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Abstract: Video quality assessment (VQA) plays an important role in video applications for quality
evaluation and resource allocation. It aims to evaluate video quality in a way that is consistent
with human perception. In this letter, a hierarchical gradient similarity based VQA metric is proposed
inspired by the structure of the primate visual cortex, in which visual information is processed
through sequential visual areas. These areas are modeled with the corresponding measures to
evaluate the overall perceptual quality. Experimental results on the LIVE database show that the
proposed VQA metric significantly outperforms most of the state-of-the-art VQA metrics.

Keywords: hierarchical video quality assessment; human visual systems; primate visual cortex;
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1. Introduction

Recently, video quality assessment (VQA) metrics which can evaluate the video quality consistent
with the human perception have received increased attention. VQA metrics are generally classified
into three categories, full-reference (FR), reduced-reference (RR), and no-reference (NR) metrics.
A full-reference (FR) metric aims to evaluate the qualities of distorted videos with the full available
reference videos. Peak signal-to-noise ratio (PSNR) and Mean square error (MSE) [1,2] are the most
widely used FR metrics. These indices are simple to calculate and can be conveniently adopted in
video and image applications, such as image processing and video coding [3–5]. However, they show
poor consistency with subjective evaluations [6].

Many efforts have been made to investigate the FR VQA algorithms. Structural similarity
index (SSIM) [7] is the most popular metric. The comparison functions of luminance, contrast, and
structure are designed and combined to obtain the overall quality. SSIM-based VQA metrics have been
proposed by introducing motion information, temporal weighting schemes, and multi-scales-based
schemes [8–10]. These metrics are developed based on the assumption that the degradation of
perceptual qualities is highly related to the change of the structural information. Moreover,
gradient-based metrics have been proposed to describe the loss of the structural information [11,12].
In [12], edge-strength similarities were calculated for all pixels to acquire the overall quality score for
each frame. In [13], the gradient-based 3-D structure tensors were decomposed to evaluate the video
perceptual quality. Spatio-temporal gradient features were extracted to derive the 3-D structure tensor,
and the corresponding eigenvalues and eigenvectors were used to evaluate the video perceptual quality.
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In this letter, a VQA metric is designed based on a hierarchical gradient similarity model.
This model is inspired by functional principles of the processing hierarchies in the primate visual
system [14], which is characterized by a sequence of visual areas. These areas are modeled by
hierarchical gradient measures to evaluate the score of each frame. The evaluation of visual attention
similarity by an efficient measure is also involved in the proposed metric. Then, an averaging operation
is performed to obtain the final score of the video sequence. Experimental results show that the
proposed VQA metric outperforms the state-of-the-art VQA metrics.

2. Hierarchical Video Quality Assessment

As shown in Figure 1, the neuronal processing of visual information starts from the retina.
Before the visual information reaches the visual cortex, it projects to a visual area named lateral
geniculate nucleus (LGN). This stage is called precortical processing [14]. The occipital part of the
primary visual cortex covers area V1–V4 and middle temporal (MT) area [15]. In the early visual areas,
simple image features are extracted over small local regions. Then, this information is transmitted
to the higher visual areas, in which more complex features are extracted covering larger and larger
regions. The occipital part gives input to the ventral pathway (VP) and dorsal pathway (DP) [15]. The
stream (V1→ V2→ V4) to the ventral pathway is critical for object discrimination, and the stream
(V1→ V2→ MT) to the dorsal pathway is functionally related to visual motion [14]. This strongly
indicates that these areas compute generic scene representations of visual information [16].

Figure 1. Simplified hierarchical structure of the primate visual cortex and approximate area locations [14].
MT denotes the middle temporal area, and LGN denotes the lateral geniculate nucleus.

Figure 2. Flowchart of the proposed hierarchical video assessment model. BL: block level gradient
similarity; FL: frame level gradient similarity; MSE: mean square error. PL: pixel level gradient similarity.

