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Abstract: Clustering is an unsupervised machine learning and pattern recognition method. In general,
in addition to revealing hidden groups of similar observations and clusters, their number needs to
be determined. Internal clustering validation indices estimate this number without any external
information. The purpose of this article is to evaluate, empirically, characteristics of a representative
set of internal clustering validation indices with many datasets. The prototype-based clustering
framework includes multiple, classical and robust, statistical estimates of cluster location so that the
overall setting of the paper is novel. General observations on the quality of validation indices and on
the behavior of different variants of clustering algorithms will be given.

Keywords: prototype-based clustering; clustering validation index; robust statistics

1. Introduction

Clustering aims to partition a given dataset (a set of observations) into groups (clusters) that are
separated from other groups in a twofold manner: observations within a cluster are similar to each other
and dissimilar to observations in other clusters [1]. Diverse sets of clustering approaches have been
developed over the years, e.g., density-based, probabilistic, grid-based, and spectral clustering [2].
However, the two most common groups of crisp (here, we do not consider fuzzy clustering [3])
clustering algorithms are partitional and hierarchical clustering [4]. Hierarchical clustering constructs
a tree structure from data to present layers of clustering results, but because of the pairwise distance
matrix requirement, the basic form of the method is not scalable to a large volume of data [5]. Moreover,
many clustering algorithms, including hierarchical clustering, can produce clusters of arbitrary shapes
in the data space, which might be difficult to interpret for knowledge discovery [6].

The two aims of clustering for K groups in data are approached in the partitional algorithms,
most prominently in the classical K-means [4,7], by using two main phases: initial generation of K
prototypes and local refinement of the initial prototypes. The initial prototypes should be separated
from each other [4,8]. Lately, the K-means++ algorithm [9], where the random initialization is
based on a density function favoring distinct prototypes, has become the most popular variant to
initialize the K-means-type of an algorithm. Because the prototype refinement acts locally, we need
a globalization strategy to explore the search space. This can be accomplished with repeated restarts
through initial prototype regeneration [10] or by using evolutionary approaches with a population of
different candidate solutions [11].

One can utilize different error (score) functions in partitional clustering algorithms [12]. Mean
is the statistical estimate of the cluster prototype in K-means and the clustering error is measured
with the least-squares residual. This implies the assumption of spherically symmetric, normally
distributed data with Gaussian noise. These conditions are relaxed when the cluster prototype is
replaced, e.g., with a robust location estimate [13–15]. The two simplest robust estimates of location
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are median and spatial median, whose underlying spherically symmetric distributions are uniform
and Laplace distributions, respectively. If the type of data is discrete, for instance, an integer variable
with uniform quantization error [16], then the Gaussian assumption is not valid. Median, given by
the middle value of the ordered univariate sample (unique only for odd numbers of points [17]), can,
like the mean, be estimated from the marginal distribution being inherently univariate. The spatial
median, on the other hand, is truly a multivariate, orthogonally equivariant location estimate [18].
These location estimates and their intrinsic properties are illustrated and more thoroughly discussed
in [17,19]. The median and spatial median have many attractive statistical properties, especially
since their so-called breakdown point is 0.5, i.e., they can handle up to 50% of contaminated and
erroneous data.

In a typical unsupervised scenario, one does not possess any prior knowledge of the number
of clusters K. Finding the best possible representation of data with K groups is difficult because the
number of all possible groupings is the sum of Stirling numbers of the second kind [19]. Defining
validation measures for clustering results has been, therefore, a challenging problem that different
approaches have tried to overcome [20–25]. The quality of a clustering result can be measured with
a Clustering Validation Index (CVI). The aim of a CVI is to estimate the most appropriate K based
on the compactness and separation of the clusters. Validation indices can be divided into three
categories [26]: internal, external, and relative. An external validation index uses prior knowledge,
an internal index is based on information from the data only, and in a relative CVI, multiple clustering
results are compared. A comprehensive review of clustering validation techniques up to 2001 was
provided in [27]. There exists also alternative approaches for determining the number of clusters,
e.g., by measuring the stability of the clustering method [28] or using multiobjective evolutionary
approaches [11,29].

