:

(IC) max
ei≥0

E
[
u
(
WMi

)]
(12)

We let fMi = αi + βiθiei− ci
2 e2

i −
ηM
2 β2

i σ2; then, the ith MU’s expected utility u
(
WMi

)
in Equation (7)

can be rewritten as
E
[
u
(
WMi

)]
= −e−ηM fMi (13)

Because
∂E[u(WMi)]

∂ fMi
= ηMe−ηM fMi > 0, the IC constraint in Equation (12) can be simplified as

(IC) max
ei≥0

fMi = αi + βiθiei −
ci
2

e2
i −

ηM
2

β2
i σ2 (14)

Then, in order to ensure that the utility each MU has received is no lower than its retained utility
Ū, the following individually rational (IR) constraint should be satisfied:

(IR) αi + βiθiei −
ci
2

e2
i −

ηM
2

β2
i σ2 ≥ Ū, 1 ≤ i ≤ N (15)

Thus, on the basis of the above IC and IR constraints, the optimal contract is designed to achieve
the maximum expected utility of the SP, which can be written as

max
{{αi,βi}≥0}

E [u (WS)],

s.t. (IC) max
ei≥0

αi + βiθiei − ci
2 e2

i −
ηM
2 β2

i σ2,

(IR) αi + βiθiei − ci
2 e2

i −
ηM
2 β2

i σ2 ≥ Ū, 1 ≤ i ≤ N.

(16)

Similarly to the case of MUs, we let

fS = E [WS]−
Var [WS]

2
ηS =

N

∑
i=1

[
(1− βi) θiei − αi −

ηS
2

σ2(1− βi)
2
]

(17)

Then, we simplify the SP’s expected utility in Equation (11) to

E [u (WS)] = −e−ηS fS (18)

Because ∂E[u(WS)]
∂ fS

= ηSe−ηS fS > 0, we simplify the SP’s optimization problem to

max
{{αi,βi}≥0}

fS =
N
∑

i=1

[
(1− βi) θiei − αi −

ηS
2 σ2(1− βi)

2
]
,

s.t. (IC) max
ei≥0

αi + βiθiei − ci
2 e2

i −
ηM
2 β2

i σ2,

(IR) αi + βiθiei − ci
2 e2

i −
ηM
2 β2

i σ2 ≥ Ū, 1 ≤ i ≤ N.

(19)

From the first IC constraint, we have e∗i = βiθi
ci

. Then, the optimal effort e∗i (βi) can be obtained
from the above formula.

Because the SP’s expected utility in Equation (16) is decreasing in αi, the SP can obtain its
maximum utility by decreasing αi until αi + βiθiei − ci

2 e2
i −

ηM
2 β2

i σ2 = Ū.
Accordingly, we can further simplify the SP’s utility maximization problem in Equation (19) to

max
{{βi}≥0}

N

∑
i=1

[
θ2

i βi

ci
−U−

β2
i θ2

i
2ci
− ηM

2
β2

i σ2 − ηS
2

σ2(βi − 1)2

]
(20)
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We note that the SP’s optimization problem with 2N variables (αi, βi) in Equation (19) is simplified
to the variables βi in Equation (20). Any local optimal solution (denoted as β̂i) to the problem of
Equation (19) satisfies

d fs

dβi

∣∣∣∣
βi=β̂i

=
θ2

i
ci
−

θ2
i

ci
β̂i − ηMσ2β̂i − ηSσ2 (β̂i − 1

)
= 0 (21)

Then, the second-order derivative of the problem of Equation (19) is

d2 fs

dβi
2

∣∣∣∣∣
βi=β̂i

= −
θ2

i
ci
− ηMσ2 − ηSσ2 < 0 (22)

Thus, the optimal solution to Equation (19) is achieved as

β∗i =
θ2

i + ηSσ2ci

θ2
i + ηMσ2ci + ηSσ2ci

(23)

Therefore, Table 1 summarizes the optimal contract settings and the two parties’ optimal
expected utilities.

Table 1. Optimal contract design parameters and settings.