In this study, in order to assess the video quality in a manner consistent with human perception,
the assessment of visual information is inspired by the hierarchical processing in the primate visual
system. LGN is modeled as band-pass filtering, and the areas are modeled with hierarchical gradient
measures. Furthermore, visual attention similarity evaluated by a new efficient measure is involved
successively. As shown in Figure 2, the reference video and the distorted video are denoised
respectively. Each video is divided into two parts: a prediction part (denoted as Pr and Pt respectively)
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and a noise part (denoted as Nr and Nt respectively). MSE between the noise parts is evaluated, and
the hierarchical gradient measures are performed on the prediction parts. The hierarchical gradient
measures consist of pixel level (PL) gradient similarity, block level (BL) gradient similarity and frame
level (FL) gradient similarity. It should be noted that the proposed metric reacts in the same way to
different types of distortion.

2.1. Modeling of the Precortical Processing

The precortical processing stage in the area LGN has a band-pass filtering characteristic for luminance
stimuli [14]. This can be modeled by a denoising operation. A recent study [11] showed that perceptual
distortion can be classified into content-dependent distortion and content-independent distortion.
Content-independent distortion is mainly related to the additive noise. Thus, using the denoising
operation, both the reference and distorted frames are decoupled into two parts: the prediction part and
the noise part. In this paper, block-matching and 3D filtering algorithm (VBM3D) [17] is employed for
denoising. Furthermore, since MSE presents a good match with the additive noise [18], the MSE is
adopted to evaluate the degradation of the noise part:

Snoi(Nr, Nt) = 1−
log10(1 + MSE(Nr, Nt))

log10(2552)
, (1)

where Nr and Nt are the noise part of the reference and test videos, respectively; MSE(Nr, Nt) denotes
the MSE between Nr and Nt. The denominator log10(2552) is used to normalize the metric into the
range [0,1]. In the numerator, adding 1 is to avoid to be smaller than 0. A Snoi approximately equal to
1 means the distortion is more weak.

2.2. Modeling the Stream to the Dorsal Pathway

Areas V1 and V2 contain cells that respond preferentially to linearly-oriented patterns, such as
edges, bars, and gratings [14]. Edge detection such as Sobel filter can be used to model the processing
of these areas. Furthermore, the MT area is dedicated to visual motion such as motion gradients,
motion-defined edges, and locally opposite motions. Thus, the stream to the dorsal pathway can be
modeled as a spatio-temporal gradient.

Since the spatio-temporal gradient vector also contains the components of the spatial version, the
similarity of the spatio-temporal gradient vector is used to model the stream to the dorsal pathway.
To balance the effect of the temporal and spatial gradients, each component is divided by the sum of
positive filter coefficients, respectively. The similarity is evaluated as

Sdp(xr, xt) =
2‖gr‖2‖gt‖2 + C1

(gr)2 + (gt)2 + C1
· gr · gt + C1

‖gr‖2‖gt‖2 + C1
, (2)

where Sdp(xr, xt) denotes the gradient similarity between xr and xt, which are the pixels in prediction
parts of the reference frame and the distorted frame, respectively. The vectors gr and gt denote the
corresponding spatio-temporal gradient vectors, which are calculated by the Sobel filter along x, y,
and t directions, respectively; i.e., g = (gx, gy, gt). The Sobel kernel for the t direction is a 3× 3× 3
matrix [13]. The parameter C1 is a small constant to avoid the denominator being zero, and is set as
C1 = 0.03× 2552. The first term represents the similarity of the strengths between gr and gt. The second
term represents the similarity of the directions between the two gradient vectors. Equation (2) can be
further simplified to:

Sdp(xr, xt) =
2gr · gt + C1

(gr)2 + (gt)2 + C1
. (3)

Using (3), each pixel will get the DP similarity.
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2.3. Modeling the Stream to the Ventral Pathway

Both of the streams to the ventral and dorsal pathways contain the areas V1 and V2. Therefore, in
order to reduce repetitive computation, only area V4 should be modeled. Area V4 is important for the
perception of shape/curvature discrimination. The features are extracted over larger regions instead of
local regions. In this study, it is modeled by the block-level gradient vectors similarities. The reference
and distorted video frames are split into 8× 8 non-overlapped blocks. The mean values of the blocks
construct down-sampled versions of the images. The spatial gradient of the down-sampled images are
used to evaluate the similarity,

Svp(br, bt) =
2gr

b · g
t
b + C1

(gr
b)

2 + (gt
b)

2 + C1
, (4)

where Svp(br, bt) denotes the block-level gradient similarity between the blocks br and bt, which are the
blocks in the prediction parts of the reference frame and the distorted frame, respectively. The formula
is similar to Equation (3), whereas the difference is the vectors gr

b and gt
b are the 2-D spatial gradient

vectors of the down-sampled images. Using (4), each block will get VP similarity.