In this paper, we continue the previous work reported in [30] by focusing on a comparison of
the seven best internal CVIs, as identified in [30] and augmented by [22]. The earlier comparisons,
typically reported when suggesting novel CVIs, only include K-means as the partitional clustering
algorithm [22,30–36]. Here, this treatment is generalized by using multiple statistical estimates as a
cluster prototype and to define the clustering error, under the currently most common initialization
strategy as proposed in [9] (which is also generalized). Note that prototype-based clustering can also
be conducted with an incremental fashion [37–39]. However, here were restrict ourselves on the batch
versions of the algorithms, which can be guaranteed to converge in a finite number of iterations (see
Section 2.1). The definitions of the considered validation indices are also extended and empirically
compared with K-means, K-medians, and K-spatialmedians (using spatial median as a prototype
estimate) clustering results for a large pool of benchmark datasets. According to our knowledge,
there exists no previous work that compares CVIs with multiple different distance metrics. Our aim is
to sample the main characteristics of the indices considered and to identify what indices most reliably
refer to ground truth values of the benchmark datasets. Note that by their construction, all CVIs
considered here can also be used to suggest the number of clusters in hierarchical clustering.

The structure of the article is as follows. After this introductory section, we describe generalized
prototype-based clustering, discuss its convergence, and also present the generalized versions of
cluster initialization and indices in Section 2. Our experimental setup is described in Section 3, and the
results are given and discussed in Section 4. Finally, conclusions are drawn in Section 5.

2. Methods

In this section, we introduce and analyze all the necessary formulations for clustering and cluster
validation indices.

2.1. General Prototype-Based Clustering and Its Convergence

As described above, prototype-based partitional clustering algorithms comprise two main phases.
First, they start with an initial partition of the data, and second, the quality of this partition is
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improved by a local search algorithm during the search phase. The initial partition can be obtained
based on many different principles [4,8], but a common strategy is to use distinct prototypes [9].
Most typically, the globalization of the whole algorithm is based on random initialization with several
regenerations [10]. Then, the best solution with the smallest clustering error is chosen as the final result.
The iterative relocation algorithm skeleton for prototype-based partitional clustering is presented
in Algorithm 1 [12,16].

Algorithm 1: Prototype-based partitional clustering algorithm.
Input: Dataset and the number of clusters K.
Output: Partition of dataset into K disjoint groups.
Select K points as the initial prototypes;
repeat

1. Assign individual observation to the closest prototype;
2. Recompute the prototype with the assigned observations;

until the partition does not change;

As stated in [17] (see also [19]), the different location estimates for a cluster prototype arise from
different lp-norms to the q-th power as the distance measure and the corresponding clustering error
function; mean refers to ‖ · ‖2

2 (p = q = 2), median is characterized by ‖ · ‖1
1 (p = q = 1), and the

spatial median is given by ‖ · ‖1
2 (p = 2, q = 1). Hence, generally the repetition of Steps 1 and 2 from

the search phase of Algorithm 1 locally minimize the following clustering error criterion:

J ({bk}) =
K

∑
k=1

∑
xi∈Ck

‖xi − bk‖
q
p. (1)

Here {bk}, k = 1, . . . , K denote the prototype vectors to be determined and {xi}N
i=1, xi ∈ Rn refers

to the given set of n-dimensional observations. The interpretation of (1) is that each observation xi is
assigned to cluster k with the closest prototype on the lp-norm:

Ck = {1 ≤ k ≤ K | ‖xi − bk‖p ≤ ‖xi − bk′‖p ∀k 6= k′}.

Hence, as noted in [40], another more compact way of formalizing the clustering error criterion
reads as

J ({bk}) =
N

∑
i=1

min
k=1,...,K

‖xi − bk‖
q
p, (2)

which more clearly shows the nonsmoothness of the clustering problem, because the min-operator is
not classically differentiable (see [17] and references therein). This observation gives rise to a different
set of clustering algorithms that are based on nonsmooth optimization solvers [41].

However, despite the nonsmoothness of the error function, it can be shown that the search phase
of Algorithm 1 decreases the clustering error, ensuring local convergence of the algorithm in finite
many steps. We formalize this in the next proposition. The proof here is a slight modification and
simplification of the more general treatment in [19], Theorem 5.3.1, along the lines of the convergence
analyses in different problem domains, as given in [42–44].

Proposition 1. The repeated Steps 1 and 2 of Algorithm 1 decrease the clustering error function (2).
This guarantees convergence of the algorithm in finite many steps.

