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Abstract: The discrepancy BR for an m × n 0, 1-matrix from Brualdi and Sanderson in 1998 is
defined as the minimum number of 1 s that need to be shifted in each row to the left to achieve its
Ferrers matrix, i.e., each row consists of consecutive 1 s followed by consecutive 0 s. For ecological
bipartite networks, BR describes a nested set of relationships. Since two different labelled networks
can be isomorphic, but possess different discrepancies due to different adjacency matrices, we define
a metric determining the minimum discrepancy in an isomorphic class. We give a reduction to
k ≤ n minimum weighted perfect matching problems. We show on 289 ecological matrices (given
as a benchmark by Atmar and Patterson in 1995) that classical discrepancy can underestimate the
nestedness by up to 30%.

Keywords: discrepancy; nestedness; BR; Ferrers matrix; Brualdi; Sanderson

1. Introduction

In applied fields like ecology, a 0, 1-matrix M often represents the presence or absence of certain
relationships between species or objects, for example, which bee species pollinates which plants
or the occurrence and absence of species on several islands. M is often called a contingency table.
Such a matrix M can represent a bipartite graph (A bipartite graph G = (U, V, E) consists of two
disjoint vertex sets U and V such that all edges are of the form {u, v}, where u ∈ U and v ∈ V).
Connections of bees and plants are given by edges. Matrix M is then called a bi-adjacency matrix.
(For a bipartite graph G = (U, V, E) with m := |U| and n := |V|, we construct its m× n bi-adjacency
matrix M as follows: rows 1, . . . , m represent vertices u1, . . . , um in U, and columns 1, . . . , n correspond
to vertices v1, . . . , vn in V. If edge {ui, vj} ∈ E, then we set Mi,j = 1; otherwise, we have Mi,j = 0.)
Ecologists call a matrix nested if we find for every row pair i, j in M the following condition; if i has equal
or a smaller number of 1 s than j then Mi,k = 1 if and only if Mj,k = 1. Consider in Figure 1 the nested
matrix N that represents the relationships between bee and plant species, and their corresponding
bipartite graph.

N =


A B C

a 1 1 1
b 1 1 0
c 1 1 0
d 1 0 0


Figure 1. A bipartite graph and its bi-adjacency matrix N. Matrix N is nested because each bee
pollinates the same plants as all bees which pollinate more or an equal number of plants.

The term nestedness has already been introduced in 1937 by Hultén [1]. A comprehensive
history, discussion, and a definition of nestedness is given by Ulrich et al. [2]. They describe nestedness
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as follows: “In a nested pattern, the species composition of small assemblages is a nested subset of the
species composition of large assemblages”. Interpreting nestedness regarding biological properties in
networks is quite interesting. In matrix N of Figure 1 bees b, c, and d pollinate less plants than bee
a. However, it does not happen that these bees pollinate other plants than bee a. In a nested matrix,
we find, for an arbitrary pair of bee species, that the bee species with less than or an equal number of
pollinated plants always pollinates a subset of the plant species that is pollinated from the other one.
Hence, it cannot happen that a specialized bee pollinates other plants than a bee which pollinates more
plant species. An opposite scenario is that all bee pairs pollinate pairwise different plants like in matrix
M of Example 1.

Example 1. Matrix M =


A B C D

a 1 0 0 1
b 0 1 0 0
c 0 0 1 0

 is not nested since each bee pollinates a different plant than

every other bee.

Imagine the extinction of a specialized bee in a nested matrix. Since this bee only pollinates plants,
which are also pollinated from more generalized bees (bees which pollinate more plants),
the pollination for all plants is still preserved. Even the extinction of a generalized bee would preserve
the pollination of plants that are still pollinated by specialized bees. In contrast, the extinction of bee a
in matrix M of Example 1 would lead to the extinction of plants A and D because no other bee can
provide this service for these plants. Real data matrices are mostly not nested (which can be seen in our
experimental Section 3). However, it seems that understanding “how much” ecological matrices are
nested is important due to the fact that nestedness has been suggested as key to the stability of complex
ecological systems. More information about stability and nestedness can be found, for example, in the
following articles [3–6].

Notice that it is always possible to exchange columns and rows in a given matrix such
that one finds non-increasing column and row sums. This indeed results in a different matrix.
Anyway, it contains exactly the same relationships as before, and let us consider Example 2.

Example 2. Exchanging columns 2 and 3 in matrix N of Figure 1 leads to matrix N′ =


A C B

a 1 1 1
b 1 0 1
c 1 0 1
d 1 0 0

,

which does not fulfill the property of non-increasing column sums. Moreover, in this matrix, it is more difficult
to recognize nestedness because rows 2, 3 and 4 do not consist of consecutive 1 s followed by consecutive 0 s.