2.4. Visual Attention Similarity

Representations in the visual cortex are known to be overcomplete. Visual attention models [19,20]
show that the human visual system is more sensitive to salient regions. The similarities of only the
salient pixels are selected to evaluate the perceptual quality. Similar to [13], pixels are determined
to be the salient pixels if their spatio-temporal gradient magnitudes are above a threshold in either
the reference video or the distorted video. The threshold is defined to be the average of the kth
largest gradient magnitudes in the prediction parts of the reference frame and the distorted frame,
respectively. It should be noted that the salient pixel detection is different from the traditional salient
region and salient object detection methods. The proposed method is designed specially for video
quality assessment so as to put more emphasis on important pixels, in which the salient pixels are
distributed dispersedly. However, the salient pixels are concentrated in regions in the ground truth of
the traditional saliency detection.

We denote the set of the salient pixels in Pr and Pt as Cr and Ct, respectively. The union of Cr

and Ct—denoted as Cr
⋃

Ct—is the set of the salient pixels selected to be processed. Furthermore, the
averaging on the similarities of the salient pixels can be used to evaluate overall similarity. However, it
may lose the changes of the visual attention, and cannot represent the degradation of the whole frame
efficiently. Therefore, the similarity of the visual attention is introduced as

Sva(Pr, Pt) =
|Cr|

|Cr
⋃

Ct|
, (5)

where Sva(Pr, Pt) denotes the attention similarity between the prediction parts Pr and Pt which are
decoupled from the reference frame and the distorted frame, respectively. The numerator |Cr| denotes
the number of salient pixels in the reference frame. The denominator |Cr

⋃
Ct| denotes the number

of the salient pixels in the union set. The difference between the denominator and the numerator
represents the newly increased salient pixels. Thus, the ratio between the denominator and the
numerator represents the VA similarity. Since the salient pixels are detected as the pixels with high
gradient magnitudes, the VA similarity is considered as the frame-level gradient similarity, as well as
the visual attention similarity.

2.5. Overall Score

In the above subsections, degradations in different visual areas are modeled with the
corresponding similarities. The final quality index of each frame can be calculated by combining these
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similarities. For the prediction similarity, the pixel-level similarity, the block level-similarity, and the
visual attention similarity are multiplied to evaluate the prediction similarity as

Spre(Pr, Pt) = Sva · Avg
x∈{Cr

⋃
Ct}

Sdp(x) · Svp(x), (6)

where Spre(Pr, Pt) denotes the quality score of the prediction part which is decoupled from the distorted
frame Ft. The parameter x ∈ {Cr

⋃
Ct} denotes the salient pixel in the union set (i.e., only the salient

pixels are considered in assessing video quality). The terms Sdp(x) and Svp(x) denote the pixel-level
similarity and the block-level similarity of the pixel x, respectively. The term Sva denotes the visual
attention similarity.

As in [11], the noise similarity is used as the exponent of the prediction similarity; i.e., the overall
quality score of the frame is calculated as

Soverall(Fr, Ft) = (Spre(Pr, Pt))
Snoi(Nr ,Nt), (7)

where Spre and Snoi denote the quality score of the prediction part and the noise part, respectively.
Finally, all of the frame scores are averaged to give the final video quality index.

3. Experimental Results

The effectiveness of the proposed VQA metrics is evaluated by the consistency between the objective
scores and the subjective scores, including Mean Opinion Score (MOS) and Difference Mean Opinion Score
(DMOS). The consistency is measured by the Pearson correlation coefficient (PCC) and the Spearman
rank order correlation coefficient (SROCC). The LIVE [21] and the EPFL-PoliMI [22,23] video quality
assessment databases were used to evaluate the performance of the proposed VQA metric. There are
10 reference videos and 150 distorted videos in the LIVE database. All the video sequences are with
the size of 768× 432. There are four types of distortion: MPEG-2 compression, H.264 compression, and
simulated transmission through error-prone IP networks and wireless networks. There are 12 reference
videos and 144 distorted videos in the EPFL-PoliMI database. The video sequences have the resolutions
of CIF and 4CIF. The videos are encoded using H.264/AVC. The bit streams are corrupted by dropping
packets with loss values of 0.1%, 0.4%, 1%, 3%, 5%, and 10% [22]. Results with the state-of-the-art VQA
metrics, including PSNR, SW-SSIM [8], MC-SSIM [9], STSI [13], VQM [24], MOVIE [25], ST-MAD [26],
STAQ [27], and VRF [28] are compared. Since the reference methods are platform-independent, we
copied the values from the reference articles. The results of PSNR and Picture Quality Analyzer are
quoted from [13].