Proof. Let us denote by superscript t the current iterates of the prototypes {bt
k} with the initial

candidates for t = 0. If assignments to clusters and to the closest cluster prototypes do not change,
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we are done, so let us assume that the repeated step 1 in Algorithm 1 has identified at least one
1 ≤ j ≤ N such that, for xj ∈ Ct

k, there exists a better prototype candidate:

‖xj − bt
k‖p > ‖xj − bt

k′‖p for some k′ 6= k. (3)

Then, a direct computation, using monotonicity of the function ‖ · ‖q for q = {1, 2} and reflecting
the change in the assignments, gives

J ({bt
k}) =

K

∑
k=1

∑
xi∈Ct

k

‖xi − bt
k‖

q
p =

K

∑
k=1

 ∑
xi∈Ct

k
i 6=j

‖xi − bt
k‖

q
p + ‖xj − bt

k‖
q
p



>
K

∑
k=1

 ∑
xi∈Ct

k
i 6=j

‖xi − bt
k‖

q
p + ‖xj − bt

k′‖
q
p

 =
K

∑
k=1

∑
xi∈Ct+1

k

‖xi − bt
k‖

q
p (4)

≥
K

∑
k=1

∑
xi∈Ct+1

k

‖xi − bt+1
k ‖

q
p = J ({bt+1

k }).

Here, the last inequality follows from the repeated Step 2 of Algorithm 1 and from the
optimization-based definitions of mean/median/spatial median as minimizers of the lq

p-norm [17]
over a dataset:

∑
xi∈Ct+1

k

‖xi − bt+1
k ‖

q
p = min

b∈Rn ∑
xi∈Ct+1

k

‖xi − b‖q
p ≤ ∑

xi∈Ct+1
k

‖xi − bt
k‖

q
p for all k. (5)

Because (4) and (5) are valid for any reallocated index j satisfying (3), we conclude that the
clustering error strictly decreases when a reallocation for a set of observations occurs in Algorithm 1.

To this end, because there exists only a finite number of possible sets Ct
k, we must have Ct+1

k = Ct
k

after a finite number of steps t 7→ t + 1. This ends the proof.

The K-means++ initialization method utilizes squared Euclidean distance-based probabilities
to sample initial prototypes from the data points. In Algorithm 2, this initialization strategy is
generalized for varying lp-norms to the q-th power. Note that Algorithm 2 is the same as the K-means++
initialization algorithm when p = q = 2. In order to be successful, one needs to assume in Algorithm 2
that the dataset {xi}N

i=1 has at least K distinct data points, which is a natural and reasonable assumption.
In Step 2, the probability for each point xi to be selected as the next initial prototype is proportional
to the distance to the closest already selected prototype divided by the value of the clustering error
Function (2) for the already selected prototypes. Clearly, in each iteration, the most distant points
(with respect to the previously selected initial prototypes) have the highest probability of being selected.

Algorithm 2: General K-means++-type initialization.

Input: Dataset {xi}N
i=1 and the number of clusters K.

Output: Initial prototypes {bk}K
k=1.

1. Select b1 = xi uniformly randomly, i = 1, . . . , N;
for k = 2, k = k + 1, k ≤ K do

2. Select bk = xi with probability
minj=1,...,k−1 ‖xi − bj‖

q
p

J ({bj}k−1
j=1 )

, i = 1, . . . , N;

end
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2.2. Cluster Validation Indices

From now on, for a given number of clusters K, we denote, by {ck} and {Ck}, k = 1, . . . , K, the
best prototypes and divisions obtained after a fixed number of repeated applications of Algorithm 1.
When K = 1, we denote the prototype, i.e., the mean, median, or spatial median, of the whole data
with m. Moreover, we let JK denote the corresponding clustering error over the whole data and
J k

K = ∑xi∈Ck
‖xi − ck‖

q
p to refer to the corresponding final within-cluster errors.

Cluster validation considers the quality of the result of a clustering algorithm, attempting to find
the partition that best fits the nature of the data. The number of clusters, given as a parameter for
many clustering algorithms (such as the ones presented in Section 2.1), should be decided based on
the natural structure of the data. Like the best clustering solution, the number of clusters is also not
always clear and many ’right’ answers can exist (see, e.g., [19], Figure 5). The number can also depend
on the resolution, i.e., whether the within- and between- cluster separabilities are considered globally
or locally. Here, we focus on the CVIs based on the internal criteria.

The validation indices measure how well the general goal of clustering—high similarity within
clusters and high separability between clusters—is achieved. These are considered with measures of
within-cluster (Intra) and between-cluster (Inter) separability, for which lower and higher values are
better, respectively. Normally, a division between Intra and Inter is made and the optimal value is at
the minimum or maximum, based on the order of the division.