However, if columns and rows are ordered in regards to non-increasing row and column sums,
it is easy to decide whether a given matrix is nested or not. We give a mathematical definition
for nestedness.

Definition 1 (nestedness). Let M be an m× n 0, 1-matrix where the columns 1, . . . , n and rows 1, . . . , m are
sorted such that we find for the column sums c1 ≥ c2 ≥ · · · ≥ cn, and for the row sums s1 ≥ s2 ≥ · · · ≥ sm.
Then, matrix M is called nested if and only if each of the m rows start with consecutive 1 s followed by
consecutive 0 s.

In graph theory, a nested matrix is usually referred to as Ferrers matrix [7]. We will use equivalently
the two terms. Moreover, a whole theory around Ferrers matrices exists, and it is worth reconsidering
theoretical insights regarding the nestedness metrics. Let M be an m× n 0, 1-matrix with non-increasing
row sums (r1, . . . , rm) and non-increasing column sums (c1, . . . , cn). The corresponding Ferrers matrix
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F is the matrix where each row i of F starts with ri 1 s followed by n− ri 0 s. It can be achieved in
several shifts. A shift is the movement of a 1 in a row from a right to a left column with entry 0, i.e., it is
an exchange of entries Mi,j = 1 and Mi,j′ = 0 for j > j′ leading to the matrix M′ with M′i,j = 0, M′i,j′ = 1
and M′k,` = Mk,` for all index pairs of M with (k, `) 6= (i, j) or (k, `) 6= (i, j′). The corresponding Ferrers
matrix of matrix M in Example 1 can be seen in Example 3.

Example 3. Matrix F =


A B C D

a 1 1 0 0
b 1 0 0 0
c 1 0 0 0

 is the corresponding Ferrers matrix of matrix M in Example 1.

It can be achieved by shifting 1 s to the left. Matrix F has the same row sums like M but different column sums.

Example 3 shows that Ferrers matrix F has the same row sums as M but different column sums.
They can be calculated in counting for each row i in M the number of rows which have at least row
sum i.

Remark 1. Let M be an m × n 0, 1-matrix M where the columns 1, . . . , n and rows 1, . . . , m are sorted
such that we find for the column sums c1 ≥ c2 ≥ · · · ≥ cn, and for the row sums s1 ≥ s2 ≥ · · · ≥ sm.
Furthermore, let F be its corresponding Ferrers matrix. Then, Matrix F also has row sums (r1, . . . , rn) but
different column sums, i.e., (c′1, . . . , c′n), where c′i = |{j | j is row in M with rj ≥ i}|.

Remark 1 gives row and column sums for a corresponding Ferrers matrix F of M. The vector
(c′1, . . . , c′n) of column sums is also known as conjugate vector of (r1, . . . , rn). Furthermore, it is a classical
result that there is exactly one matrix with these column and row sums [8] (Section 2).

Remark 2. The corresponding Ferrers matrix F of a matrix M is unique.

Ferrers matrices together with majorisation theory are classical concepts for deciding the question:
whether a matrix M (or its bipartite graph) exists with given row and column sums. When matrix M is
interpreted as the bi-adjacency matrix, then the corresponding graph of matrix F (considered now as
bi-adjacency matrix) is then a threshold graph. For an overview about these problems, we recommend
Brualdi’s book [9] or Mahadev’s and Peled’s book [10].

In most real world data, a matrix M is not nested. Hence, the natural question arises of “how far
the ecological matrix is from being nested”. Brualdi and Sanderson answered this question with the
metrics of discrepancy disc(M) [11]. (In ecology, it is common to use the notion BR instead of disc [2]).
It is based on the fact that every matrix M has a unique Ferrers matrix F that can be achieved by shifting
1 s in each row from larger to smaller column indices with entry 0 (see Remark 2). The discrepancy of a
given matrix M is the minimum number of shifts of 1 s to the left required to achieve its Ferrers matrix.
A value of 0 represents a nested matrix. This means that the the larger the discrepancy is (the more
shifts are needed to yield the Ferrers matrix), the less a matrix is nested. Hence, the discrepancy metrics
measures the strength to be non-nested. Consider matrix M in Example 4 and its unique Ferrers matrix
F. In the first row, it is possible to shift the 1 in the third column to the second column, and the 1
of the fourth column to the third one. However, one only needs a single shift, i.e., moving the 1 of
the fourth column to the second one. Following this approach for each row, we find disc(M) = 4.
The discrepancy can be easily calculated. However, there is a conceptual problem when applied to
an ecological data set. Exchanging two different columns i and i′ in M, holding the same column
sums, leads to another matrix M′ with M 6= M′. The values of the discrepancy for M and M′ can be
different. However, both bi-adjacency matrices represent exactly the same relationships between bees
and plants. Moreover, these bi-adjacency matrices correspond to two different labelled bipartite graphs.
(A graph is labelled if all vertices in vertex set V are indexed by a unique number, i.e., V consists of
vertices v : 1, . . . , vn where n := |V|.) Their structure, however, is exactly the same. Formally, those
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graphs are called isomorphic. (Two labelled graphs G = (V, E) and G′ = (V, E′) are called isomorphic
if there exists a permutation σ : V 7→ V of vertex labels such that edge {vi, vj} ∈ E if and only if
{vσ(i), vσ(j)} ∈ E′.) Consider Example 4.