The mapping function adopted for regression of the computational quality score is a
four-parameter mapping function, which is also used in STSI [13]:

f (x) =
β1 − β2

1 + exp(− x−β3
β4

)
+ β2, (8)

where {β1, β2, β3, β4} are the fitting parameters.
Table 1 shows the PCC and SROCC of metrics performed on the LIVE database. It is observed

that the proposed hierarchical VQA (HVQA) metric significantly outperforms all of the other metrics
according to both indicators. The gradient similarity-based VQA metrics (HVQA and STSI) perform
better than SSIM-based metrics such as SW-SSIM and MC-SSIM. This indicates that the change of the
edge gradient is highly related to the degradation of the perceptual visual quality. This is reasonable
for the areas V1 and V2 which are sensitive to the edge patterns. However, the proposed HVQA
metric performs significantly better than STSI and ST-MAD. The reason is that degradations over
the large regions (e.g., the packet-loss on the flat regions) cannot be represented efficiently by only
the pixel-level gradient similarities. The similarities of area V4 and visual attention can improve the
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efficiency of the metrics. Furthermore, the proposed metric is compared with the optical flow-based
VQA metric, MOVIE. HVQA significantly outperforms the MOVIE index (SROCC increment: 0.046),
which performs the best in all of the comparison metrics.

Table 1. Performance comparison on the LIVE database.

Methods Pearson CC Spearman CC

VQM [24] 0.702 0.723
MOVIE [25] 0.786 0.810

ST-MAD [26] 0.830 0.824
STAQ [27] 0.719 0.5665
STSI [13] 0.779 0.778

SW-SSIM [8] 0.585 0.596
MC-SSIM [9] 0.679 0.698

PSNR [13] 0.368 0.404
PQR (by PQA500) [13] 0.695 0.712

DMOS (by PQA500) [13] 0.695 0.711
Proposed (DP) 0.775 0.769
Proposed (VP) 0.736 0.740
Proposed (VA) 0.759 0.761

Proposed (DP&VP) 0.810 0.807
Proposed (VP&VA) 0.804 0.811
Proposed (DP&VA) 0.817 0.816
Proposed (HVQA) 0.832 0.833

To evaluate the effectiveness of the gradient similarities at each visual area, different combinations
are reported in Table 1. The combinations can be classified into three categories. The category I
methods use only one of the three measures, including DP, VP, VA. The category II methods use
two of the three measures, including DP&VP, VP&VA, DP&VA. The category III method uses all
three measures—that is, HVQA. It is observed that the average SROCC and PCC of the category I
methods are 0.757. Thus, the similarities of single measure are efficient to represent the degradation of
perceptual visual quality. The category II methods significantly outperform the category I methods.
This indicates that the combination of two measures will improve the performance. The measures in
different visual areas are not with the complete duplicate functions in visual evaluations. Furthermore,
the category III method HVQA outperforms any other combinations. That is, the proposed metric is
the most efficient for perceptual video quality evaluation.

Table 2. Pearson correlation coefficient (PCC) scores of video quality assessment (VQA) metrics on
each kind of distortion in live database.