In Table 1, the best internal validation indices (as determined for the K-means-type of clustering
in [30], augmented with [22]) are introduced in a general fashion for the lq

p-norm setting. All except
one of the indices have been modified in such a way that the optimal number of clusters can be found
at the minimal value. Only the Wemmert–Gançarski index, which has a unique pattern of the general
formula, is given in the original form, where the maximum value indicates the optimal number of
clusters. In Table 1, if the formula that combines Intra and Inter depends on the generated clusters,
then this is indicated with the corresponding parameters.

Table 1. Internal cluster validation indices.

Name Notation Intra Inter Formula

KCE [30] KCE K×JK Intra

WB-index [22] WB K×JK
K
∑

k=1
nk‖ck −m‖q

p
Intra
Inter

Calinski–Harabasz [24] CH (K− 1)×JK (N − K)×
K
∑

k=1
nk‖ck −m‖q

p
Intra
Inter

Davies–Bouldin [23] DB
1
nk
J k

K +
1

nk′
J k′

K ‖ck − ck′‖
q
p

1
K

K
∑

k=1
max
k 6=k′

Intra(k,k′)
Inter(k,k′)

Pakhira, Bandyopadhyay, and Maulik [45] PBM K×JK max
k 6=k′

(‖ck − ck′‖
q
p)×J1

( Intra
Inter

)2

Ray–Turi [25] RT
1
N
×JK min

k 6=k′
‖ck − ck′‖

q
p

Intra
Inter

Wemmert– Gançarski ([46]) WG ‖xi − ck‖
q
p min

k 6=k′
‖xi − ck′‖

q
p

1
N

K
∑

k=1
max

(
0, nk − ∑

i∈Ik

Intra(i)
Inter(i)

)

As can be seen from the formulas of the indices, there are a lot of similarities in how different
indices measure the within- and between-cluster separability. For example, the clustering error
straightforwardly measures the similarity within clusters and, therefore, almost all of the indices
include it in their measure of Intra . In case of between-cluster separability, it is common to measure,
for instance, the distance between cluster prototypes or between cluster prototypes and the whole data
prototype. The rationale behind the index structures and their more detailed descriptions can be found
in the original articles.
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2.3. On Computational Complexity

The computational complexity of the prototype-based clustering is O(RTKNn), where T is the
number of iterations needed for convergence and R is the chosen number of repetitions of joint
Algorithms 1 and 2. As the clustering itself is quite time-consuming, especially with large datasets, it is
only natural to also consider the complexity of the indices to avoid excessively complex computations.
Here, the KCE index has an advantage in not requiring any extra calculation after the clustering
solution has been obtained. For the indices that go through the prototypes once, here the WB and CH
that measure the prototype distances to the whole data prototype, the complexity isO(Kn). Indices that
measure the distances between all the prototypes, such as DB, PBM, and RT, have complexity O(K2n).

In our tests, WG is the index with the highest complexity, O(KNn), going through the whole
data, comparing points and the prototypes. A commonly used and generally well performing
index, Silhouette (see, e.g., [30,33]), goes through the whole data twice when calculating its values
and therefore its complexity is O(N2n). With large datasets of at least hundreds of thousands of
observations, this might be even more complex than the clustering task itself, with the chosen values
of R and K and the observed value of T (see Figure A1) in Section 4. If computationally more involved
indices would be used, also application of more complex clustering algorithms should be considered.
Therefore, Silhouette was excluded from our tests.

2.4. About Earlier Validation Index Comparisons

There has been a lot of research on cluster validation, including comparisons of different validation
indices and clustering algorithms. Often when a new index is proposed, the work also includes a set
of comparisons that conclude that the new index is the best one. In [34], eight common CVIs were
compared and with 5% additional noise, different densities, and skewed distributions, most indices
were able to find the correct number of clusters. However, only three of them were able to recognize
close subclusters. In their tests, S_Dbw was the only CVI that suggested the correct number of clusters
for all datasets. In our previous tests in [30], the S_Dbw also recognized the close subclusters in
Sim5D2, but it did not perform that well in general.

Often no single CVI has a clear advantage in every context, but each is best suited to a certain
kind of data. This was also the conclusion in [33], where 30 different indices with 720 synthetic
and 20 real datasets were compared. However, a group of about 10 indices were found to be the
most recommendable, including Silhouette, Davies–Bouldin * and Calinski–Harabasz at the top. Also,
in the earlier extensive comparison [47], where 30 indices were compared, the authors suggested
that if different datasets were used for testing, the order of the indices would change but the best
ones—including Calinski–Harabasz, Duda–Hart, and the C-index—would still perform well.