Parameters Settings

β∗i
θ2

i +ηSσ2ci

θ2
i +ηMσ2ci+ηSσ2ci

e∗i
β∗i θi

ci

α∗i Ū − β∗i θie∗i +
ci
2 (e
∗
i )

2 +
ηM
2 (β∗i )

2σ2

E [u (WMi )]
∗ −e−ηMŪ

f ∗S
N
∑

i=1

[(
1− β∗i

)
θie∗i − α∗i −

ηS
2 σ2(1− β∗i

)2
]

E [WS]
∗ −e−ηS f ∗S

4. Analysis and Discussion

In this section, the impact of the crowdsourcing participants’ risk preferences on the incentive
mechanism is illustrated.

First, the optimal incentive mechanism of the risk-averse MUs is considered with ηM 6= 0.
From Equation (23), we have

∂β∗i
∂ηM

=
−σ2ci(θ

2
i + ηSσ2ci)

(θ2
i + ηMσ2ci + ηSσ2ci)

2 < 0 (24)

∂β∗i
∂ηS

=
ηMσ4c2

i

(θ2
i + ηMσ2ci + ηSσ2ci)

2 > 0 (25)

and
∂β∗i
∂ci

=
−ηMσ2θ2

i

(θ2
i + ηMσ2ci + ηSσ2ci)

2 < 0 (26)

Thus, from the above formulas, we have that the ith MU’s optimal bonus coefficient β∗i is
decreasing in its absolute risk-averse coefficient ηM and in its crowdsourcing cost, andis increasing
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in the SP’s absolute risk-averse coefficient ηS. Given the SP’s absolute risk-averse coefficient ηS, an
increasing ηM can reduce the MU’s optimal bonus coefficient. The greater the SP’s absolute risk-averse
coefficient ηS, the greater the risk transferred to the MUs, and the greater the MU’s optimal bonus
coefficient β∗i . Therefore, the MUs need to take a greater risk to obtain more utility.

Then, because e∗i =
β∗i θi

ci
, from the above illustrations, we can also have that the ith MU’s optimal

effort e∗i is decreasing in its absolute risk-averse coefficient ηM and increasing in the SP’s absolute
risk-averse coefficient ηS. The greater the MU’s absolute risk-averse coefficient ηM, the lesser the value
its crowdsourcing risk will take, and the lower the expected level of its effort.

In particular, the optimal incentive mechanism of the risk-neutral MUs is considered with ηM = 0.

From Equation (23), we have β∗i = 1, e∗i = θi
ci

and f ∗S =
N
∑

i=1

[
θ2

i
2ci
− Ū

]
. We notice that the optimal

expected utility of the SP has no relation to the MUs’ crowdsourcing effort. Furthermore, the greater
the MU’s crowdsourcing cost, the lower the level of its effort.

5. Numerical Results

Numerical simulation results are presented to assess the proposed mechanism.
Figure 3 demonstrates the MUs’ optimal basic wage α∗i , bonus coefficient β∗i and crowdsourcing

effort e∗i with the same crowdsourcing cost ci. We notice that as θi becomes large, the ith MU’s profit
per unit crowdsourcing effort increases; thus the optimal crowdsourcing effort e∗i increases and the
SP may allocate a greater bonus β∗i to attract the MUs to offer enough crowdsourcing effort. Then,
because β∗i increases, the SP only needs to offer a lesser basic wage α∗i to the MUs for enough help.

1 2 3 4 5
0

0.02

0.04

α
*

MU

1 2 3 4 5
0

0.5

β
*

MU

1 2 3 4 5
0

0.5

e
*

MU

1 2 3 4 5
0

0.2

0.4

θ

MU

Figure 3. Mobile users’ (MUs’) optimal contract design with various θi for fixed ηM = 0.3, ηS = 0.3,
σ2 = 1, ci = 0.4, and Ū = 0.2.

Figure 4 shows the performance of the crowdsourcing effort-incentive with three MUs.
The simulation parameter setting is the same as for Figure 3. Each MU obtains its maximum
utility by selecting the optimal crowdsourcing effort e∗i . Thus, in the proposed optimal contract,
the SP can attract the MUs to take full responsibility for their crowdsourcing tasks. The proposed
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contract-based incentive mechanism breaks information asymmetry and attracts the MUs to make
maximum crowdsourcing efforts.