Example 4. Bi-adjacency matrices M :=



A B C D
a 1 0 1 1
b 1 0 1 1
c 1 1 0 1
d 1 1 0 0
e 1 1 0 0
f 1 0 1 0


and M′ :=



A B D C
a 1 0 1 1
b 1 0 1 1
c 1 1 1 0
d 1 1 0 0
e 1 1 0 0
f 1 0 0 1


represent

two isomorphic bipartite graphs, i.e., both graphs look the same but plants C and D have in M column indices 3
and 4, whereas in matrix M′ plant C and D are labelled with 4 and 3. Moreover, in M, we need to shift the four

bold 1 s to achieve its corresponding Ferrers matrix F =



1 1 1 0
1 1 1 0
1 1 1 0
1 1 0 0
1 1 0 0
1 1 0 0


, i.e., disc(M) = 4. In matrix M′, we

only need to shift three 1 s to achieve F leading to disc(M′) = 3.

For ecological purposes, these labels are not necessary. They are only assigned to columns and
rows due to the mathematical denotation of columns and rows. The value of the discrepancy is
dependent on a “random” order of bees and pollinators in a data set, and its resulting order of columns
and rows in its bi-adjacency matrix.

We propose an extended metric based on the discrepancy to repair this problem. We define for a
matrix M setM, which contains all matrices that can be achieved by permuting in M columns and
rows with identical sums. (Notice, if we consider all matrices inM as bi-adjacency matrices, then
the corresponding set of bipartite graphs is isomorphic. Consider a bipartite graph G = (U, V, E)
in this set. The definition of isomorphic graphs allows only the permutation of vertex labels with
the same vertex degree in U or V. This corresponds to the permutation of columns and rows in the
corresponding bi-adjacency matrix with the same sums.) However, changing the row order in M
would not change the discrepancy of M because the number of minimal shifts in each row stays the
same. Finding an optimal labelling for a given bipartite graph G, such that its bi-adjacency matrix
has a minimum discrepancy under all bi-adjacency matrices of isomorphic graphs of G, can be done
by only permuting the columns of its bi-adjacency matrix. We define the isomorphic discrepancy of M as
the minimum number of shifts under all matrices inM to achieve F. In other words, the isomorphic
discrepancy finds an optimal labelling for a bipartite graph regarding a minimum number of shifts
in its bi-adjacency matrix to achieve its nested matrix F. In Example 4, the discrepancy of M would
be overestimated or the nestedness be underestimated, respectively.

We show that the isomorphic discrepancy for a matrix M can be calculated in transforming our
problem into less than n minimum perfect weighted matching problems in a bipartite graph. (Given a bipartite
graph, G = (U, V, E) with |U| = |V|, and weight function w : E 7→ R. The perfect matching problem
asks for a subset M ⊂ E of edges such that each vertex of G is in exactly one edge of M. The minimum
perfect weighted matching problem asks for a perfect matching M minimizing w(M) = ∑mi∈M w(mi).)
More clearly, we construct for each fixed column sum s a bipartite graph Gs separately. Each edge
{ui, vj} in a minimum perfect weighted matching of Gs tells us that column i in matrix M needs
to be moved on position j. In the resulting matrix, all columns with sum s are reordered without
violating the non-increasing column sums property. We repeat this approach whenever there exist
at least two columns with the same column sum. The resulting matrix is a matrix in IM with a
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minimum discrepancy. One of the most important books about matching theory is from Lovász and
Plummer [12]. One suitable algorithm for our scenario is from Gabow [13], which achieves an O(n3)

asymptotic running time, if we follow our approach.
Please observe that there exist other approaches and assumptions of what a nested matrix N for

M has to look like. One approach is to find an M′ ∈ M such that a minimal number of 0 s can be
replaced by 1 s to become nested. This problem is known as the minimal chain completion problem and
was shown to be NP-complete in 1981 by Yannakakis [14]. (It is an open problem whether there is
an algorithm to find a solution in polynomial asymptotic running time for NP-complete problems.
For more information consider the classical book of Garey and Johnson [15].) The opposite problem
is to delete a minimal number of 0s in M′ ∈ M to achieve a nested matrix that is also NP-complete
(exchange the rules of 1 s and 0 s to see this). An approximation algorithm was given in the Phd-thesis
of Juntilla in 2011 [16]. There are different definitions of nestedness in the ecological community, and
several procedures to compute it. For an overview, see the nestedness guide [2] which also includes the
discrepancy of Brualdi and Sanderson (there called BR). In the next section, we give a formal definition
of isomorphic discrepancy, and show how it can be calculated in asymptotic running time O(n3).