3. Experimental Setup

Next, we test the indices in Table 1 with different distance measures, i.e., with different
prototype-based clustering algorithms. The index values are calculated with the distance corresponding
to the clustering method used, i.e., city-block with the K-medians, squared Euclidean with the K-means,
and Euclidean with the K-spatialmedians. All datasets were scaled to the range of [−1, 1]. All the
tests were run on MATLAB (R2014a), where a reference implementation on both the validation indices
and the general clustering Algorithm 1 with the initialization given in Algorithm 2 were prepared.
The impact of the necessary amount of repetitions of Algorithms 1 and 2 was tested with multiple
datasets (S -sets, Dim-sets, A1, Unbalance), comparing the clustering error and the cluster assignments.
With 100 repetitions, the minimum clustering error and the corresponding cluster assignments were
stabilized and an appropriate clustering result was found. This result with the minimum clustering
error was used for computing the CVI value.

To test the indices, we used the basic benchmark datasets described in detail in [48], with the
two other synthetic datasets http://users.jyu.fi/~jookriha/CVI/Data/ as given in [30] (see Figure 1).
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These benchmark sets are synthetic datasets, suggested for use when testing any algorithm dealing
with clustering spherical or Gaussian data. Here, we restrict ourselves to the benchmarks with at
most 20 clusters, because the interpretation and knowledge discovery from the clustering results with
a large number of prototypes might become tedious [6,49]. Therefore, the number of clusters was also
tested with K = 2− 25.

Sim5D2 PCA of Sim5D10

Figure 1. Scatter plots of Sim5 datasets.

In addition, we use six real datasets that include Steel Plates, Ionosphere, and Satimage (Train)
from the UCI Machine Learning Repository, https://archive.ics.uci.edu/ml/datasets.html Iris and
Arrhythmia from MATLAB’s sample datasets, https://se.mathworks.com/help/stats/_bq9uxn4.html,
and the USPS dataset. https://www.otexts.org/1577 A summary of all these datasets can be seen
in Table 2. For these real datasets, even if there are class labels provided, we do not compare the
clustering results with the class information because of the completely unsupervised scenario with
the internal validation indices. Moreover, the classes need not correspond to the clusters determined
by the prototype-based clustering algorithm, since the probability density functions of the classes are
not necessarily spherically symmetric. For these datasets, we therefore only study and compare the
stability of the suggestions on the numbers of clusters for different indices.

Table 2. Description of datasets.

Data Size Dimensions Clusters Description

S 5000 2 15 Varying overlap
G2 2048 1–1024 2 Varying overlap and dimensionality

DIM 1024 32–1024 16 Varying dimensionality
A 3000–7500 2 20–50 Varying number of clusters

Unbalance 6500 2 8 Both dense and sparse clusters
Birch 100,000 2 1–100 Varying structure
Sim5 2970 2–10 5 Small subclusters close to bigger ones

Data Size Dimensions Classes Description

Iris 150 4 3 Three species of iris
Arrhythmia 452 279 13 Different types of cardiac arrhythmia
Steel Plates 1941 27 7 Steel plates faults
Ionosphere 351 34 2 Radar returns from the ionosphere

USPS 9298 256 10 Numeric data from scanned handwritten digits
Satimage (Train) 6435 36 6 Satellite images

Finally, our datasets include the following: A1, with 20 spherical clusters and some overlap;
the S -sets, including four datasets with 15 Gaussian clusters, and cluster overlap increasing gradually
from S1 to S4 ; Dim-sets, including six datasets with 16 well-separated clusters in high-dimensional
space and dimensions varying from 32 to 1024; a subset of Birch2, including 19 datasets

https://archive.ics.uci.edu/ml/datasets.html
https://se.mathworks.com/help/stats/_bq9uxn4.html
https://www.otexts.org/1577
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with 2–20 clusters with their centroids on a sine curve; Unbalance, with eight clusters in two separate
groups, the one having three dense and small clusters and the other five more sparse and bigger clusters;
and a subset of G2, with 20 datasets—the lowest and highest overlap in ten different dimensions from
1 to 1024. Finally, together with the six real datasets, we had altogether 62 datasets in our tests.

4. Results

In this section, we provide the results of the clustering validation index tests with K-medians,
K-means, and K-spatialmedians clustering. Results for the synthetic datasets are combined in Table A1,
where each cell includes the results for all three methods with ‘cb’ referring to the city-block distance
(p = q = 1), ‘se’ to the squared Euclidean distance (p = q = 2), and ‘ec’ to the Euclidean distance
(p = 2, q = 1). In addition, the convergence properties of the clustering algorithms are compared for
varying K values.