MUs' optimal effort e*
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Figure 4. Mobile users’ (MUs’) optimal utility with different types of effort-incentive design.

Figure 5 presents the MUs’ optimal basic wage α∗i , bonus coefficient β∗i and crowdsourcing
effort e∗i with the same crowdsourcing profit θi. As shown in Figure 4, the MUs’ optimal bonus
coefficient β∗i and the crowdsourcing effort e∗i increase in the crowdsourcing cost coefficient ci. The MUs’
optimal basic wage α∗i increases in the crowdsourcing cost coefficient ci. As ci becomes large, the ith

MU’s crowdsourcing cost increases; thus the SP may offer a greater basic wage α∗i to obtain enough
crowdsourcing effort.

Figure 6 shows the MUs’ optimal bonus coefficient β∗i with the various SP’s risk-averse degree
ηS and MUs’ risk-averse degree ηM; θi is the same as that in Figure 3. We notice that the ith MU’s
optimal bonus coefficient β∗i decreases in its absolute risk-averse coefficient ηM and increases in the
SP’s absolute risk-averse coefficient ηS. Similar results can be obtained for cases of the MUs’ optimal
effort e∗i , which verifies Equations (24) and (26). Figure 7 illustrates the SP’s optimal expected utility
with the SP’s variable risk-averse degree ηS and MUs’ risk-averse degree ηM. As the SP’s variable risk
averse degree ηS and the MUs’ risk-averse degree ηM become large, the SP’s optimal expected utility
decreases. The greater the MUs’ risk-averse degree ηM, the lesser the SP’s optimal expected utility.
Thus, in order to obtain more utilities, the SP needs to choose MUs with a lesser risk-averse degree.

Finally, by introducing another two mechanisms, we evaluate the proposed incentive mechanism.
The first incentive mechanism is the contract-based mechanism in the presence of symmetric
information (i.e., the SP obtains information about the MUs’ crowdsourcing efforts). The second
incentive mechanism is a linear pricing scheme with αi = 0. In this linear pricing mechanism, the SP
only specifies the performance-based bonus coefficient βi, without the basic wage.

Figure 8 presents the SP’s optimal expected utility with the different incentive mechanisms.
In these three incentive mechanisms, the contract-based mechanism under the symmetric information
scenario obtains the maximum expected utility of the SP, which is considered to be the upper bound on
the SP’s expected utility. Compared to the other two incentive mechanisms, the SP with the proposed
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contract scheme always achieves more utility than that with αi = 0. Moreover, as ηS increases, the SP
becomes much more afraid of risk, and thus the SP obtains less utility.
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Figure 5. Mobile users’ (MUs’) optimal contract design with the crowdsourcing cost coefficient ci for
fixed ηM = 0.3, ηS = 0.3, σ2 = 1, θi = 0.2, and Ū = 0.
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Figure 6. Mobile users’ (MUs’) optimal bonus coefficient β∗ for fixed σ2 = 1 and Ū = 0.
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Figure 7. Service provider’s (SP’s) optimal expected utility for fixed σ2 = 0.5 and Ū = 0.
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Figure 8. Comparison between the service provider’s (SP’s) optimal expected utility with the various
incentive mechanisms for fixed ηM = 0.3, σ2 = 0.5, ci = 0.1, and Ū = 0.

6. Conclusions

In this paper, we investigate a novel contract-based crowdsourcing incentive mechanism
between the SP and the MUs. Because of the selfish characteristics of the SP and the MUs, the
incentive mechanism is proposed economically to achieve the win–win goal by considering the two
parties’ requirements. Moreover, considering both the SP’s and MUs’ risk preferences, the optimal
contract design is investigated under an asymmetric information scenario. A moral-hazard contract
model is discussed to attract the MUs to take full responsibility for their tasks. The impact of the
crowdsourcing participants’ risk preferences on the incentive mechanism has been studied analytically
and experimentally. Simulation results show that the proposed contract-based incentive mechanism
can effectively improve the performance of crowdsourcing.
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