2. The Discrepancy Problem for Isomorphic Matrices

Let M be an m × n bi-adjacency matrix with non-increasing row sums (r1, . . . , rm),
and non-increasing column sums (c1, . . . , cn), and G the corresponding bipartite graph.
Furthermore, let G be the set of all isomorphic graphs of G. Then, all bi-adjacency matrices
corresponding to a graph G′ ∈ G can be achieved by permuting columns and rows with equal
sums in M. We denote the set of these matrices byM. The discrepancy of M given by Brualdi and
Sanderson [17] is the minimum number of shifts to achieve the corresponding Ferrers matrix F as
described in the last section. We denote the discrepancy of M by disc(M). We now give the definition
of the isomorphic discrepancy Id(M) of M, which is defined by

Id(M) := minB∈Mdisc(B). (1)

In other words, we try to find a matrix inM with minimal discrepancy. We also want to mention
that this new metric should be invariant against the transposition of M. This can be achieved by
transposing M to its transposed matrix Mt and determining Id(Mt). The general isomorphic discrepancy
of M is then the minimum value (or the mean value) of Id(M) and Id(Mt). We here focus on Id(M)

because the calculation of Id(Mt) can be done analogously.
A simple approach is to permute all columns and rows with equal sums, and to choose a

permutation of M that yields the minimum discrepancy. This can lead to the determination of
exponentially many possible permutations. Please observe that it is sufficient for our problem to
permute columns in M and keep the rows fixed. The reason is that exchanging the order of rows with
the same sums leads to exactly the same discrepancy because the corresponding rows of the Ferrers
matrix are identical. Consider our Example 4. It can be seen that each permutation of the first three
rows in M or M′ lead to the same kind of shifts, and so to the same discrepancy as before. Following
this approach, we will not necessarily generate all matrices inM, but the subset IM that consists of all
matrices that were yielded by a permutation of columns in M with the same sum. Hence, matrices in
IM possess the whole range of possible discrepancies that occur for matrices inM. Hence, it is sufficient
to permute columns for the calculation of Id(M). More formally, we find

Id(M) = minB∈Mdisc(B) = minB∈IM disc(B). (2)

Consider all matrices with row sums (r1, . . . , rm) and column sums (c1, . . . , cn). Then, it follows
that all of them possess the same unique Ferrers matrix F with column sums (c′1, . . . , c′n). (Recall
that the lists are non-increasing.) Brualdi and Shen showed [11] that there is always one matrix
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A with row sums (r1, . . . , rm) and column sums (c1, . . . , cn) that has minimum possible discrepancy
disc(A) = ∑n

j=1(c
′
j − cj)

+, where (a)+ := max{a, 0} for a ∈ R. Matrix A can be found by moving in F
1 s from columns j with c′j − cj > 0, to columns i with c′i − ci < 0. Consider Example 5.

Example 5. For matrix M :=



1 0 1 1
1 1 1 0
1 1 0 1
1 1 0 0
1 0 0 1
1 0 1 0


, we have disc(M) = 4, and corresponding Ferrers matrix

F :=



1 1 1 0
1 1 1 0
1 1 1 0
1 1 0 0
1 1 0 0
1 1 0 0


. We construct matrix A =



1 0 1 1
1 0 1 1
1 0 1 1
1 1 0 0
1 1 0 0
1 1 0 0


with disc(A) = ∑n

j=1(c
′
j − cj)

+ = 3 by

shifting three 1 s of the second column in F to the fourth column. However, the minimum discrepancy under all
isomorphic matrices of M is 4, i.e., Id(M) = 4. This is true because each permutation σ of the last three columns
of M leads to a matrix Mσ with disc(Mσ) = 4. A discrepancy of 3 cannot be achieved by a permutation of
columns from M.

The set of all matrices with row sums (r1, . . . , rm) and column sums (c1, . . . , cn) can be partitioned
in isomorphic matrix setsMi. Example 5 shows that not all sets possess a matrix A with minimum
possible discrepancy. If this had been the case, we would already know the value Id(M) for each matrix.
Unfortunately, it is not the case.