4.1. CVIs for Synthetic Datasets

For the Dim-sets, results were equal (and correct) in all dimensions from 32 to 1024 and for the
G2 -sets results were equal (and correct) from dimension eight upwards. Therefore, these have been
excluded from Table A1. Correct suggestions for the number of clusters are marked in bold.

The most challenging synthetic datasets seem to be Unbalance, Sim5D2, and Sim5D10. Only a few
indices were able to recognize the correct number and no single index managed to solve both the
Unbalance and the Sim sets.

As concluded in the previous studies (see Section 2.4), different indices seem to work better with
different kinds of datasets. However, there are also a lot of differences in the general performances of
the tested CVIs. The overall success rates for the CVIs, i.e., for how many of the datasets (%) it gave
correct suggestions, can be seen in Table 3, listed separately for each distance measure.

Table 3. Right suggestions for the 56 synthetic datasets (number of right suggestions/number
of datasets).

Index City-Block Squared Euclidean Euclidean

KCE 85.7% 87.5% 85.7%
WB 87.5% 80.4% 87.5%
CH 58.9% 85.7% 57.1%
DB 60.7% 60.7% 62.5%

PBM 87.5% 64.3% 89.3%
RT 60.7% 58.9% 64.3%

WG 94.6% 96.4% 92.9%

In conclusion, the WG index outperforms all the other indices in all three distance measures
and clustering approaches. WB and KCE also perform very well in general. For some indices,
the performances vary between different distances; for example, CH works very well with the
squared Euclidean distance, while PBM clearly works better with city-block and Euclidean distances.
As a whole, the recommendation for the use of indices is as follows: for the original K-means, WG, KCE,
and CH are the three best indices, and for the robust variants with K-medians and K-spatialmedians,
WG, PBM, and WB have the highest success rate.

4.2. CVIs for Real Datasets

As mentioned, here we only observe and compare the stability of the clustering results. The results
are combined in Table 4. With real datasets, a typical behavior of the internal validation indices is
the suggestion of only a small number of clusters. This is especially true for KCE and CH, even if we
know that there are observations from multiple classes, with the class boundaries having unknown
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forms and shapes. Different from the other indices, the results of DB seem to deviate a lot, with high
variability over the datasets. The same can happen for RT, with squared Euclidean distance.

Table 4. Internal CVIs results for real datasets.

cb, se, ec KCE WB CH DB PBM RT WG

Iris 2, 3, 2 2, 3, 2 2, 3, 2 2, 2, 2 3, 22, 3 2, 2, 2 2, 2, 2
Arrhythmia 2, 2, 2 2, 5, 2 2, 2, 2 25, 24, 17 2, 14, 2 2, 25, 3 2, 25, 25

Steel 2, 2, 2 3, 5, 2 2, 2, 2 7, 3, 7 3, 7, 2 2, 2, 3 3, 2, 3
Ionosphere 2, 2, 2 2, 2, 2 2, 2, 2 11, 23, 2 3, 20, 3 4, 4, 4 4, 2, 2

USPS 2, 2, 2 2, 4, 2 2, 2, 2 2, 18, 11 2, 4, 4 2, 12, 7 2, 2, 7
Satimage (Train) 2, 3, 2 3, 6, 2 2, 3, 2 3, 3, 3 3, 6, 3 3, 3, 3 3, 3, 3

Based on the observed behavior, the most stable, and therefore the recommended indices, seem to
be WB, PBM, and WG. However, when the data is of higher dimension without a Gaussian structure,
the curse-of-dimensionality [50] might be the reason for the basic suggestions of a low number of
clusters. Therefore, to obtain more fine-tuned clustering results and validation index evaluations,
it might be necessary to use the prototype-based clustering in a hierarchical manner, as suggested
in [16,51]. For example, many indices suggested three clusters for the Sim5 datasets, but after a further
partitioning of the data, new index values could be calculated for those three clusters separately,
and the correct division into five clusters altogether could be revealed.

4.3. Convergence

For each repetition, the number of iterations needed for convergence, T, was saved. Median values
of T for synthetic datasets were: 19 for K-medians, 19 for K-means, and 21 for K-spatialmedians.
K-spatialmedians requires slightly more iterations than K-means and K-medians. In practice, the effect
of the total running time between T = 19 and T = 21 is negligible. For real datasets, median values
of T are again similar: 15 for K-medians, 17 for K-means, and 16 for K-spatialmedians. K-means
performs slightly worse than the robust K-medians and K-spatialmedians for real datasets. It is known
that K-means is sensitive to noise, which could explain these results. Overall, based on the median
values of T, there seems to be no practical difference between the convergence of K-medians, K-means,
and K-spatialmedians.