Methods Wireless IP H.264 MPEG2 All Data

PSNR [13] 0.4675 0.4108 0.4385 0.3856 0.368
VQM [24] 0.7325 0.6480 0.6459 0.7860 0.702
STSI [13] 0.7544 0.8072 0.8298 0.6624 0.779

SW-SSIM [8] 0.5867 0.5587 0.7206 0.6270 0.585
PQR (PQA500) [13] 0.6464 0.7300 0.7455 0.6456 0.695

DMOS (PQA500) [13] 0.6426 0.7295 0.7427 0.6445 0.695
MOVIE [25] 0.8386 0.7622 0.7902 0.7595 0.8106
STAQ [27] 0.5684 0.7080 0.8778 0.7988 0.7192
VRF [28] 0.7708 0.7453 0.7062 0.6019 0.6983

ST-MAD [26] 0.8123 0.7900 0.9097 0.8422 0.8299
Proposed (HVQA) 0.8109 0.8264 0.8445 0.7654 0.8324

Table 2 shows the PCC of state-of-the-art metrics performed on four kinds of distortion in the
LIVE database, and Figure 3 shows the performance comparison between these metrics as bar charts.
For three of the four distortion types, the proposed metric performs in the top three. For the IP distortion
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types, HVQA performs the best in the comparison metrics. For the wireless and MPEG2 distortion,
HVQA performs the third best and is competitive with the best. For the MPEG2 distortion, the proposed
HVQA metric is also competitive with the top three metrics. However, some of the comparison metrics
show high performance on only one type of distortion. For example, VQM on MPEG2 type, STSI on
IP type, and MOVIE on wireless type; each of them has a high performance on the correspondence
distortion type, but do not perform well on the other types. Thus, the HVQA metric is rather robust to
various types of video distortion. It is observed that the HVQA metric significantly outperforms the
STSI index for all four types of distortion. This coincides with the former analysis showing that the
similarities of the area V4 and visual attention can improve the performance. It should be noted that the
proposed metric outperforms all of the compared metrics for all distortion types.

Figure 3. Pearson correlation coefficient (PCC) scores of VQA metrics on each kind of distortion in
live database.
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In saliency calculation, pixels with the high spatio-temporal gradient magnitudes are determined
to be saliency pixels. The threshold is defined to be the average of the largest k gradient magnitudes.
When k is set to 1, all the pixels are the saliency pixels (i.e., the visual attention is not included in the
proposed metrics). As shown in Table 1, the metric evaluating visual attention significantly (denoted as
Proposed (HVQA)) outperformed the metric without evaluating visual attention (denoted as Proposed
(DP&VP)). It should be noted that the parameter k is set to 0.35 through exhaustive experiments, which
were performed on the LIVE database. Figure 4 shows the correlation coefficients of the proposed
metrics when the parameter k is set to be different values. The values range from 0.2 to 0.5 with an
interval of 0.05. It can be observed that when k is set to 0.35, both the SROCC and PCC are the largest.
For k set from 0.2 to 0.4, the correlation coefficients are higher than 0.8. However, when k is larger
than 0.4, the correlation coefficients become small (i.e., evaluating visual attention can improve the
performance of the proposed metric). The robustness is also validated by evaluating the proposed
metric on the EPFL-PoliMI database in the following paragraph.

Table 3. Performance comparison on the EPFL-PoliMI database.

Methods Pearson CC Spearman CC

VQM [24] 0.843 0.838
MOVIE [25] 0.930 0.920
PSNR [13] 0.793 0.800
SSIM [7] 0.678 0.677

paravqa [29] 0.848 0.906
MS-SSIM [10] 0.915 0.922

Proposed (HVQA) 0.9653 0.9707

In order to further investigate the robustness of the proposed metric, it is also evaluated on
the EPFL-PoliMI database. Table 3 shows the results of the proposed HVQA metrics as well as the
comparison metrics (the reference values are copied from [29]). It can be observed that the PCC and
SROCC of the HVQA metric are both higher than 0.965, which indicates high consistence with human
perception. Furthermore, the proposed HVQA metric significantly outperforms the comparison results,
including the MOVIE and MS-SSIM. Therefore, the proposed hierarchical gradient-based metric is
robust and efficient.
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Figures 5 and 6 show the scatter plot of the DMOS (MOS) against the objective computational
score performed on the LIVE database and EPFL-PoliMI database, respectively. It is observed that
the proposed HVQA metric performs well on videos ranging from low quality to high quality for
both databases.
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Figure 6. Scatter plot of MOSs against scores predicted by HVQA (EPFL-PoliMI database).

4. Conclusions

In this letter, a hierarchical VQA metric has been proposed inspired by the primate visual cortex.
The neuronal processing of the visual information in the sequential visual areas are modeled with the
corresponding measures. Experimental results show that the proposed metric significantly outperforms
the state-of-the-art VQA metrics.
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