We want to develop a simple formula to calculate the discrepancy of a given matrix. We need
this formula later to devise an approach for the isomorphic version. Notice that a shift in a matrix M
will always be applied when Fi,j = 1 and Mi,j = 0. Since M and F have identical row sums, and due to
the construction of F, there must always be an index j′ > j with Fi,j′ = 0 and Mi,j′ = 1. In matrices of
our Examples 4 and 5, we marked these 0 s and 1 s. This means that the number of absences of 1 s
in M, when they are present in F, correspond to the number of minimum shifts disc(M). We define the
difference of the jth columns Aj and A′j of m× n 0, 1-matrices A and A′ by

(Aj − A′j) :=
m

∑
i=1

(Ai,j − A′i,j)
+. (3)

Back to our problem, we find (Fj −Mj) ≥ c′j − cj for all j. The reason is that a column Fj has c′j 1 s
and a column Mj has cj 1 s. This means that the minimum difference of both columns happens if all 1 s
in Mj also occur in Fj. Then, (Fj −Mj) = c′j − cj. Consider in Example 4 the third columns of M, M′

and F. M′ has all 1 s of F, whereas M has only two of them. Hence, F3 −M3 = 1 > 0 = c′3 − c3 but
F3 −M′3 = 0 = c′3 − c3. In cases where you find a 1 in Mj, which does not occur in Fj, this 1 needs to
be shifted to a ‘left’ column j′ where F has a 1 and M a 0. A 1 from a ‘right’ column j′′ in M has to be
shifted to Mj to achieve the c′j 1 s in F. In Example 4, this is the case for M6,3. We put this connection in
another formula for the discrepancy.

Proposition 1. Let M be an m× n 0, 1-matrix with non-increasing row sums (r1, . . . , rm) and non-increasing
column sums (c1, . . . , cn). Let F be the corresponding Ferrers matrix. Then, the minimum number of shifts
disc(M) to achieve F from M can be calculated by disc(M) = ∑n

j=1(Fj −Mj).

Proof. The proof is by induction on the number n of columns. For one column, we have M = F and
so disc(M) = 0 and (F1 −M1) = 0. We assume that disc(M) = ∑k

j=1(Fj −Mj) holds for all matrices
with m rows and k ≤ n − 1 columns (induction hypothesis IH). Let us now consider a matrix an
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m× n matrix M. Notice that (Fn −Mn) = 0 for each matrix M and its corresponding Ferrers matrix
F due to the construction of F. In column n − 1 of M, we consider the set I of all indices i where
Fi,n−1 = 1 and Mi,n−1 = 0. Due to the construction of a Ferrers matrix, and since F and M have equal
row sums, we find for all i ∈ I that Fi,n = 0 and Mi,n = 1. We construct matrix B by exchanging, for
all indices i ∈ I, all entries Mi,n−1 = 0 to 1, and all corresponding entries Mi,n = 1 to 0. Basically,
we apply |I| shifts from the nth column to the (n− 1)th column. In matrix B, we only find shiftable
1 s in smaller columns than in column n due to our construction. We delete the last column of B
and get the m× (n− 1) matrix B′. We apply the induction hypothesis on B′. Since (a) matrices B and
B′ have exactly the same number of minimal shifts (because in the first (n − 1) columns they are
completely identical, and B has in the nth column no shiftable 1 s due to our construction), and (b) M
has |I|more shifts (in the nth column) than B, and (c) matrices M and B are identical in the first n− 2
columns, and M has in the n− 1th column |I|more shifts, we get

disc(M)− |I| (b)= disc(B)
(a)
= disc(B′) IH

=
n−1

∑
j=1

Fj − B′j =
n

∑
j=1

Fj − Bj
(c)
=

n−2

∑
j=1

(Fj −Mj) + (Fn−1 −Mn−1 − |I|) + (Fn −Mn) =
n

∑
j=1

(Fj −Mj)− |I|.

We denote an element of IM by Mσ where σ : {1, . . . , n} 7→ {1, . . . , n} is a permutation of
the columns of M that exchanges columns with same column sums. Recall (Equation (2)) that this
approach covers all possible discrepancies that exist in setM. A permutation σ can be divided in
the convolution of k permutations σi if M possesses k different column sums, i.e., (c1, c2, . . . , cn) =

(x1, . . . , x1, x2, . . . , x2, . . . , xk, . . . , xk). Each σi : {1, . . . , n} 7→ {1, . . . , n} permutes all columns with
column sum xi independently, and keeps the indices of columns with different sums, i.e., σ = ◦k

i=1σi.
We denote the set of all possible permutations σi by Σi, and for all σ by Σ. For matrix M in Example 4,
we get six different matrices in set IM. Each of them is built by a permutation σ = σ1 ◦ σ2 where σ1

is the identity permutation which keeps the first column on index 1, and σ2 permutes the second,
third and fourth columns of M. The same is true for M′ in Example 4. Notice that, IM ∩ IM′ 6= ∅. Let
si be the number of columns with column sum xi. We construct k different m× si sub-matrices Mi.
Each of them consists of all columns in M with column sum xi. We denote the column indices j in Mi

by the same indices like in M, i.e., j ∈ {s1 + s2 + · · ·+ si−1 + 1, . . . , s1 + s2 + · · ·+ si−1 + si}. The next
Proposition states that calculating the minimum discrepancy of each matrix Mi can be done separately.
The sum of all minimum discrepancies for each Mi is then the minimum discrepancy of M.