We plotted and analyzed the median of T as a function of K for each dataset separately in order to
compare the convergence characteristics of K-means, K-medians, and K-spatialmedians. The most
relevant plots are shown in Figure A1. Even though the median values of T are close to each other in
general, there are some interesting differences with multiple datasets.

From Figure A1, we can observe that the robust location estimates, median and spatial median,
clearly converge faster than the mean for the S4 dataset, which has highly overlapping clusters.
For the USPS dataset, K-medians seems to converge slightly faster than K-means. In the figure,
plots for datasets b2-sub-5, b2-sub-10, b2-sub-15, and b2-sub-20 show that K-means converges
faster than K-medians and K-spatialmedians when K is smaller than the number of clusters in the
dataset. This might be because the mean location estimate is more sensitive to movement towards
the center of multiple combined clusters than the robust location estimates since outlying points
within a cluster affect it more than the robust location estimates. The plots of datasets G2-2-10 and
G2-64-10 demonstrate how the curse-of-dimensionality greatly affects K-medians when compared to
K-means and K-spatialmedians. K-medians converge faster than K-means and K-spatialmedians in
the 2-dimensional case; however, from the 64-dimensional case onward the reverse is observed.

5. Conclusions

Tests for a representative set of previously qualified internal clustering validation indices with
many datasets, for the most common prototype-based clustering framework with multiple statistical
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estimates of cluster location, were reported here. This study further confirmed the conclusions in the
previous index comparisons that no single CVI dominates in each context, and some indices are better
suited to different kinds of data. Therefore, it is recommended to utilize multiple indices when doing
cluster analysis. However, in our tests with the synthetic datasets, the WG index outperformed other
indices in all distance measures used, also showing stable behavior with real datasets. It found the
correct number of clusters for all datasets, except the Sim5 with different sized clusters and overlap.
Due to this high performance, the WG index would be worth studying more in the future. In addition,
PBM was an index with a high and stable performance, along with WB for robust clustering and
KCE and CH for K-means. The correct number of clusters in the Sim5 datas was only found with
WB and KCE for K-means and PBM with robust estimates. Based on these tests, DB and RT are not
recommended. In general, the indices seem to perform worse with higher cluster overlap and some of
them (CH, DB, RT) fail more often when the number of clusters grows.

Here, we also extended previous index comparisons using K-means clustering, with robust
K-medians and K-spatialmedians clusterings. Just like the indices, the different distance measures also
seem to work differently with different datasets and, in addition, some indices seem to work better with
different distances. For instance, for the synthetic datasets, the PBM index clearly works better with
city-block and Euclidean distances. Therefore, the usage of robust K-medians and K-spatialmedians
could bring added value when trying to find the optimal number of clusters present in the data.

In addition, the convergence properties of the clustering algorithms were compared. Based on the
experiments, the number of iterations needed for convergence varies for different datasets between the
methods, e.g., K-means requires more iterations than the robust clustering methods for noisy datasets,
while K-medians is most affected by an increase in dimensionality. Moreover, K-means++-type
initialization strategy seems to work well with city-block and Euclidean distance.

Moreover, as many indices often suggest quite low numbers of clusters, due to clusters being
seemingly close to each other, when observed globally in a high-dimensional space, the hierarchical
application of a partitional prototype-based clustering algorithm is recommended, in order to improve
recognition of possible clusters at different resolution levels.
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Appendix A

Table A1. Internal CVIs results for synthetic datasets.

cb, se, ec KCE WB CH DB PBM RT WG

Unbalance 5, 20, 5 5, 20, 5 5, 20, 5 8, 8, 8 5, 25, 5 8, 2, 8 8, 8, 8
a1 2, 20, 2 2, 20, 2 2, 20, 2 20, 19, 16 6, 24, 6 2, 18, 17 20, 20, 20

Sim5D10 3, 5, 3 3, 5, 3 3, 3, 3 3, 3, 3 5, 10, 5 3, 3, 3 3, 3, 3
Sim5D2 3, 5, 3 3, 5, 3 3, 3, 3 3, 3, 3 5, 16, 5 3, 3, 3 3, 3, 3

S1 2, 15, 2 15, 15, 15 2, 15, 2 15, 15, 15 15, 15, 15 15, 15, 15 15, 15, 15
S2 2, 15, 2 2, 15, 3 2, 15, 2 15, 15, 15 15, 15, 15 15, 15, 15 15, 15, 15
S3 2,15, 2 2, 15, 2 2, 15, 2 7, 13, 15 4, 15, 4 4, 4, 15 15, 15, 15
S4 2, 15, 2 2, 15, 3 2, 15, 2 17, 17, 15 5, 23, 5 17, 13, 15 16, 15, 16

DIM032 16, 16, 16 16, 16, 16 16, 16, 16 16, 16, 16 16, 16, 16 16, 16, 16 16, 16, 16
...