Proposition 2. Let M be an m× n matrix M with non-increasing row sums (r1, . . . , rm) and non-increasing
column sums (c1, . . . , cn) = (x1, . . . , x1, x2, . . . , x2, . . . , xk, . . . , xk). Let F be the corresponding Ferrers matrix
of M. Then, the isomorphic discrepancy of matrix M is

Id(M) =
k

∑
i=1

min
σi∈Σi

∑
j:cj=xi

(Fj −Mσi
j )

 .

Proof. Since the isomorphic discrepancy is the minimum discrepancy in the set of all matrices in IM
(Equation (2)), and for each matrix B ∈ IM there exists a permutation σ = ◦k

i=1σi with σ ∈ Σ and
B = Mσ, we get for the isomorphic discrepancy of M

Id(M)
Equation(2)

= minB∈IM disc(B) = minσ∈Σdisc(Mσ)
Proposition 1

= min
σ∈Σ

(
n

∑
j=1

(Fj −Mσ
j )

)
. (4)
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Since each σ is the convolution of k permutations σi that permute only the column indices with
same sums (σ = ◦k

i=1σi), we can rewrite

(
n

∑
j=1

(Fj −Mσ
j )

)
=

k

∑
i=1

 ∑
j:cj=xi

(Fj −Mσi
j )

 .

Together with Equation (4), and since σ permutes columns with each fixed sum xi independently,
we get

Id(M)
Equation(4)

= min
σ∈Σ

k

∑
i=1

 ∑
j:cj=xi

(Fj −Mσi
j )

 =
k

∑
i=1

min
σi∈Σi

∑
j:cj=xi

(Fj −Mσi
j )

 .

Proposition 2 states that we need to find for each sub-matrix Mi in M with fixed column sums xi
a column order (a permutation σi) that minimizes the following sum:

w(σi) := ∑
j:cj=xi

(Fj −Mσi
j ). (5)

We transform the calculation of Id(M) for each sub-matrix Mi (i ∈ {1, . . . , k}) of M to the
determination of minimum weighted perfect matching problem in a labelled weighted complete bipartite graph
(A bipartite graph G = (U, V, E) is called complete if and only if each pair of vertices u, v with u ∈ U and
v ∈ V is connected by an edge, i.e., {u, v} ∈ E. If we have a weight function w : E 7→ R which assigns
to every edge in G a weight, then G is called weighted Gi = (UMi , VFi , Ei).). In Gi, each vertex uj ∈ UMi

corresponds to a column Mi
j of Mi where j ∈ {s1 + s2 + · · ·+ si−1 + 1, . . . , s1 + s2 + · · ·+ si−1 + si}.

Moreover, each vertex vj ∈ VFi corresponds to a column Fj of the Ferrers matrix F of M where
j ∈ {s1 + s2 + · · ·+ si−1 + 1, . . . , s1 + s2 + · · ·+ si−1 + si}, i.e., we consider the exactly same indices of
columns in F as in sub-matrix Mi. For simplicity we denote vertices uj by Mi

j, or, vj by Fj, respectively.

We assign each edge {Mi
j, Fj′} ∈ Ei the weight w(Mi

j, Fj′) := (Fj − Mi
j′). Now, we calculate a

minimum weighted perfect matching Pi = {{Mi
1, Fj1}, . . . , {Mi

si
, Fjsi
}} in each Gi. Hence, Pi minimizes

Equation (5). Moreover, an edge {Mi
`, Fj`} in Pi tells us that we have to put column ` in M on position

j`. That is, Pi calculates how to permute the columns in Mi such that the discrepancy is minimal.
Consider Example 6.

Example 6. For the 3× 5-matrix M :=

1 1 0 1 0
0 1 1 0 0
1 0 0 0 1

 with disc(M) = 3, we get 3× 2-sub-matrix

M1 :=

1 1
0 1
1 0

 with column sums 2, and 3 × 3-matrix M2 :=

0 1 0
1 0 0
0 0 1

 with column sums 1.

Hence, we have to construct two complete bipartite graphs G1 = (UM1 , VF1 , E1) and G2 = (UM2 , VF2 , E2).

The Ferrers matrix for M is F =

1 1 1 0 0
1 1 0 0 0
1 1 0 0 0

 . We get for G1 vertices M1,M2, F1, F2, and for G2

vertices M3, M4, M5, F3, F4, F5. The edge weights between a vertex Mi
j and Fj′ are w(Fj′ , Mi

j) := (Fj′ −Mi
j).

This leads in G1 to a weight of 1 for all edges. Hence, every perfect matching P1 in G1 has weight
w(P1) = 2, and is minimal. The order of the columns in M1 does not matter. On the contrary, in
G2, we find the minimum perfect weighted matching P2 = {{M3, F4}, {M4, F3}, {M5, F5}} of weight
w(P2) = 0. Notice that w(F3, M5) = 1 and w(F3, M3) = 1. All other weights in G2 are 0. Hence, the
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perfect matching P∗ = {{M3, F3}, {M3, F3}, {M5, F5}} corresponds to the order of columns in M with
weight w(P∗) = 1, which is not the minimum. We need to exchange columns 3 and 4 in M. We get matrix

M′ :=

1 1 1 0 0
0 1 0 1 0
1 0 0 0 1

 with M′ ∈ IM and disc(M′) = 2. Notice that disc(M′) = 2 corresponds to the

value w(P1) + w(P2) = 2.

Theorem 1. Calculating the isomorphic distance Id(M) of an m × n 0, 1-matrix M needs
O(n3) asymptotic time.

Proof. Let Pi = {{Mi
1, Fj1}, . . . , {Mi

si
, Fjsi
}} be a minimum weighted perfect matching in bipartite

graph Gi for each i ∈ {1, . . . , k}. Then, permutation σi : {1, . . . , n} 7→ {1, . . . , n} with σi(`) = j` for all
edges {Mi

`, Fj`} ∈ Pi, and σi(j) = j for all j with cj 6= xi is a permutation of the columns in sub-matrix
Mi, which minimizes w(σi) in Equation (5). With Proposition 2, and because the perfect matching has
minimum weight, we get for σ := ◦k

i=1σi that

k

∑
i=1

w(Pi)
Eq.5
=

k

∑
i=1

minσi∈Σi ( ∑
j:cj=xi

(Fj −Mσi
j )) = Id(M).

Let us now assume that each permutation σ that minimizes w(σ1), . . . , w(σk) corresponds in
each graph Gi to a perfect matching Pi with {Mj, Fj′} ∈ Pi if σi(j′) = j for Fj ∈ VFi and Mj′ ∈ UMi .
This matching is by construction minimal.

Let si be the number of columns with sum xi. Then, the computation of a minimum weighted
perfect matching in Gi is O(s3

i ) (see, for example, [13]). Since ∑k
i=1 s3

i ≤ (∑k
i=1 si)

3 = n3 (because
∑k

i=1 si = n), we get a total asymptotic running time of O(n3).

Please observe that under certain conditions the construction of several graphs Gi can be avoided.
This happens for example when the corresponding Ferrers columns are completely equal like in
Example 6 in G1. Then, all edge weights in Gi are also equal, and therefore, each perfect matching is
a solution.

3. Discrepancy versus Isomorphic Discrepancy in Ecological Matrices

The discrepancy of Brualdi and Sanderson for a given a matrix M (the column and row sums are
non-increasing) can range between the minimum and maximum discrepancy in IM. The current value
depends on a “random order of data”, and their corresponding order of columns and row in a matrix.
To avoid this variance, we introduced the isomorphic metric Id(M) that corresponds to the minimum
discrepancy in IM. We want to find out how much this problem really matters in real world matrices.
The question is, if the discrepancy value for one single data set (corresponding to a bipartite graph),
can change the general statement of how strongly a bipartite network is nested (how small is the
discrepancy) completely, or, if the range of possible values is very small, and hence the “order of
columns and rows” is negligible. Answering this question, we consider a benchmark data set in ecology
of Atmar and Patterson [18]. They offered the first software for several nestedness metrics, and tested
it on 291 occurrence matrices representing the absence or presence of animals (mammals, insects, birds)
on islands or areas in several regions of the world. These matrices range between dimension 12
(3× 4-matrix), and dimension 11940 (20× 597-matrix). A complete overview of the matrix dimensions
is given in Figure 2. In addition, 289 bipartite matrices from them can still be downloaded [19]. (The
authors mention in their paper a data set consisting of 294 matrices. The data set we found contains
only 291 of their matrices. Two of them (Artreeff.txt und Bajapo.txt) were not complete.) Each of the
data text files contains, besides the occurrence matrix, a citation of the paper where the original data
set comes from.
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Figure 2. Dimensions of 289 occurence matrices in Atmar and Patterson’s benchmark data.