...
...

...
...

...
...

...
DIM1024 16, 16, 16 16, 16, 16 16, 16, 16 16, 16, 16 16, 16, 16 16, 16, 16 16, 16, 16
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Table A1. Cont.

cb, se, ec KCE WB CH DB PBM RT WG

b2-sub-2 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2 2, 20, 2 2, 2, 2 2, 2, 2
b2-sub-3 3, 3, 3 3, 3, 3 3, 3, 3 3, 3, 3 3, 3, 3 3, 3, 3 3, 3, 3
b2-sub-4 4, 4, 4 4, 4, 4 4, 4, 4 4, 4, 4 4, 4, 4 4, 4, 4 4, 4, 4
b2-sub-5 5, 5, 5 5, 5, 5 5, 5, 2 5, 5, 5 5, 5, 5 5, 5, 5 5, 5, 5
b2-sub-6 6, 6, 6 6, 6, 6 2, 6 ,2 5, 6, 5 6, 6, 6 5, 6, 6 6, 6, 6
b2-sub-7 7, 7, 7 7, 7, 7 2, 7, 2 5, 6, 6 7, 14, 7 2, 2, 2 7, 7, 7
b2-sub-8 8, 8, 8 8, 8, 8 2, 8, 2 6, 6, 7 8 ,17, 8 2, 2, 2 8, 8, 8
b2-sub-9 9, 19, 9 9, 19, 9 2, 9, 2 6, 7, 8 9, 21, 9 2, 7, 7 9, 9, 9
b2-sub-10 10, 21, 10 10, 21, 10 2, 21, 2 8, 8, 9 10, 25, 10 8, 8, 8 10, 10, 10
b2-sub-11 11, 23, 11 11, 23, 11 2, 23, 3 9, 9, 10 11, 24, 11 9, 9, 8 11, 11, 11
b2-sub-12 12, 25, 12 12, 25, 12 2, 25, 3 10, 10, 11 12, 25, 12 10, 10, 9 12, 12, 12
b2-sub-13 13, 13, 13 13, 24, 13 2, 13, 2 11, 11, 12 13, 24, 13 11, 11, 11 13, 13, 13
b2-sub-14 14, 14, 14 14, 14, 14 2, 14, 2 12, 12, 13 14, 14, 14 12, 12, 12 14, 14, 14
b2-sub-15 15, 15, 15 15, 15, 15 2, 15, 2 13, 13, 14 15, 15, 15 13, 13, 13 15, 15, 15
b2-sub-16 16, 16, 16 16, 16, 16 2, 16, 2 14, 14, 15 16, 16, 16 14, 14, 14 16, 16, 16
b2-sub-17 17, 17, 17 17, 17, 17 2, 17, 2 15, 15, 16 17, 17, 17 15, 2, 2 17, 17, 17
b2-sub-18 18, 18, 18 18, 18, 18 2, 18, 2 15, 15, 16 18, 18, 18 2, 2, 2 18, 18, 18
b2-sub-19 19, 19, 19 19, 19, 19 2, 19, 2 16, 16, 17 19, 19, 19 2, 2, 2 19, 19, 19
b2-sub-20 20, 20, 20 20, 20, 20 2, 20, 2 2, 2, 2 20, 21, 20 2, 2, 2 20, 20, 2
G2-1-10 2, 25, 2 2, 25, 2 2, 25, 2 2, 2, 2 25, 25, 25 2, 2, 2 2, 2, 2

G2-1-100 2, 25, 2 2, 25, 2 2, 25, 2 22, 25, 22 21, 25, 21 3, 3, 3 2, 2, 2
G2-2-10 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2 2, 20, 2 2, 2, 2 2, 2, 2

G2-2-100 2, 2, 2 2, 22, 2 2, 2, 2 21, 19, 25 8, 23, 2 10, 7, 7 2, 2, 2
G2-4-10 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2

G2-4-100 2, 2, 2 2, 3, 2 2, 2, 2 2, 17, 23 2, 6, 2 2, 16, 16 2, 2, 2
G2-8-10 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2

G2-8-100 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2
...

...
...

...
...

...
...

...
G2-1024-10 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2
G2-1024-100 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2
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