3.1. Experiment: Possible Range of Discrepancy in One Isomorphic Class

A matrix M in IM can possess discrepancy values between Id(M) (recall that the isomorphic
discrepancy is the minimum discrepancy in IM), and maximum discrepancy maxB∈IM{disc(B)} in IM.
A matrix M with a ‘random order’ of the rows and columns (without violating the non-increasing order
of row and column sums) can have a discrepancy in this range. We determine the discrepancy difference

D(M) = max
B∈IM
{disc(B)} − Id(M),

which shows the possible range of the discrepancy value in IM. Hence, the order of the columns and
rows in a matrix can change the discrepancy (nestedness) by the value of the discrepancy difference.
The maximum discrepancy maxB∈IM{disc(B)} can be calculated analogously to the determination
of Id(M) with the difference, that we calculate maximum and not minimum weighted perfect
matchings. In Figure 3a, one observes for all 289 matrices M, in Atmars and Pattersons benchmark,
the values D(M). Furthermore, we want to see if we find a dependency between the number of 1 s in
matrix M, and its difference value M.

0
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(M

)

(a)

0 0,2 0,4 0,6 0,8 1
0

0,1

0,2

0,3

Sd(M)

S
D
(M

)

(b)

Figure 3. (a) each data point is a matrix M (x-axis) versus discrepancy difference D(M) (y-axis);
(b) standardized discrepancy Sd(M) (x-axis) versus standardized discrepancy difference SD(M)

(y-axis).

We observe that the discrepancy difference, i.e., the overestimation (underestimation) of the
discrepancy (nestedness), can range between 0 and 220 for a matrix M. Most values lay between
0 and 70. However, it is difficult to decide how strong this overestimation really is in considering
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absolute values. We decided to standardize the discrepancy to get an impression of how strong it
is overestimated.

3.2. Experiment: Standardized Discrepancy Difference

For a standardization of the discrepancy disc(M) of a matrix M, we determined a matrix B
with maximum discrepancy in the set R of all matrices with same row sums. The idea behind this
standardization is the following. All matrices inR possess the same Ferrers matrix F. We look for a
matrix B in which a maximum number of 1 s needs to be shifted to achieve F (maximum discrepancy).
The standardized discrepancies of M is defined by Sd(M) = disc(M)/disc(B). The algorithm to determine
B was given by Brualdi and Sanderson [17] (Section 3). Notice, that the Ferrers matrix F in R has
discrepancy 0. Hence, Sd(F) = disc(F)/disc(B) = 0, Sd(B) = 1, and all other discrepancies of R lay
between 0 and 1.

Following the idea in Section 3.1 we want to find out the range of a standardized discrepancy for
each matrix M in IM. We determined the standardized discrepancy difference

SD(M) :=
D(M)

disc(B)

for all 289 occurrence matrices in Atmar and Patterson’s data set (see Section 3.1) (consider Figure 3b).
We observe (y-axis) that the value of standardized discrepancy difference SD(M) lays between 0 and 0.3
for the whole data set. Its size is not dependent on the standardized discrepancy Sd(M) of M (x-axis).
However, it happens that a matrix M with high nestedness (low discrepancy) (Sd(M) = 0.25) in the
data set could be evaluated as “not so much nested” (Sd(M′) = 0.55, M′ ∈ IM) only because the
columns and rows of M′ occur in another order than in M. For many matrices, the difference is not
too high, but still changes the strength of nestedness (standardized discrepancy) by about 10–20%.
Some very low nested matrices M (Sd(M) between 0.8 and 0.9) can be evaluated as completely
un-nested (Sd(M′) = 1) with a worst case ordering M′ of its columns.

4. Conclusions

In summary, it turns out that it is worth considering the isomorphic discrepancy instead of
the discrepancy. The isomorphic discrepancy is invariant against a “random order” of columns
and rows in a bi-adjacency matrix representing a bipartite graph, and determines a unique value
for nestedness. Furthermore, it can be reproduced by every scientist. Moreover, our experiments
with occurrence matrices from ecology show that the strength of nestedness can be underestimated
by 10–20%. Considering the standardized discrepancy values, Figure 3b shows that standardized
discrepancy values are often not larger than 0.5, i.e., the nestedness is mostly high or of middle size but
very rarely small. A worst case scenario, in which all these matrices are sorted such that the discrepancy
is maximised, gave us a standardized discrepancy which ranges between 0 and 0.82. More precisely,
68 matrices out of 289, with an optimal ordering in matrix M have disc(M) = Id(M) < 0.5 (weakly
until middle nested), and if the same matrices have a worst case ordering in matrix M′, we find
disc(M′) ≥ 0.5 (middle until strongly nested). Those confusing results can be avoided by using the
new metric.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4893/10/3/74/s1.
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